Mechanical Schematic ## P1172NL/P1173NL ## **Notes:** - 1. Unless otherwise specified, all testing is made at 100kHz, 0.1VAC. - Optional Tape & Reel packaging can be ordered by adding a "T" suffix to the part number (i.e P1166.102NL becomes P1166.102NLT). Pulse complies with industry standard Tape and Tape & Reel specification EIA481. - 3. The "NL" suffix indicates an RoHS-compliant part numer. Non-NL suffixed parts are not necessarily RoHS compliant, but are electrically and mechanically equivalent to NL versions. If a part number does not have the "NL" version, but an RoHS compliant version is required, please contact Pulse for availability. - 4. Temperature of the component (ambient plus temperature rise) must be within specified operating temperature range. - 5. The rated current (Irated) as listed is either the saturation current or the heating current depending on which value is lower. - 6. The saturation current, Isat, is the current at which the component inductance drops by the indicated percentage (typical) at an ambient temperature of 25C. This current is determined by placing the component in the specified ambient environment and applying a short duration pulse current (to eliminate self-heating effects) to the component - 7. The heating current, Idc, is the DC current required to raise the component temperature by the indicated delta (approximately). The heating current isdetermined by mounting the component on a typical PCB and applying current for 30 minutes. The temperature is measured by placing the thermocouple on top of the unit under test. 8. In high volt*time (Et) or ripple current applications, additional heating in the component can occur due to core losses in the inductor which may necessitate derating the current in order to limit the temperature rise of the component. In order to determine the approximate total loss (or temperature rise) for a given application, both copper losses and core losses should be taken into account. ## **Estimated Temperature Rise:** Trise = [Total loss (mW) / K0].833(°C) Total Loss = Copper loss + Core loss (mW) Copper loss = I_{RMS}^2 x DCR (Typical) (mW) Irms = $[I_Dc^2 + \Delta I^2 / 12]^{1/2}$ (A) Core loss = K1 x f (kHz) $^{1.23}$ x Bac (Ga) $^{2.38}$ (mW) Bac (peak to peak flux density) = $K2 \times \Delta I$ (Ga) [= K2/L (μ H) x Et (V- μ Sec) (Ga)] where f varies between 25kHz and 1MHz, and Bac is less than 2500 Gauss. K2 is a core size and winding dependent value and is given for each p/n in the proceeding datasheets. K0 & K1 are platform and material dependant constants and are given in the table below for each platform. ## **SMT Power Inductors** Shielded Drum Core - P1172NL/P1173NL Series | Part No. | Trise Factor
(KO) | Core Loss Factor
(K1) | |-----------|----------------------|--------------------------| | PG0085/86 | 2.3 | 5.29E-10 | | PG0087 | 5.8 | 15.2E-10 | | PG0040/41 | 0.8 | 2.80E-10 | | P1174 | 0.8 | 6.47E-10 | | PF0601 | 4.6 | 14.0E-10 | | PF0464 | 3.6 | 24.7E-10 | | PF0465 | 3.6 | 33.4E-10 | | P1166 | 1.9 | 29.6E-10 | | P1167 | 2.1 | 42.2E-10 | | PF0560NL | 5.5 | 136E-10 | | P1168/69 | 4.8 | 184E-10 | | P1170/71 | 4.3 | 201E-10 | | P1172/73 | 5.6 | 411E-10 | | PF0552NL | 8.3 | 201E-10 | | PF0553NL | 7.1 | 411E-10 | Take note that the component's temperature rise varies depending on the system condition. It is suggested that the component be tested at the system level, to verify the temperature rise of the component during system operation. | For | Mo | re . | lnt | orn | ıai | tıon | |-----|----|------|-----|-----|-----|------| | | | | | | | | | Tot wore information | | | | | | | | | | |---|---|--|--|---|---|--|--|--|--| | Pulse Worldwide Headquarters
15255 Innovation Drive Ste 100
San Diego, CA 92128
U.S.A. | Pulse Europe Pulse Electronics GmbH Am Rottland 12 58540 Meinerzhagen Germany | Pulse China Headquarters Pulse Electronics (ShenZhen) CO., LTD D708, Shenzhen Academy of Aerospace Technology, The 10th Keji South Road, Nanshan District, Shenzhen, P.R. China 518057 | Pulse North China
Room 2704/2705
Super Ocean Finance Ctr.
2067 Yan An Road West
Shanghai 200336
China | Pulse South Asia
3 Fraser Street 0428
DUO Tower
Singapore 189352 | Pulse North Asia
1F., No.111 Xiyuan Road
Zhongli District
Taoyuan City 32057
Taiwan (R.O.C) | | | | | | Tel: 858 674 8100
Fax: 858 674 8262 | Tel: 49 2354 777 100
Fax: 49 2354 777 168 | Tel: 86 755 33966678
Fax: 86 755 33966700 | Tel: 86 21 62787060
Fax: 86 2162786973 | Tel: 65 6287 8998
Fax: 65 6280 0080 | Tel: 886 3 4356768
Fax: 886 3 4356820 | | | | | Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2019. Pulse Electronics, Inc. All rights reserved. 3 power.pulseelectronics.com SPM2007 27 (02/19) http://www.power.pulseelectronics.com/contact