

Simplified Schematic Diagram

Pin Descriptions

Pin N	lumber	TLV271			TLV272
SOT25	SO-8/ MSOP-8	Pin Name	Function	Pin Name	Function
	1	N/C	No connection	10UT	Output op-amp 1
4	2	IN-	Inverting input	1IN-	Inverting input op-amp 1
3	3	IN+	Non-inverting input	1IN+	Non-inverting input op-amp 1
2	4	GND	Ground	GND	Ground
	5	N/C	No connection	2IN+	Non inverting input op-amp 2
1	6	OUT	Output	2IN-	Inverting input op-amp 2
5	7	V_{DD}	Supply	2OUT	Output op-amp 2
	8	N/C	No connection	V_{DD}	Supply

Absolute Maximum Ratings (Note 4)

Symbol	Pa	arameter		Rating	Unit
V_{DD}	Supply Voltage: (Note 5)			16.5	V
V_{ID}	Differential Input Voltage			±V _{DD}	V
V _{IN}	Input Voltage Range (Note 5)			-0.2 to V _{DD} +0.2V	V
I _{IN}	Input Current Range			±10	mA
Ιο	Output Current Range			±100	mA
		٦	LV271 SOT25	220mW	
Б	Danier Dissination (Nata 0)		LV271 SO-8	396mW	mW
P_{D}	Power Dissipation (Note 6)	٦	LV272 SO-8	396mW	IIIVV
		7	LV272 MSOP-8	300mW	
-	Operating Temperature Range	C grade		0 to +70	°C
T _A	Operating reinperature Range	I grade		-40 to +125	C
T_J	Operating Junction Temperature		150	°C	
T _{ST}	Storage Temperature Range		-65 to +150	°C	
ESD HBM	Human Body Model ESD Protection (1.5kΩ in series with 100pF)		2	kV	
ESD MM	Machine Model ESD Protection			150	V

^{5.} All voltage values, except differential voltages, are with respect to ground
6. For operating at high temperatures, the TLV27x must be derated to zero based on a +150°C maximum junction temperature and a thermal resistance as below when the device is soldered to a printed circuit board, operating in a still air ambient:

Package	θ _{JA}	Unit
SOT25	180	
SO-8	150	°C/W
MSOP-8	155	

Recommended Operating Conditions

Symbol	Parameter		C g	C grade		l grade	
Syllibol			Min	Max	Min	Max	
V	Supply Voltage	Single Supply	2.7	16	2.7	16	V
V_{DD}	Supply Voltage	Split Supply	±1.35	±8	±1.35	±8	
V _{IC}	Common Mode Input Voltage		0	V _{DD} -1.35	0	V _{DD} -1.35	V
T _A	Operating Free Air Ten	0	+70	-40	+125	°C	

^{4.} Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

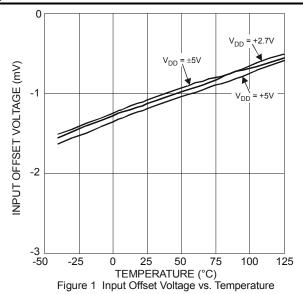
Electrical Characteristics (@T_A = +25°C and V_{DD} = 2.7V, 5V, ±5V unless otherwise specified.)

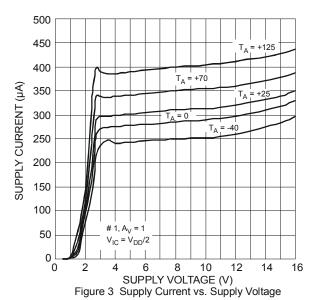
	Parameter	Conditions	<u> </u>	TA	Min	Тур	Max	Unit
.,	la and Office Valle as			+25°C	_	0.5	5	.,
V_{IO}	Input Offset Voltage	$V_{IC} = V_{DD}/2, V_O = V_{DD}/2,$		-40°C to +125°C	_	_	7	mV
αvio	Offset Voltage Drift	$R_S = 50\Omega$, $R_L = 10k\Omega$		+25°C	_	6	_	μV/°C
			\	+25°C	97	106	_	
			$V_{DD} = 2.7V$	-40°C to +125°C	76	_	_	
	Large Signal Differential		.,,	+25°C	100	110	_	
A_{VD}	Voltage Gain	$V_{O(PP)} = V_{DD}/2$, $R_L = 10k\Omega$	$V_{DD} = 5V$	-40°C to +125°C	86	_	_	dB
				+25°C	100	115	_	
			$V_{DD} = \pm 5V$	-40°C to +125°C	90	_	_	
				+25°C	58	70	_	- dB
		$V_{IC} = 0$ to $V_{DD} - 1.35V$,	$V_{DD} = 2.7V$	-40°C to +125°C	55	_	_	
01.400	Common Mode Rejection	$R_S = 50\Omega$ $V_{IC} = -5 \text{ to } V_{DD} - 1.35V,$	V _{DD} = 5V	+25°C	65	80	_	
CMRR	Ratio			-40°C to +125°C	62	_	_	
			.,,	+25°C	69	85	_	
		$R_S = 50\Omega$	$V_{DD} = \pm 5V$	-40°C to +125°C	66	_	_	
put Cha	aracteristics			•				
	Parameter	Conditions	•	T _A	Min	Тур	Max	Uni
				+25°C	_	1	60	
I_{IO}	Input Offset Current			+70°C	_	_	100	Ī
		$V_{DD} = 5V, V_{IC} = V_{DD}/2,$		+125°C	_	_	1000	_^
	$V_{O} = V_{DD}/2, R_{S} = 50\Omega$			+25°C	_	1	60	рA
I _{IB} Input Bias Current			+70°C	_	_	100	1	
				+125°C	_	_	1000	
r _{i(d)}	Differential Input Resistance	_		+25°C	_	100	_	МΩ
C _{IC}	Common Mode Input Capacitance	f = 21kHz		+25°C	_	12	_	pF

Electrical Characteristics (cont.) (@T_A = +25°C and V_{DD} = 2.7V, 5V, ±5V unless otherwise specified.)

	Parameter	Condition	ons	TA	Min	Тур	Max	Uni
			\/ - 0.7\/	+25°C	2.55	2.58	_	
			$V_{DD} = 2.7V$	-40°C to +125°C	2.48	_	_	
		$V_{IC} = V_{DD}/2$,	., 5),	+25°C	4.9	4.93	_	
		$I_{OH} = -1mA$	$V_{DD} = 5V$	-40°C to +125°C	4.85	_	_	
				+25°C	4.92	4.96	_	Ì
. ,	High Lavel Output Valtage		$V_{DD} = \pm 5V$	-40°C to +125°C	4.9	_	_	V
V _{OH}	High Level Output Voltage		\/ - 0.7\/	+25°C	1.9	2.1	_	\ \
			$V_{DD} = 2.7V$	-40°C to +125°C	1.5	_	_	
		$V_{IC} = V_{DD}/2$., 5),	+25°C	4.6	4.68	_	ĺ
		$I_{OH} = -5mA$	$V_{DD} = 5V$	-40°C to +125°C	4.5	_	_	
				+25°C	4.7	4.84	_	
			$V_{DD} = \pm 5V$	-40°C to +125°C	4.65	_	_	1
			.,	+25°C	_	0.1	0.15	-
			$V_{DD} = 2.7V$	-40°C to +125°C		_	0.22	
		$V_{IC} = V_{DD}/2$,	., 5),	+25°C		0.05	0.1	
	I _{OL} = 1mA	$V_{DD} = 5V$	-40°C to +125°C	_	_	0.15	1	
				+25°C	_	-4.95	-4.92	1
		$V_{DD} = \pm 5V$	-40°C to +125°C	_	_	-4.9] ,,	
VoL	OL Low Level Output Voltage	$V_{IC} = V_{DD}/2$, $I_{OL} = 5mA$) (0 7) (+25°C	_	0.5	0.7	V
			$V_{DD} = 2.7V$	-40°C to +125°C		_	1.1	
			., 5.,	+25°C		0.28	0.4	
			$V_{DD} = 5V$	-40°C to +125°C		_	0.5	
				+25°C		-4.84	-4.7	
			$V_{DD} = \pm 5V$	-40°C to +125°C		_	-4.65	
		$V_O = 0.5V$ from rail,	Positive rail	+25°C		4	_	
		V _{DD} = 2.7V	Negative rail	+25°C	_	5	_	
		$V_O = 0.5V$ from rail,	Positive rail	+25°C	_	7	_	
lo	Output Current	$V_{DD} = 5V$	Negative rail	+25°C	_	8	_	m/
		$V_O = 0.5V$ from rail,	Positive rail	+25°C	_	13	_	1
		V _{DD} = 10V	Negative rail	+25°C	_	12	_	1
ver Sı	upply	1 22 -	1 2022 2 2			l	<u>l</u>	1
	Parameter	Condition	ons	TA	Min	Тур	Max	Un
			V _{DD} = 2.7V	+25°C	_	470	560	
			$V_{DD} = 5V$	+25°C		550	660	1
I_{DD}	Supply Current (per op-amp)	$V_O = V_{DD}/2$		+25°C		625	800	μA
		$V_{DD} = 10V$	-40°C to +125°C		023	1000	-	
	İ			-+0 C t0 +123 C			1000	
	Power Supply Rejection Ratio	$V_{DD} = 2.7V \text{ to } 16V,$		+25°C	70	80		

Electrical Characteristics (cont.) (@T_A = +25°C and V_{DD} = 2.7V, 5V, ±5V unless otherwise specified.)


Dynamic	Performance							
	Parameter	Condition	ons	T _A	Min	Тур	Max	Unit
		D: = 2k0	V _{DD} = 2.7V	+25°C	_	1.7	_	
UGBW	Unity Gain Bandwidth	$R_L = 2k\Omega$, $C_L = 10pF$	V _{DD} = 5V to 10V	+25°C	_	1.9	_	MHz
			\/ 2.7\/	+25°C	1.2	2.1	_	
		V	$V_{DD} = 2.7V$	-40°C to +125°C	1	_	_	
SR	Slew Rate At Unity Gain	$V_{O(PP)} = V_{DD}/2,$ $C_L = 50pF,$	V _{DD} = 5V	+25°C	1.25	2.0	_	V/µs
SIX	Siew Nate At Officy Gain	$R_L = 10k\Omega$	VDD = 3V	-40°C to +125°C	1.05	_	_	ν/μ3
		11/2 - 10/22	V _{DD} = 10V	+25°C	1.3	2.2	_	
			VDD = 10V	-40°C to +125°C	1.1	_	_	
Фт	Phase Margin	$R_L = 2k\Omega$, $C_L = 10pF$		+25°C	_	65°C	_	_
	Gain Margin	$R_L = 2k\Omega$, $C_L = 10pF$		+25°C	_	12	_	dB
	t _S Settling Time	$\begin{split} &V_{DD}=2.7V,\\ &V_{(STEP)PP}=1V,\\ &A_{V}=-1,C_{L}=10pF,\\ &R_{L}=2k\Omega \end{split}$	0.1%	+25°C	_	2.9	_	
TS		V_{DD} = 5V, ±5V $V_{(STEP)PP}$ = 1V, A_V = -1, C_L = 47pF, R_L = 2k Ω	0.1%	+25°C	_	2	_	- μs
Noise/Dis	tortion Performance						•	
	Parameter	Condition	ons	TA	Min	Тур	Max	Unit
		V _{DD} = 2.7V,	A _V = 1	+25°C	_	0.02	_	
		$V_{O(PP)} = V_{DD}/2$	A _V = 10	+25°C	_	0.05	_	1
	Total Harmonic Distortion Plus	$R_L = 2k\Omega$, $f = 10kHz$	A _V = 100	+25°C	_	0.18	_	2,
THD+N	THD+N Noise	V _{DD} = 5V, ±5V	A _V = 1	+25°C	_	0.02	_	- %
		$V_{O(PP)} = V_{DD}/2$	A _V = 10	+25°C	_	0.09	_	
		$R_L = 2k\Omega$, $f = 10kHz$	A _V = 100	+25°C	_	0.5	_	1
		f = 1kHz	1 *	+25°C		35	_	
Vn	Equivalent Input Noise Voltage	f = 10kHz		+25°C	_	25	_	nV/√Hz
In	Equivalent Input Noise Current			+25°C	_	0.6	_	fA/√Hz



Typical Performance Characteristics

			Figure
V _{IO}	Input Offset Voltage	vs. free air temperature	1
I _{IB} ,I _{IO}	Input Bias Current, Input Offset Current	vs. free air temperature	2
I _{DD}	Supply Current	vs. supply voltage	3
PSRR	Dower Cumby Dejection Datio	vs. frequency	4
PSKK	Power Supply Rejection Ratio	vs. free air temperature	5
CMRR	Common Made Dejection Datio	vs. frequency	6
CIVIRK	Common Mode Rejection Ratio	vs. free air temperature	7
V _{OH}	High Level Output Voltage	vs. high level output current	8, 9, 10
V _{OL}	Low Level Output Voltage	vs. high level output current	11,12,13
CD	Claus Data	vs. free air temperature	14
SR	Slew Rate	vs. supply voltage	15
A _{VD,} Φ	Differential Voltage Gain And Phase	vs. frequency	16
Фт	Phase Margin	vs. capacitive load	17
_	Gain Bandwidth Product	vs. free air temperature	18
Vn	Equivalent Input Noise Voltage	vs. frequency	19
V _{O(PP)}	Peak To Peak Output Voltage	vs. frequency	20
	Voltage Follower Large Signal Pulse Response	_	21, 22
_	Voltage Follower Small Signal Pulse Response	_	23
	Inverting Large Signal Response	_	24, 25
_	Inverting Small Signal Response	_	26
_	Crosstalk	vs. frequency	27

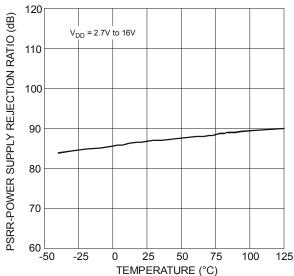


Figure 5 Power Supply Rejection Ratio vs. Temperature

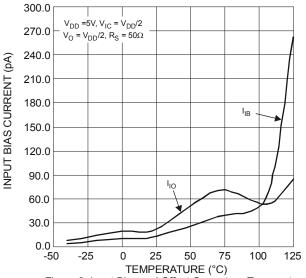


Figure 2 Input Bias and Offset Current vs. Temperature

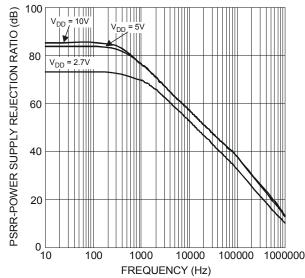
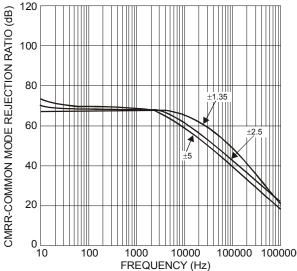
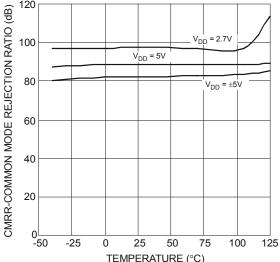
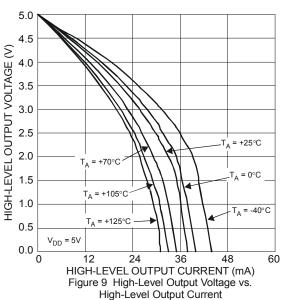
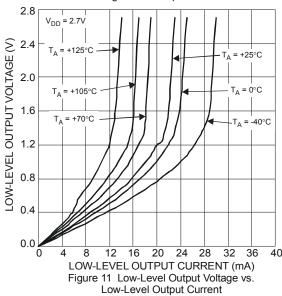
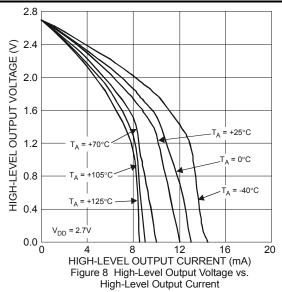
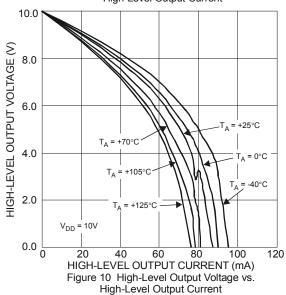


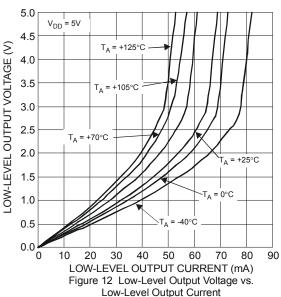
Figure 4 Power Supply Rejection Ratio vs. Frequency


Figure 6 Common Mode Rejection Ratio vs. Frequency






TEMPERATURE (°C)
Figure 7 Common Mode Rejection Ratio vs. Temperaure

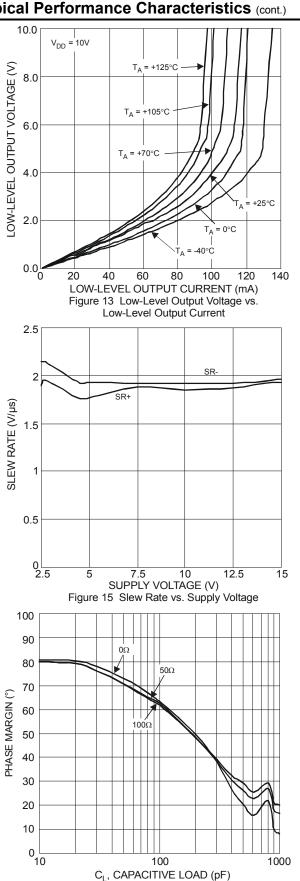


Figure 17 Phase Margin vs. Capacitive Load

3 2.5 SR-SLEW RATE (V/µs) 2 SR+ 0.5 $V_{DD} = 5V, A_V = 1, R_L = 10k,$ $C_L = 50pF, V_{O(PP)} = V_{DD}/2$ 0 L -50 -25 25 125 0 50 75 100 TEMPERATURE (°C)
Figure 14 Slew Rate vs. Temperature

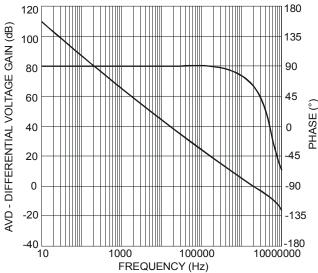


Figure 16 Differential Voltage Gain and Phase vs. Frequency

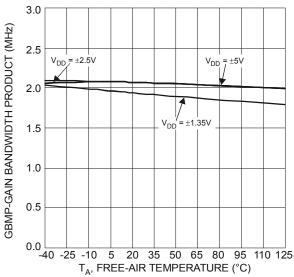


Figure 18 Gain Bandwidth Product vs. Free Air Temperature

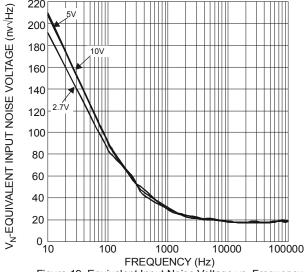


Figure 19 Equivalent Input Noise Voltage vs. Frequency

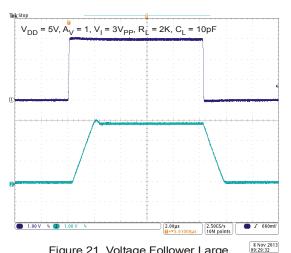


Figure 21 Voltage Follower Large Signal Pulse Response $V_{DD} = 5V$

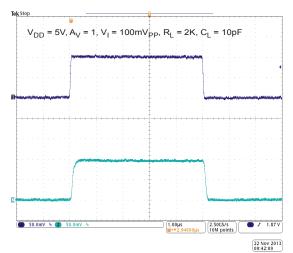


Figure 23 Voltage Follower Small Signal Pulse Response

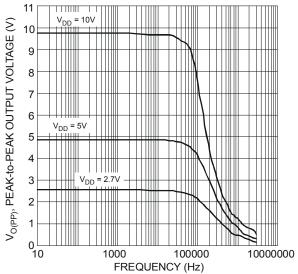


Figure 20 Peak-to-Peak Output Voltage vs. Frequency

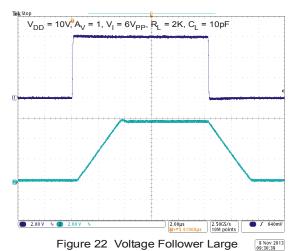
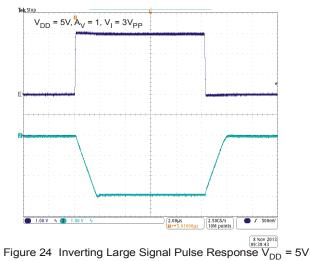



Figure 22 Voltage Follower Large Signal Pulse Response V_{DD} = 10V

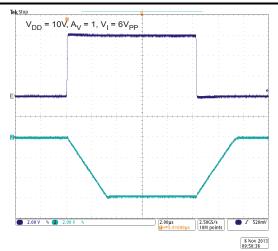
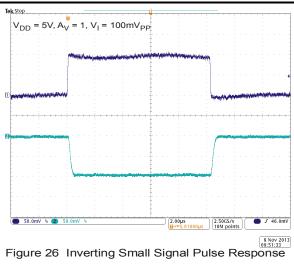
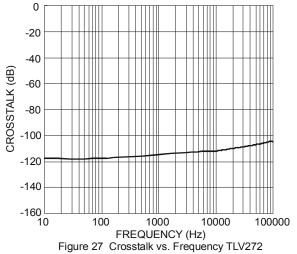




Figure 25 Inverting Large Signal Pulse Response $V_{\rm DD}$ = 10V

July 2014

Application Information

Driving a Capacitive Load

When the amplifier is configured as below, capacitive loading directly on the output can decrease the device's phase margin leading to high frequency ringing or oscillations. Therefore, for capacitive loads of greater than 100pF, it is recommended that a resistor be placed in series (RNULL) with the output of the amplifier, as shown in Figure 25. A minimum value of 20Ω should work well for most applications.

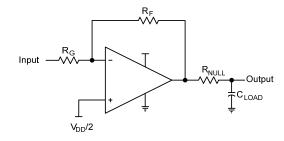


Figure 28 Driving a Capacitive Load

Offset Voltage

The output offset voltage, (VOO) is the sum of the input offset voltage (VIO) and both input bias currents (IIB) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:

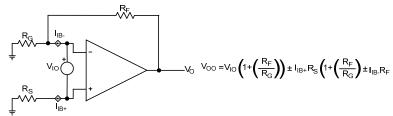


Figure 29 Output Offset Voltage Model

Other Configurations

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the non-inverting terminal of the amplifier (see Figure 30).

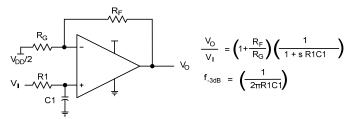


Figure 30 Single Pole Low Pass Filter

If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier.

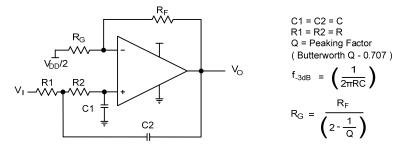
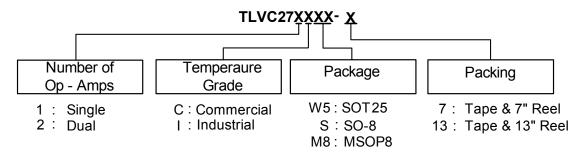



Figure 31 2-Pole Low-Pass Sallen-Key Filter

Ordering Information

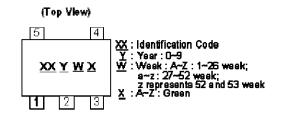
Part Number	Dookses Code	Operating Booksoning		7" or 13" Tape and Reel		
Part Number	Package Code	Temperature Range	Packaging	Quantity	Part Number Suffix	
TLV271CW5-7	W5	0 to +70°C	SOT25	3000/Tape & Reel	-7	
TLV271CS-13**	S	0 to +70°C	SO-8	2500/Tape & Reel	-13	
TLV271IW5-7	W5	-40°C to +125°C	SOT25	3000/Tape & Reel	-7	
TLV271IS-13**	S	-40°C to +125°C	SO-8	2500/Tape & Reel	-13	
TLV272CS-13**	S	0 to +70°C	SO-8	2500/Tape & Reel	-13	
TLV272CM8-13**	M8	0 to +70°C	MSOP-8	2500/Tape & Reel	-13	
TLV272IS-13**	S	-40°C to +125°C	SO-8	2500/Tape & Reel	-13	
TLV272IM8-13**	M8	-40°C to +125°C	MSOP-8	2500/Tape & Reel	-13	

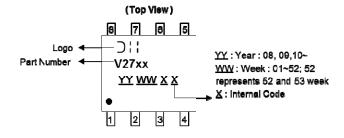
^{**}Future Products

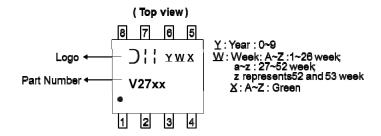
Marking Information

SO	Ī	2	5

Part mark	Part number
BV	TLV271CW5
BW	TLV271IW5

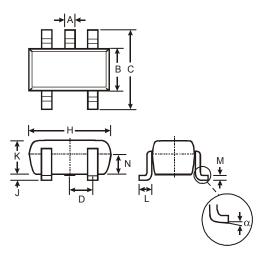

SO-8


Part mark	Part number
V271C	TLV271CS
V271I	TLV271IS
V272C	TLV272CS
V272I	TLV272IS

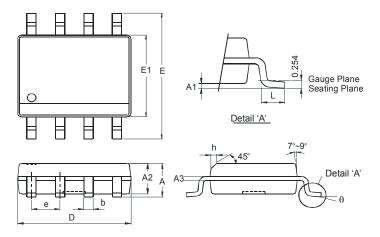

MSOP-8

Downloaded from Arrow.com.

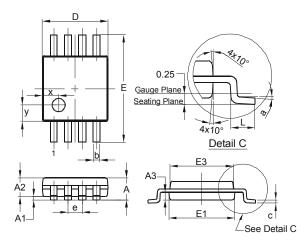
Part mark	Part number	
V272C	TLV272CM8	
V272I	TLV272IM8	



Package Outline Dimensions (All dimensions in mm.)


Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for latest version.

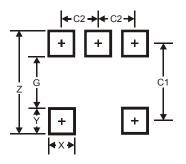
SOT25


SOT25			
Dim	Min	Max	Тур
Α	0.35	0.50	0.38
В	1.50	1.70	1.60
C	2.70	3.00	2.80
D	_	_	0.95
Η	2.90	3.10	3.00
J	0.013	0.10	0.05
K	1.00	1.30	1.10
L	0.35	0.55	0.40
M	0.10	0.20	0.15
N	0.70	0.80	0.75
α	0°	8°	
All Dimensions in mm			

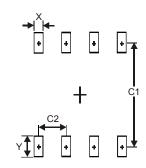
SO-8

SO-8			
Dim	Min	Max	
Α	-	1.75	
A 1	0.10	0.20	
A2	1.30	1.50	
A3	0.15	0.25	
b	0.3 0.5		
D	4.85	4.95	
Е	5.90 6.10		
E1	3.85 3.95		
е	e 1.27 Typ		
h	-	0.35	
L	0.62 0.82		
θ	0°	8°	
All Dimensions in mm			

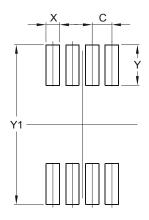
MSOP-8


MSOP-8			
Dim	Min	Max	Тур
Α	-	1.10	-
A1	0.05	0.15	0.10
A2	0.75	0.95	0.86
A3	0.29	0.49	0.39
b	0.22	0.38	0.30
С	0.08	0.23	0.15
D	2.90	3.10	3.00
Е	4.70	5.10	4.90
E1	2.90	3.10	3.00
E3	2.85	3.05	2.95
е	ı	ı	0.65
L	0.40	0.80	0.60
а	0°	8°	4°
Х	-	-	0.750
у	-	-	0.750
All Dimensions in mm			

Suggested Pad Layout


Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for the latest version.

SOT25


Dimensions	Value (in mm)
Z	3.20
G	1.60
X	0.55
Υ	0.80
C1	2.40
C2	0.95

SO-8

Dimensions	Value (in mm)
Х	0.60
Y	1.55
C1	5.4
C2	1.27

MSOP-8

Dimensions	Value (in mm)
С	0.650
X	0.450
Υ	1.350
Y1	5.300

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2014, Diodes Incorporated

www.diodes.com