

October 2000 Revised March 2005

74LCXH2245

Low Voltage Bidirectional Transceiver with Bushold and 26 Ω Series Resistors in B Outputs

General Description

The LCXH2245 contains eight non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is designed for low voltage (2.5V and 3.3V) V_{CC} applications. The T/\overline{R} input determines the direction of data flow through the device. The \overline{OE} input disables both the A and B ports by placing them in a high impedance state. The 26Ω series resistor in the B Port output helps reduce output overshoot and undershoot.

The LCXH2245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

The LCXH2245 data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating data inputs at a valid logic level.

Features

- 5V tolerant control inputs
- 2.3V-3.6V V_{CC} specifications provided
- Bushold on inputs eliminates the need for external pull-up/pull-down resistors
- \blacksquare 7.0 ns t_{PD} max (V_{CC} = 3.3V), 10 μ A I_{CC} max
- Power down high impedance outputs
- ± 12 mA output drive B Port ($V_{CC} = 3.0V$)
- Implements proprietary noise/EMI reduction circuitry
- Latch-up performance exceeds 500 mA
- \blacksquare Equivalent 26 Ω series resistor on B Port outputs
- ESD performance:

Human body model > 2000V Machine model > 200V

Ordering Code:

Order Number	Package Number	Package Description
74LCXH2245WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LCXH2245SJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LCXH2245MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
74LCXH2245MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Logic Symbol

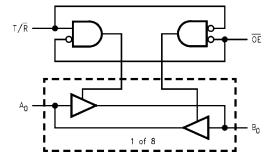
Pin Descriptions

Pin Names	Description
ŌE	Output Enable Input
T/R	Transmit/Receive Input
A ₀ -A ₇ B ₀ -B ₇	Side A Inputs or 3-STATE Outputs (Bushold) Side B Inputs or 3-STATE Outputs (Bushold)
B ₀ -B ₇	Side B Inputs or 3-STATE Outputs (Bushold)

Connection Diagram

GTO™ is a trademark of Fairchild Semiconductor Corporation.

© 2005 Fairchild Semiconductor Corporation


DS500409

Truth Table

Inputs		2.1.1.	
OE	T/R	Outputs	
L	L	Bus B ₀ – B ₇ Data to Bus A ₀ – A ₇	
L	Н	Bus A ₀ – A ₇ Data to Bus B ₀ – B ₇	
Н	Х	HIGH Z State on $A_0 - A_7$, $B_0 - B_7$	

- H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance

Logic Diagram

Absolute Maximum Ratings(Note 1) Symbol Parameter Value Conditions Units Supply Voltage ٧ -0.5 to +7.0 V_{CC} T/R, OE, V_{I} -0.5 to +7.0 ٧ I/O Ports -0.5 to V_{CC} +0.5 Vo DC Output Voltage -0.5 to $V_{CC} + 0.5$ Output in HIGH or LOW State (Note 2) ٧ I_{IK} DC Input Diode Current V_I < GND mΑ DC Output Diode Current -50 V_O < GND I_{OK} mΑ $V_O > V_{CC}$ +50 DC Output Source/Sink Current ±50 lo mΑ ±100 DC Supply Current per Supply Pin mΑ I_{CC} DC Ground Current per Ground Pin I_{GND} ±100 mΑ Storage Temperature -65 to +150 °C T_{STG}

Recommended Operating Conditions (Note 3)

Symbol	Parameter		Min	Max	Units
V _{CC}	Supply Voltage	Operating	2.0	3.6	V
		Data Retention	1.5	3.6	V
V _I	Input Voltage		0	V _{CC}	V
Vo	Output Voltage	HIGH or LOW State	0	V _{CC}	V
		3-STATE	0	5.5	V
I _{OH} /I _{OL}	Output Current in I _{OH} /I _{OL} - A Outputs	$V_{CC} = 3.0V - 3.6V$		±24	
		$V_{CC} = 2.7V - 3.0V$		±12	mA
		$V_{CC} = 2.3V - 2.7V$		± 8	
	Output Current in I _{OH} /I _{OL} - B Outputs	$V_{CC} = 3.0V - 3.6V$		±12	
		$V_{CC} = 2.7V - 3.0V$		± 8	mA
		$V_{CC} = 2.3V - 2.7V$		± 4	
T _A	Free-Air Operating Temperature		-40	85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V – 2.0V, V _{CC} = 3.0V		0	10	ns/V

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: $\rm I_{\rm O}$ Absolute Maximum Rating must be observed.

Note 3: Floating or unused control inputs must be HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units
Cymbol	Farameter	Conditions	(V)	Min	Max	Units
V _{IH}	HIGH Level Input Voltage		2.3 – 2.7	1.7		V
			2.7 - 3.6	2.0		7 V
V _{IL}	LOW Level Input Voltage		2.3 – 2.7		0.7	V
		2.7 - 3.6		0.8	7 V	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 - 3.6	V _{CC} - 0.2		
	A Outputs	I _{OH} = -8 mA	2.3	1.8		7
		I _{OH} = -12 mA	2.7	2.2		V
		I _{OH} = -16 mA	3.0	2.4		7
		I _{OH} = -24 mA	3.0	2.2		1
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.3 - 3.6	V _{CC} - 0.2		
	B Outputs	$I_{OH} = -4 \text{ mA}$	2.3	1.8		7
		$I_{OH} = -4 \text{ mA}$	2.7	2.2		J v
		I _{OH} = -6 mA	3.0	2.4		7 v
		$I_{OH} = -8 \text{ mA}$	2.7	2.0		7
		I _{OH} = -12 mA	3.0	2.0		1

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	v _{cc}	T _A = -40°	C to +85°C	Units	
Зушьог	raiailletei	Conditions	(V)	Min	Max	Units	
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 – 3.6		0.2		
	A Outputs	I _{OL} = 8 mA	2.3		0.6		
		I _{OL} = 12 mA	2.7		0.4	V	
		I _{OL} = 16 mA	3.0		0.4	1	
		I _{OL} = 24 mA	3.0		0.55	1	
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3 – 3.6		0.2		
	B Outputs	I _{OL} = 4 mA	2.3		0.6		
		I _{OL} = 4 mA	2.7		0.4		
		I _{OL} = 6 mA	3.0		0.55	7 V	
		I _{OL} = 8 mA	2.7		0.6		
		I _{OL} = 12 mA	3.0		0.8		
l _l	Input Leakage Current	$V_I = V_{CC}$ or GND	2.3 – 3.6		±5.0	μΑ	
I _{I(HOLD)}	Bushold Input Minimum	V _{IN} = 0.7V	2.3	45			
	Drive Hold Current	V _{IN} = 1.7V	2.3	-45		μΑ	
		$V_{IN} = 0.8V$	3.0	75		μΑ	
		$V_{IN} = 2.0V$	3.0	-75			
I _{I(OD)}	Bushold Input Over-Drive	(Note 5)	2.7	300			
	Current to Change State	(Note 6)	2.1	-300		_	
		(Note 5)	3.6	450		μA	
		(Note 6)	3.0	-450			
loz	3-STATE I/O Leakage	STATE I/O Leakage $V_O = V_{CC}$ or GND $2.3 - 3.6$			±5.0	^	
		$V_I = V_{IH}$ or V_{IL}	2.3 – 3.0		±5.0	μА	
Icc	Quiescent Supply Current	V _I = V _{CC} or GND	2.3 – 3.6		10	μА	
		$3.6V \le V_I, V_O \le 5.5V \text{ (Note 4)}$	2.3 – 3.6		±10	μA	
Δl _{CC}	Increase in I _{CC} per Input	V _{IH} = V _{CC} -0.6V	2.3 - 3.6		500	μΑ	

Note 4: Outputs disabled or 3-STATE only.

AC Electrical Characteristics

	Parameter	$T_A = -40$ °C to $+85$ °C, $R_L = 500\Omega$						
Symbol		$V_{CC} = 3.3V \pm 0.3V$ $C_L = 50 \text{ pF}$		V _{CC} = 2.7V C _L = 50 pF		$V_{CC} = 2.5V \pm 0.2V$ $C_L = 30 \text{ pF}$		Units
Symbol	r al affictel							
		Min	Max	Min	Max	Min	Max	
t _{PHL}	Propagation Delay	1.5	8.0	1.5	9.0	1.5	9.6	ns
t _{PLH}	A to B	1.5	0.0	1.5	3.0	1.5	3.0	113
t _{PHL}	Propagation Delay	1.5	7.0	1.5	8.0	1.5	8.4	ns
t _{PLH}	B to A	1.5	7.0	1.5	0.0	1.5	0.4	113
t _{PZL}	Output Enable Time	1.5	9.5	1.5	10.5	1.5	11.0	ns
t _{PZH}	A to B	1.5	3.5	1.5	10.5	1.5	11.0	113
t _{PZL}	Output Enable Time	1.5	8.5	1.5	9.5	1.5	10.5	ns
t _{PZH}	B to A	1.0	0.0	1.0	0.0	1.0	10.0	110
t _{PLZ}	Output Disable Time	1.5	7.5	1.5	8.5	1.5	9.0	ns
t _{PHZ}	A to B	1.5	7.5	1.5	0.5	1.5	3.0	113
t _{PLZ}	Output Disable Time	1.5	7.5	1.5	8.5	1.5	9.0	ns
t _{PHZ}	B to A	1.5	7.5	1.5	0.5	1.5	3.0	113
toshl	Output to Output Skew		1.0					ns
toslh	(Note 7)		1.0					113

Note 7: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Note 5: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 6: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Dyna	Dynamic Switching Characteristics							
Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C Typical	Units			
Cynnbon	r arameter	Conditions	(V)		Ullits			
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.6	V			
	B to A	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	0.8	V			
	Quiet Output Dynamic Peak V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	0.4	V			
	A to B	$C_L = 50$ pF, $V_{IH} = 3.3$ V, $V_{IL} = 0$ V	3.3	0.5	l v			
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	-0.6	V			
	B to A	$C_L = 50 \text{ pF}, V_{IH} = 3.3 \text{V}, V_{IL} = 0 \text{V}$	3.3	-0.8	l v			
	Quiet Output Dynamic Valley V _{OL}	$C_L = 30 \text{ pF}, V_{IH} = 2.5 \text{V}, V_{IL} = 0 \text{V}$	2.5	-0.4	V			
	A to B	$C_L=50~\textrm{pF},~\textrm{V}_{IH}=3.3\textrm{V},~\textrm{V}_{IL}=0\textrm{V}$	3.3	-0.5	V			

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , $f = 10$ MHz	25	pF

AC LOADING and WAVEFORMS Generic for LCX Family

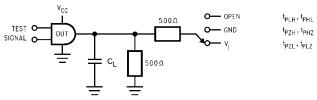
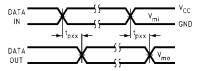
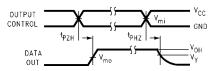
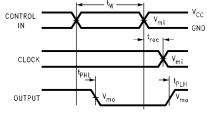
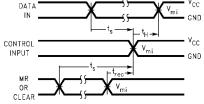
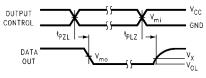




FIGURE 1. AC Test Circuit (C_L includes probe and jig capacitance)


Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V at V_{CC} = 3.3 \pm 0.3V; and 2.7V V_{CC} x 2 at V_{CC} = 2.5 \pm 0.2V
t _{PZH} , t _{PHZ}	GND

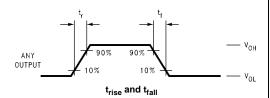
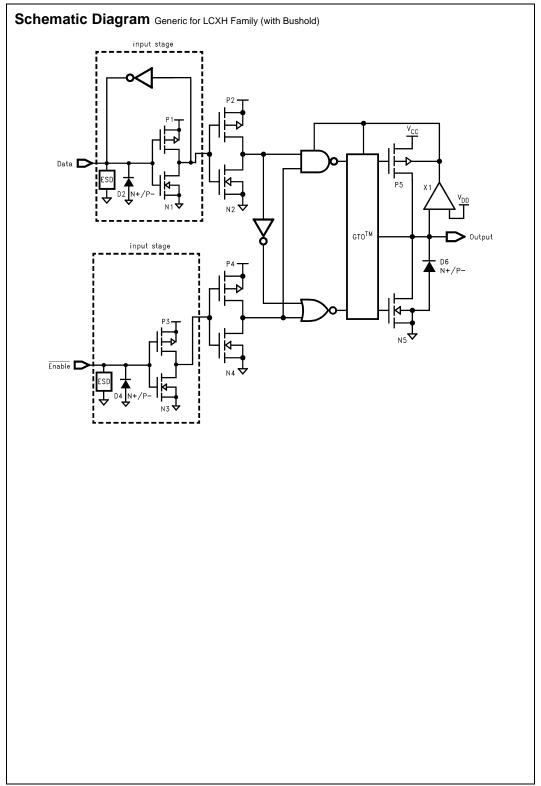
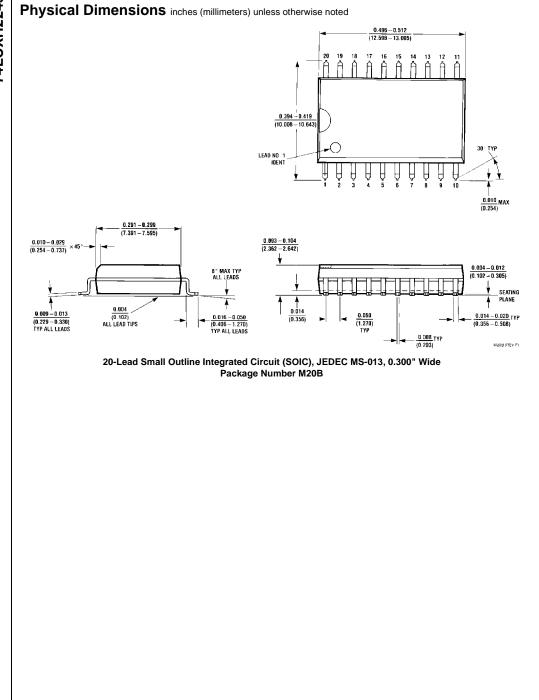
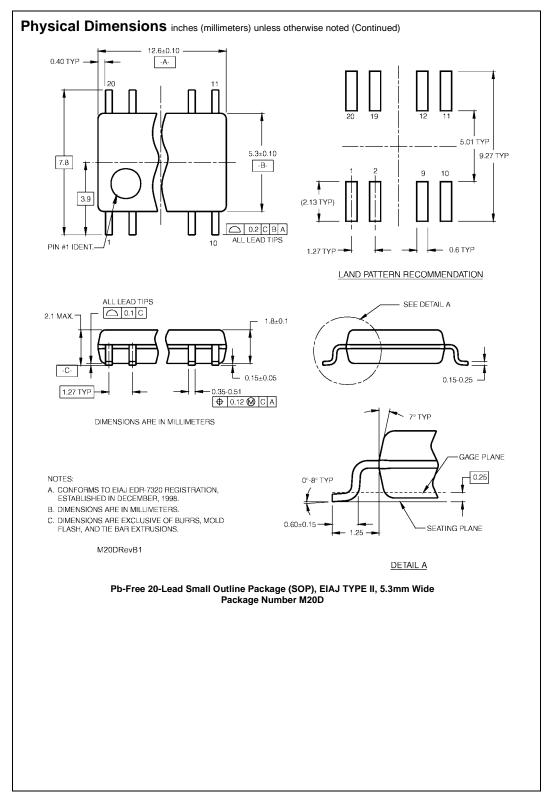

Waveform for Inverting and Non-Inverting Functions

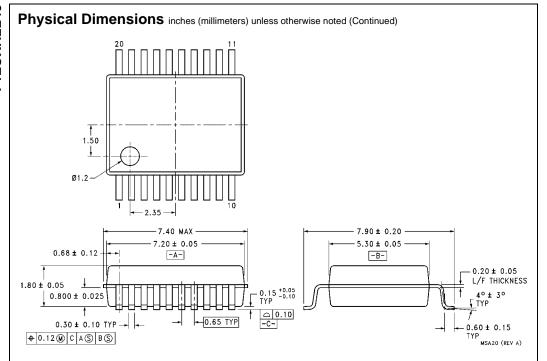

3-STATE Output High Enable and Disable Times for Logic

Propagation Delay. Pulse Width and $t_{\rm rec}$ Waveforms

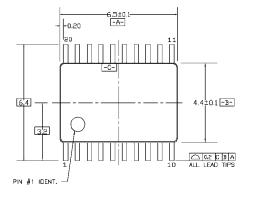
Setup Time, Hold Time and Recovery Time for Logic

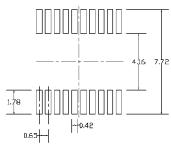
3-STATE Output Low Enable and Disable Times for Logic

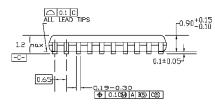






FIGURE 2. Waveforms (Input Characteristics; f = 1MHz, $t_r = t_f = 3ns$)

Symbol		V _{CC}	
Cyllibol	3.3V ± 0.3V	2.7V	2.5V ± 0.2V
V_{mi}	1.5V	1.5V	V _{CC} /2
V_{mo}	1.5V	1.5V	V _{CC} /2
V _x	V _{OL} + 0.3V	V _{OL} + 0.3V	V _{OL} + 0.15V
V _v	V _{OH} – 0.3V	V _{OH} – 0.3V	V _{OH} – 0.15V






20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide Package Number MSA20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LAND PATTERN RECOMMENDATION

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND THE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M. 1982.

R0.09min GAGE PLANE - 8'7 GAGE PLANE - 0.6±0.1 - 0.05min

DETAIL A

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com