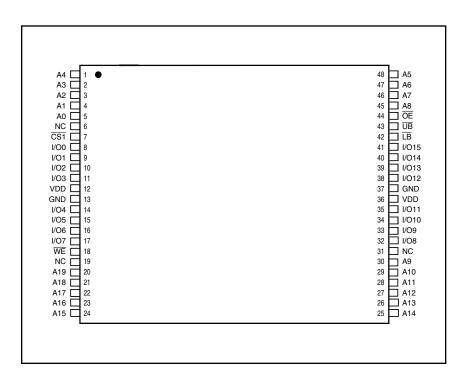


1Mx16 LOW POWER PIN CONFIGURATIONS

48-Pin mini BGA (9mmx11mm)



PIN DESCRIPTIONS

A0-A19	Address Inputs
I/O0-I/O15	Data Inputs/Outputs
CS1, CS2	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
LB	Lower-byte Control (I/O0-I/O7)
ŪB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
V _{DD}	Power
GND	Ground

48-pin TSOP-I (12mm x 20mm)

PIN DESCRIPTIONS

A0-A19	Address Inputs
I/O0-I/O15	Data Inputs/Outputs
CS1	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
LB	Lower-byte Control (I/O0-I/O7)
ŪB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
V _{DD}	Power
GND	Ground

TRUTH TABLE

					I/O PIN				
Mode	WE	CS1	CS2	ŌĒ	ĪΒ	ŪΒ	1/00-1/07	I/O8-I/O15	VDD Current
Not Selected	Х	Н	Х	Х	Х	Х	High-Z	High-Z	Isb1, Isb2
	Χ	Χ	L	Χ	Χ	X	High-Z	High-Z	IsB1, IsB2
	Χ	X	Χ	Χ	Н	Н	High-Z	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	Н	L	Х	High-Z	High-Z	Icc
	Н	L	Н	Н	X	L	High-Z	High-Z	Icc
Read	Н	L	Н	L	L	Н	D ouт	High-Z	Icc
	Н	L	Н	L	Н	L	High-Z	D out	
	Н	L	Н	L	L	L	Dout	Dout	
Write	L	L	Н	Χ	L	Н	Din	High-Z	Icc
	L	L	Н	Χ	Н	L	High-Z	Din	
	L	L	Н	X	L	L	Din	DIN	

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to V _{DD} + 0.5	V
VDD	V _{DD} Relates to GND	-0.3 to 4.0	V
Тѕтс	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.0	W

Notes:

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect reliability.

CAPACITANCE(1,2)

Symbol	Parameter	Conditions	Max.	Unit	
Cin	Input Capacitance	VIN = 0V	6	pF	
C _{I/O}	Input/Output Capacitance	Vout = 0V	8	pF	

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, $V_{DD} = 3.3V$.

OPERATING RANGE (VDD) (IS62WV102416ALL)

Range	Ambient Temperature	V _{DD} (35 ns)	
Commercial	0°C to +70°C	1.65V-2.2V	
Industrial	–40°C to +85°C	1.65V-2.2V	
Automotive	–40°C to +125°C	1.65V-2.2V	

OPERATING RANGE (VDD) (IS62WV102416BLL)(1)

Range	Ambient Temperature	V _{DD} (25 ns)	
Commercial	0°C to +70°C	2.4V-3.6V	
Industrial	–40°C to +85°C	2.4V-3.6V	

Note

OPERATING RANGE (VDD) (IS65WV102416BLL)

Range	Ambient Temperature	V _{DD} (25 ns)	
Automotive	–40°C to +125°C	2.4V-3.6V	

^{1.} When operated in the range of 2.4V-3.6V, the device meets 10ns.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

$V_{DD} = 2.4V - 3.6V$

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	V _{DD} = Min., Iон = –1.0 mA	1.8	_	V
Vol	Output LOW Voltage	V _{DD} = Min., I _{OL} = 1.0 mA	_	0.4	V
VIH	Input HIGH Voltage		2.0	V _{DD} + 0.3	V
VIL	Input LOW Voltage(1)		-0.3	0.8	V
lu	Input Leakage	$GND \leq Vin \leq Vdd$	– 1	1	μA
ILO	Output Leakage	GND ≤ Vouт ≤ Vdd, Outputs Disabled	– 1	1	μA

Note:

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

$V_{DD} = 1.65V-2.2V$

Symbol	Parameter	Test Conditions	V DD	Min.	Max.	Unit
Vон	Output HIGH Voltage	Iон = -0.1 mA	1.65-2.2V	Vcc - 0.4V		V
Vol	Output LOW Voltage	IoL = 0.1 mA	1.65-2.2V	_	0.2	V
VIH	Input HIGH Voltage		1.65-2.2V	1.4	V _{DD} + 0.2	V
VIL ⁽¹⁾	Input LOW Voltage		1.65-2.2V	-0.2	0.4	V
ILI	Input Leakage	$GND \leq Vin \leq Vdd$		– 1	1	μA
ILO	Output Leakage	GND ≤ Vout ≤ Vdd, (Outputs Disabled	– 1	1	μA

^{1.} V_{IL} (min.) = −0.3V DC; V_{IL} (min.) = −2.0V AC (pulse width < 10 ns). Not 100% tested. V_{IH} (max.) = V_{DD} + 0.3V DC; V_{IH} (max.) = V_{DD} + 2.0V AC (pulse width < 10 ns). Not 100% tested.

VIL (min.) = -0.3V DC; VIL (min.) = -2.0V AC (pulse width < 10ns). Not 100% tested.
 VIH (max.) = VDD + 0.3V DC; VIH (max.) = VDD + 2.0V AC (pulse width < 10ns). Not 100% tested.

AC TEST CONDITIONS (HIGH SPEED)

Parameter	Unit (2.4V-3.6V)	Unit (1.65V-2.2V)
Input Pulse Level	0.4V to VDD-0.3V	0.4V to VDD-0.2V
Input Rise and Fall Times	1.5ns	1.5ns
Input and Output Timing and Reference Level (V _{Ref})	V _{DD} /2	V _{DD} /2
Output Load	See Figures 1 and 2	See Figures 1 and 2

AC TEST LOADS

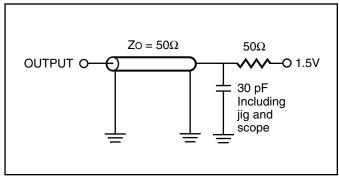


Figure 1.

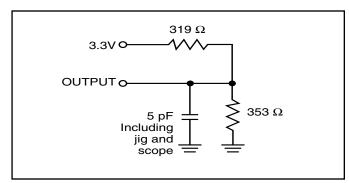


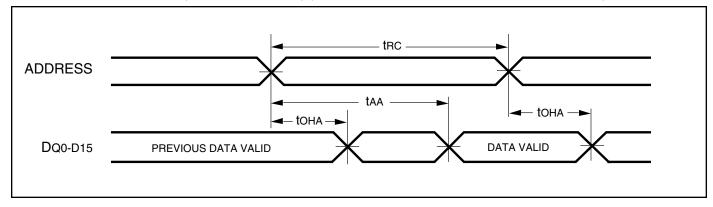
Figure 2.

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

				-2	25	-3	5	
Symbol	Parameter	Test Conditions		Min.	Max.	Min.	Max.	Unit
Icc	VDD Dynamic Operating	V _{DD} = Max.,	Com.	_	30	_	25	mA
	Supply Current	$IOUT = 0 \text{ mA}, f = f_{MAX}$	Ind.	_	35	_	30	
		$V_{IN} = 0.4V$ or $V_{DD} = -0.3V$	Auto.	_	60	_	60	
			typ. ⁽²⁾	2	5			
lcc1	Operating	V _{DD} = Max.,	Com.	_	20	_	20	mA
	Supply Current	$I_{OUT} = 0 \text{ mA}, f = 0$	Ind.	_	30	_	30	
		$V_{IN} = 0.4V$ or $V_{DD} - 0.3V$	Auto.	_	50	_	50	
IsB1	TTL Standby Current	V _{DD} = Max.,	Com.	_	15	_	15	mA
	(TTL Inputs)	VIN = VIH or VIL	Ind.	_	20	_	20	
		$\overline{CS1} \ge V_{IH}, f = 0$	Auto.	_	40	_	40	
IsB2	CMOS Standby	V _{DD} = Max.,	Com.	_	0.8	_	0.8	mA
	Current (CMOS Inputs)	$\overline{CS1} \ge V_{DD} - 0.2V$,	Ind.	_	1.2	_	1.2	
		$Vin \ge Vdd - 0.2V$, or	Auto.	_	2	_	2	
		$V_{IN} \leq 0.2V, f = 0$	typ. ⁽²⁾	0	.1			

^{1.} At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

^{2.} Typical values are measured at V_{DD} = 3.0V, T_A = 25°C and not 100% tested.

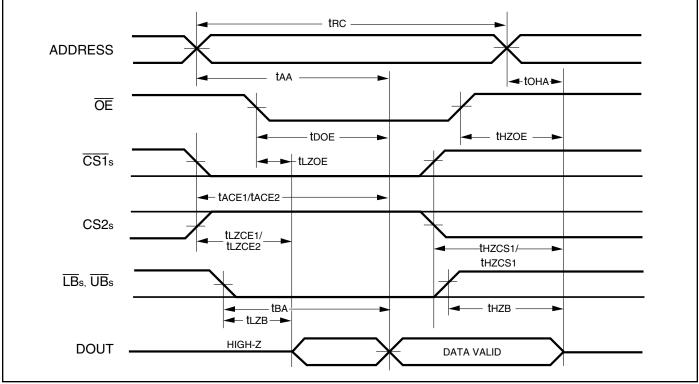

READ CYCLE SWITCHING CHARACTERISTICS(1) (Over Operating Range)

		25 ו	าร	35 n	ıs	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t RC	Read Cycle Time	25	_	35	_	ns
t AA	Address Access Time	_	25	_	35	ns
tона	Output Hold Time	3	_	3	_	ns
tacs1/tacs2	CS1/CS2 Access Time	_	25	_	35	ns
t DOE	OE Access Time	_	12	_	15	ns
t HZOE ⁽²⁾	OE to High-Z Output	_	8	_	10	ns
tLZOE ⁽²⁾	OE to Low-Z Output	5	_	5	_	ns
thzcs1/thzcs2 ⁽²⁾	CS1/CS2 to High-Z Output	0	8	0	10	ns
tLZCS1/tLZCS2 ⁽²⁾	CS1/CS2 to Low-Z Output	10	_	10	_	ns
t BA	LB, UB Access Time	<u>—</u>	25	_	35	ns
t HZB	LB, UB to High-Z Output	0	8	0	10	ns
t LZB	LB, UB to Low-Z Output	0	_	0	_	ns

Notes:

AC WAVEFORMS

READ CYCLE NO. $1^{(1,2)}$ (Address Controlled) ($\overline{CS1} = \overline{OE} = V_{IL}$, $CS2 = \overline{WE} = V_{IH}$, \overline{UB} or $\overline{LB} = V_{IL}$)


^{1.} Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to VDD-0.2V/0.4V to VDD-0.3V and output loading specified in Figure 1.

^{2.} Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

AC WAVEFORMS

READ CYCLE NO. 2^(1,3) ($\overline{CS1}$, CS2, \overline{OE} , AND $\overline{UB}/\overline{LB}$ Controlled)

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CS1}$, \overline{UB} , or $\overline{LB} = V_{IL}$. $CS2=\overline{WE}=V_{IH}$.
- 3. Address is valid prior to or coincident with CS1 LOW transition.

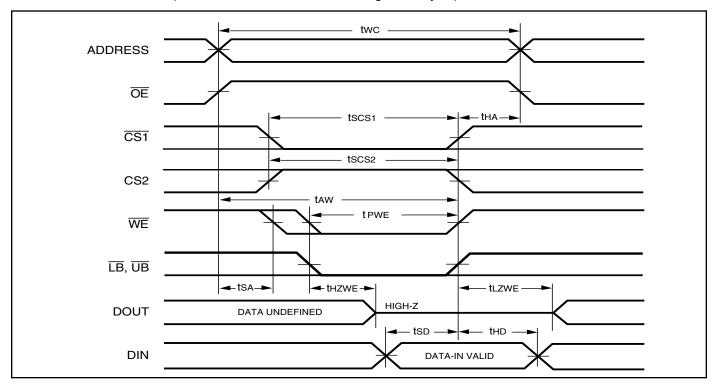
WRITE CYCLE SWITCHING CHARACTERISTICS(1,2) (Over Operating Range)

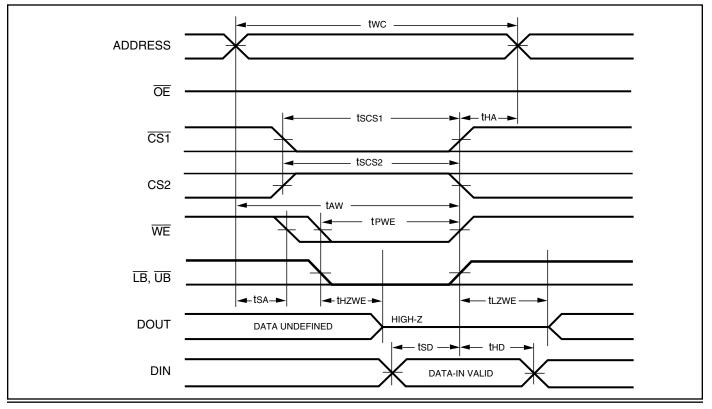

		25ns 35 ns		ns		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	25	_	35	_	ns
tscs1/tscs	2 CS1/CS2 to Write End	18	_	25	_	ns
taw	Address Setup Time to Write End	15	_	25		ns
tна	Address Hold from Write End	0	_	0	_	ns
t sa	Address Setup Time	0	_	0	_	ns
t PWB	LB, UB Valid to End of Write	18	_	25	_	ns
tPWE ⁽⁴⁾	WE Pulse Width	18		30	_	ns
tsp	Data Setup to Write End	12	_	15	_	ns
t HD	Data Hold from Write End	0	_	0	_	ns
thzwe ⁽³⁾	WE LOW to High-Z Output	_	12	_	20	ns
tLZWE ⁽³⁾	WE HIGH to Low-Z Output	5	_	5	_	ns

Notes:

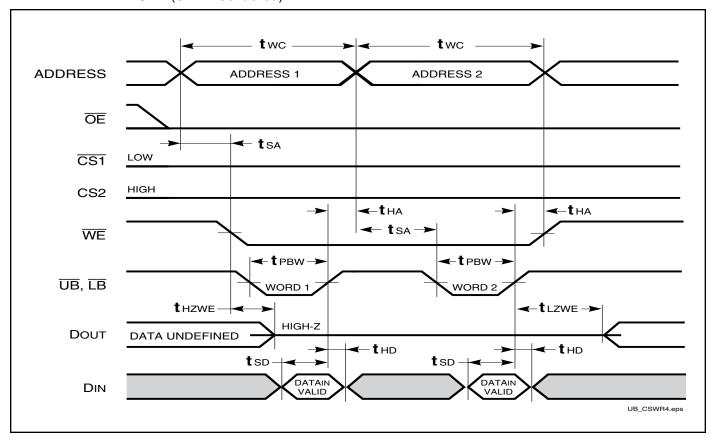
- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 0.9V/1.5V, input pulse levels of 0.4 to Vpp-0.2V/0.4V to Vpp-0.3V and output loading specified in Figure 1.
- 2. The internal write time is defined by the overlap of CS1 LOW, CS2 HIGH and UB or LB, and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write
- 3. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 4. tpwe > thzwe + tsp when \overline{OE} is LOW.

AC WAVEFORMS


WRITE CYCLE NO. $1^{(1,2)}$ ($\overline{CS1}$ Controlled, \overline{OE} = HIGH or LOW)

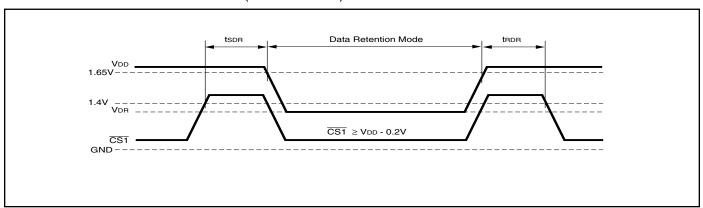

- WRITE is an internally generated signal asserted during an overlap of the LOW states on the CS1, CS2 and WE inputs and at least one of the LB and UB inputs being in the LOW state.
- 2. WRITE = $(\overline{CS1})[(\overline{LB}) = (\overline{UB})](\overline{WE})$.

WRITE CYCLE NO. 2 (WE Controlled: OE is HIGH During Write Cycle)

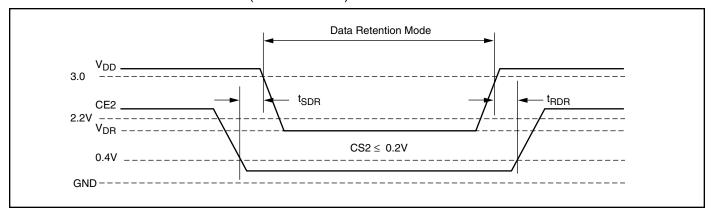


WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)

WRITE CYCLE NO. 4 (UB/LB Controlled)



DATA RETENTION SWITCHING CHARACTERISTICS


Symbol	Parameter	Test Condition		Min.	Typ. ⁽¹⁾	Max.	Unit
V _{DR}	VDD for Data Retention	See Data Retention Waveform		1.2		3.6	V
ldr	Data Retention Current	V _{DD} = 1.2V, CS1 ≥ V _{DD} – 0.2V	Com. Ind. Auto.	_ _ _	0.1 0.1 0.1	0.8 1.2 2	mA
tsdr	Data Retention Setup Time	See Data Retention Waveform		0		_	ns
t rdr	Recovery Time	See Data Retention Waveform		t rc		_	ns

Note:

DATA RETENTION WAVEFORM (CS1 Controlled)

DATA RETENTION WAVEFORM (CS2 Controlled)

^{1.} Typical values are measured at V_{DD} = 3.0V, T_A = 25°C and not 100% tested.

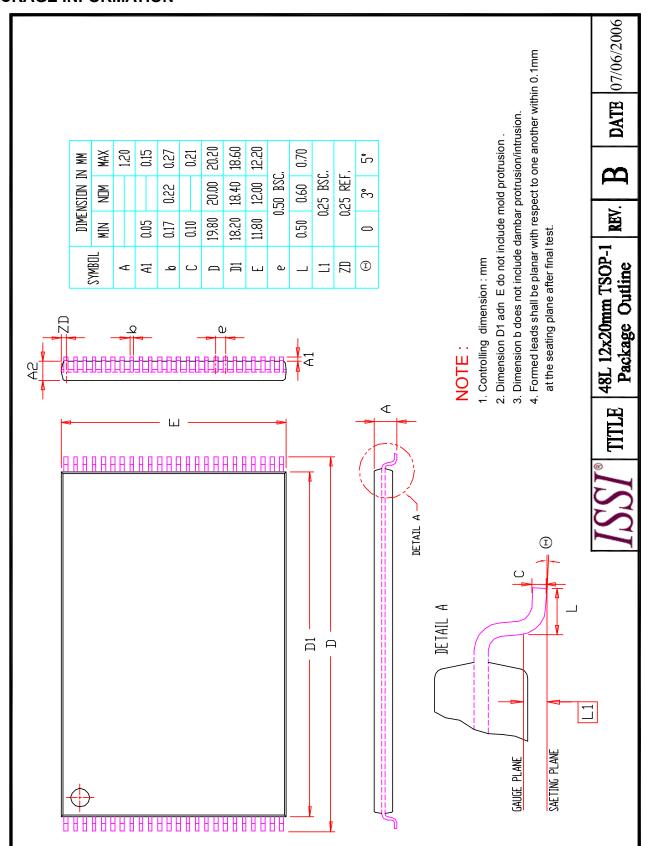
ORDERING INFORMATION

Industrial Range: -40°C to +85°C Voltage Range: 2.4V to 3.6V

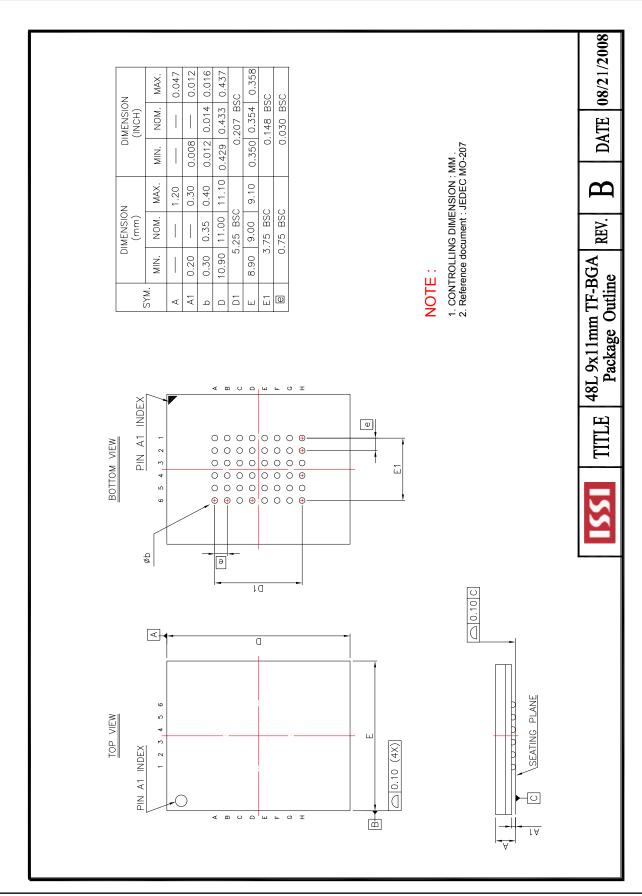
Speed (ns)	Order Part No.	Package
25	IS62WV102416BLL-25MI	48 mini BGA (9mm x 11mm)
	IS62WV102416BLL-25MLI	48 mini BGA (9mm x 11mm), Lead-free
	IS62WV102416BLL-25TI	TSOP (Type I)
	IS62WV102416BLL-25TLI	TSOP (Type I), Lead-free

Industrial Range: -40°C to +85°C Voltage Range: 1.65V to 2.2V

Speed (ns)	Order Part No.	Package
35	IS62WV102416ALL-35MI	48 mini BGA (9mm x 11mm)
	IS62WV102416ALL-35MLI	48 mini BGA (9mm x 11mm), Lead-free
	IS62WV102416ALL-35TI	TSOP (Type I)
	IS62WV102416ALL-35TLI	TSOP (Type I), Lead-free


Automotive Range: -40°C to +125°C

Voltage Range: 2.4V to 3.6V


Speed (ns)	Order Part No.	Package
25	IS65WV102416BLL-25MA3	48 mini BGA (9mm x 11mm)
	IS65WV102416BLL-25MLA3	48 mini BGA (9mm x 11mm), Lead-free
	IS65WV102416BLL-25CTA3	TSOP (Type I)
	IS65WV102416BLL-25CTLA3	TSOP (Type I), Lead-free

PACKAGE INFORMATION

