

July 2014

FOD8160 High Noise Immunity, 3.3 V / 5 V, 10 Mbit/sec, Logic Gate Optocoupler in Wide-Body SOP 5-Pin

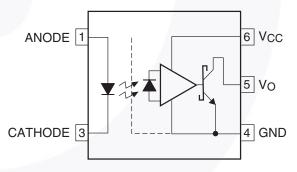
Features

- Optoplanar[®] Packaging Technology Allows More Than 10 mm Creepage and Clearance Distance, and 0.5 mm Insulation Distance to Achieve Reliable and High Voltage Insulation
- High Noise Immunity Characterized by Common Mode Transient Immunity (CMTI)
 20 kV/µs Minimum CMTI
- Specifications Guaranteed Over 3 V to 5.5 V Supply Voltage and -40°C to 100°C Extended Industrial Temperature Range
- High-Speed, 10 Mbit/s Data Rate (NRZ)
- Safety and Regulatory Approvals
 - UL1577, 5,000 VAC_{RMS} for 1 Minute
 - DIN-EN/IEC60747-5-5, 1,414 V Peak Working Insulation Voltage

Applications

- Isolating Intelligent Power Module
- Isolating Industrial Communication Interface

Related Resources

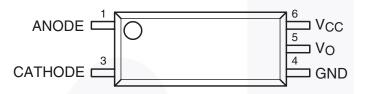

- www.fairchildsemi.com/products/opto/
- www.fairchildsemi.com/pf/FO/FODM8061.html
- www.fairchildsemi.com/pf/FO/FODM611.html

Description

The FOD8160 is a 3.3 V / 5 V high-speed logic gate optocoupler with open-collector output, which supports isolated communications to allow digital signals to communicate between systems without conducting ground loops or hazardous voltages. The device utilizes Fairchild's prioprietary Optoplanar[®] coplanar packaging technology and optimized IC design to achieve high-noise immunity, characterized by high common-mode rejection specifications.

The FOD8160, packaged in a wide-body SOP 5-Pin package, consists of an aluminium gallium arsenide (AlGaAs) LED and an integrated high-speed photodetector. The output of the detector IC is an open collector Schottky-clamped transistor. The electrical and switching characteristics are guaranteed over the extended industrial temperature range of -40°C to 100°C and a V_{CC} range of 3 V to 5.5 V.

Functional Schematic



©2012 Fairchild Semiconductor Corporation FOD8160 Rev. 1.0.2

Truth Table

LED	Output
Off	HIGH
On	LOW

Pin Configuration

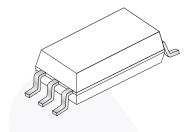


Figure 2. Pin Configuration

Pin Definitions

Pin #	Name	Description
1	Anode	Anode
3	Cathode	Cathode
4	GND	Output Ground
5	Vo	Output Voltage
6	V _{CC}	Output Supply Voltage

Safety and Insulation Ratings

As per DIN EN/IEC60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data below. Compliance with the safety ratings shall be ensured by means of protective circuits.

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Installation Classifications per DIN VDE 0110/1.89 Table 1				
	For Rated Mains Voltage < 150 V _{RMS}		I–IV		
	For Rated Mains Voltage < 300 V _{RMS}		I–IV		1
	For Rated Mains Voltage < 450 V _{RMS}		I–IV		
	For Rated Mains Voltage < 600 V _{RMS}		I–IV		
	Climatic Classification		40/100/21		
	Pollution Degree (DIN VDE 0110/1.89)		2		
CTI	Comparative Tracking Index	175			
V _{PR}	Input to Output Test Voltage, Method b, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with t _m = 1 s, Partial Discharge < 5 pC	2651			V _{peak}
	Input to Output Test Voltage, Method a, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with t _m = 10 s, Partial Discharge < 5 pC	2262			V _{peak}
VIORM	Maximum Working Insulation Voltage	1414			V _{peak}
V _{IOTM}	Highest Allowable Over Voltage	8000			V _{peak}
	External Creepage	10.0			mm
	External Clearance	10.0			mm
	Insulation Thickness	0.5			mm
	Safety Limit Values – Maximum Values Allowed in the Event of a Failure				
Τ _S	Case Temperature	150			°C
I _{S,INPUT}	Input Current	200			mA
P _{S,OUTPUT}	Output Power	600			mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V	10 ⁹			Ω

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. $T_A = 25^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Value	Units
T _{STG}	Storage Temperature	-40 to +125	°C
T _{OPR}	Operating Temperature	-40 to +100	°C
TJ	Junction Temperature	-40 to +125	°C
T _{SOL}	Lead Solder Temperature (Refer to Reflow Temperature Profile on page 12)	260 for 10 seconds	°C
Input Characteri	istics		
١ _F	Average Forward Input Current	25	mA
V _R	Reverse Input Voltage	5.0	V
PDI	Input Power Dissipation ⁽¹⁾	45	mW
Output Characte	eristics		
V _{CC}	Supply Voltage	0 to 7.0	V
V _O	Output Voltage	-0.5 to V _{CC} + 0.5	V
Ι _Ο	Average Output Current	50	mA
PD _O	Output Power Dissipation ⁽¹⁾	85	mW

Note:

1. No derating required up to 100°C.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Unit
T _A	Ambient Operating Temperature	-40	+100	°C
V _{CC}	Supply Voltages ⁽²⁾	3.0	5.5	V
V _{FL}	Logic Low Input Voltage	0	0.8	V
I _{FL}	Logic Low Input Current		250	μA
I _{FH}	Logic High Input Current	6.0	15	mA
N	Fan Out (at $R_L = 1 k\Omega$)		5	TTL loads
RL	Output Pull-up Resistor	330	4000	Ω

Note:

2. 0.1 μF bypass capacitor must be connected between pins 4 and 6.

Isolation Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{ISO}	Input-Output Isolation Voltage	$\begin{array}{l} T_{A} = 25^{\circ}C, \ R.H. < 50\%, \ t = 1.0 \ min, \\ I_{I-O} \leq 20 \ \mu A^{(3)(4)} \end{array}$	5,000			VAC _{RMS}
R _{ISO}	Isolation Resistance	$V_{I-O} = 500 V^{(3)}$		10 ¹¹		Ω
C _{ISO}	Isolation Capacitance	V_{I-O} = 0 V, frequency = 1.0 MHz ⁽³⁾		1.0		pF

Apply over all recommended conditions, typical value is measured at $T_A = 25^{\circ}C$.

Notes:

3. Device is considered a two-terminal device: pins 1 and 3 are shorted together and pins 4, 5, and 6 are shorted together.

4. 5,000 VAC_{RMS} for 1-minute duration is equivalent to 6,000 VAC_{RMS} for 1-second duration.

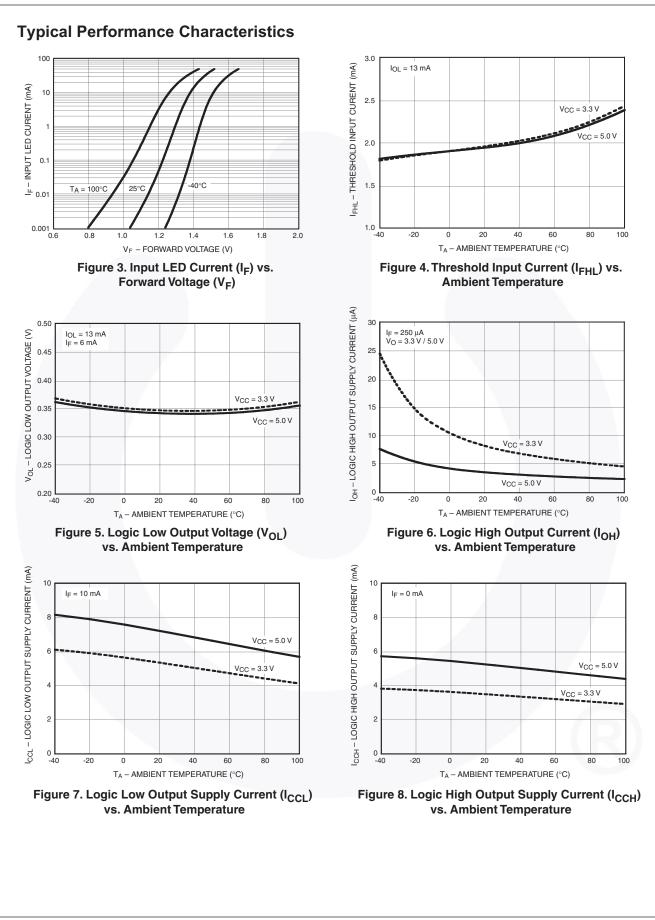
Electrical Characteristics

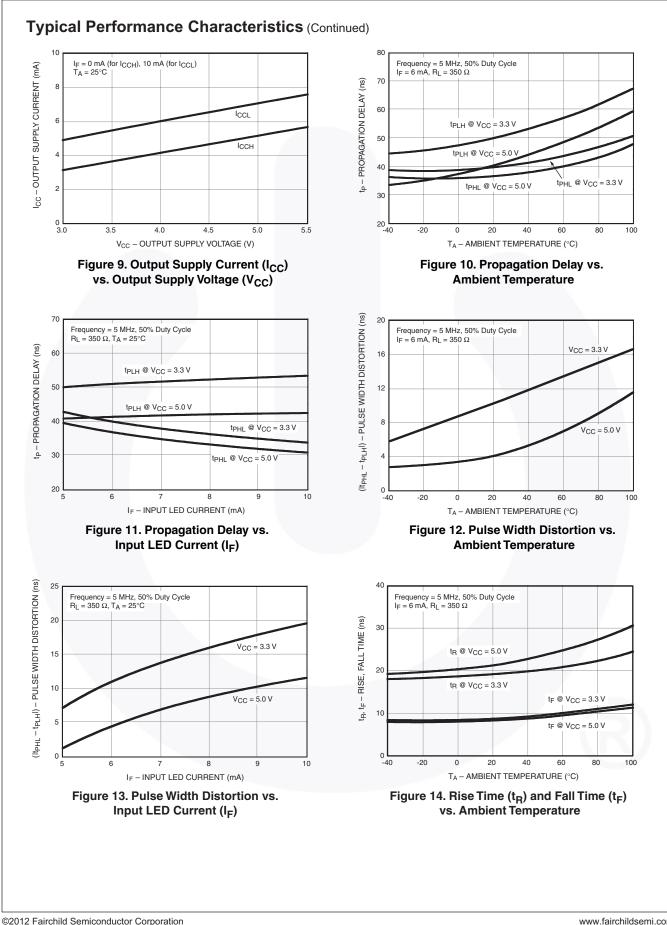
Apply over all recommended conditions; $T_A = -40^{\circ}C$ to $+100^{\circ}C$, $3.0 \text{ V} \le V_{CC} \le 5.5 \text{ V}$; unless otherwise specified. Typical value is measured at $T_A = 25^{\circ}C$ and $V_{CC} = 3.3 \text{ V}$ or $V_{CC} = 5 \text{ V}$.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Figure
Input Chara	cteristics						
V _F	Forward Voltage	I _F = 10 mA	1.05	1.45	1.80	V	3
Δ (V _F / T _A)	Temperature Coefficient of Forward Voltage			-1.8		mV/°C	
BV _R	Input Reverse Breakdown Voltage	I _R = 10 μA	5.0			V	
I _{FHL}	Threshold Input Current	V _O = 0.6 V, I _{OL} (sink) = 13 mA		2.5	6.0	mA	4
Output Chai	racteristics						
V _{OL}	Logic Low Output Voltage	I _F = rated I _{FHL} , I _{OL} (sink) = 13 mA		0.4	0.6	V	5
I _{OH}	Logic High Output	I _F = 250 μA, V _O = 3.3 V		8.0	50.0	μA	6
	Current	I _F = 250 μA, V _O = 5.0 V		3.0	40.0	μA	6
I _{CCL}	Logic Low Output	I _F = 10 mA, V _{CC} = 3.3 V		5.3	8.5	mA	7, 9
	Supply Current	I _F = 10 mA, V _{CC} = 5.0 V		7.1	10.0	mA	7, 9
I _{CCH}	Logic High Output	I _F = 0 mA, V _{CC} = 3.3 V		3.5	7.0	mA	8, 9
	Supply Current	I _F = 0 mA, V _{CC} = 5.0 V		5.3	9.0	mA	8, 9

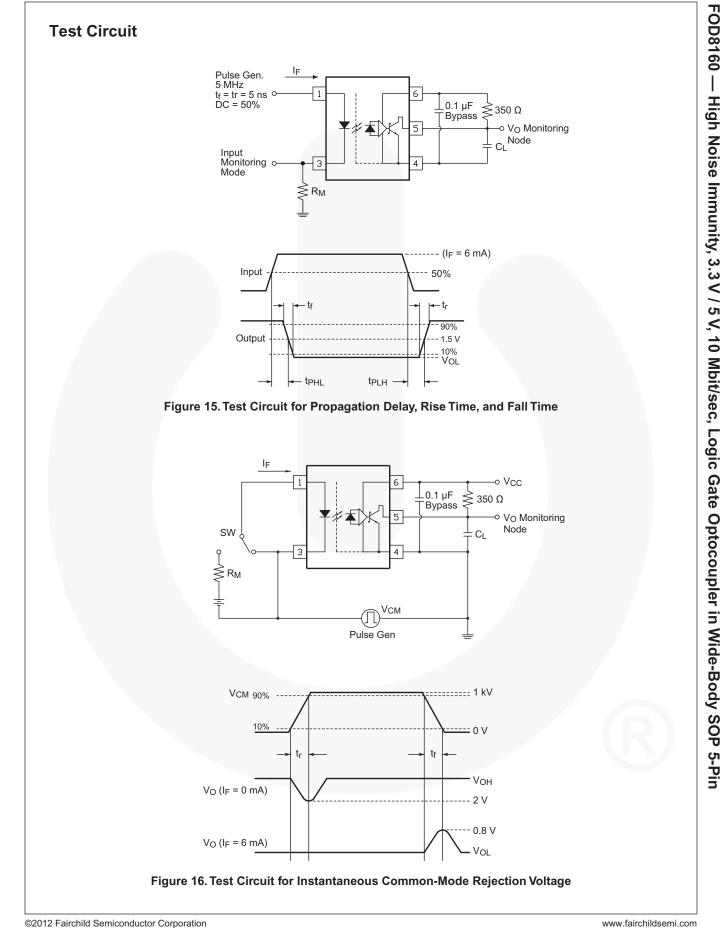
Switching Characteristics

Apply over all recommended conditions; $T_A = -40^{\circ}$ C to +100°C, $V_{CC} = 3.3$ V, $I_F = 6.0$ mA; unless otherwise specified. Typical value is measured at $T_A = 25^{\circ}$ C and $V_{CC} = 3.3$ V.


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Figure
Data Rate		R _L = 350 Ω			10	Mbit/sec	
t _{PHL}	Propagation Delay to Logic Low Output	R _L = 350 Ω, C _L = 15 pF		40	80	ns	10, 11, 15
t _{PLH}	Propagation Delay to Logic High Output	R _L = 350 Ω, C _L = 15 pF		50	90	ns	10, 11, 15
PWD	Pulse Width Distortion, t _{PHL} – t _{PLH}	R _L = 350 Ω, C _L = 15 pF		10	35	ns	12, 13, 15
t _{PSK}	Propagation Delay Skew	$R_{L} = 350 \ \Omega, C_{L} = 15 \ pF$			40	ns	
t _R	Output Rise Time (10% to 90%)	R _L = 350 Ω, C _L = 15 pF		20		ns	14, 15
t _F	Output Fall Time (90% to 10%)	R _L = 350 Ω, C _L = 15 pF		10		ns	14, 15
CM _H	Common-Mode Transient Immunity at Output High	$I_{\rm F} = 0 \text{ mA, } V_{\rm O} > 2 \text{ V,} \\ V_{\rm CM} = 1,000 \text{ V}^{(6)}$	20	40		kV/µs	16
CM _L	Common-Mode Transient Immunity at Output Low	I _F = 6.0 mA, V _O < 0.8 V, V _{CM} = 1,000 V ⁽⁶⁾	20	40		kV/µs	16

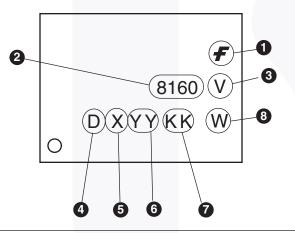

Apply over all recommended conditions; $T_A = -40^{\circ}$ C to $+100^{\circ}$ C, $V_{CC} = 5$ V, $I_F = 6.0$ mA; unless otherwise specified. Typical value is measured at $T_A = 25^{\circ}$ C and $V_{CC} = 5$ V.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	Figure
Data Rate		R _L = 350 Ω			10	Mbit/sec	
t _{PHL}	Propagation Delay to Logic Low Output	R _L = 350 Ω, C _L = 15 pF		37	80	ns	10, 11, 15
t _{PLH}	Propagation Delay to Logic High Output	R _L = 350 Ω, C _L = 15 pF		41	90	ns	10, 11, 15
PWD	Pulse Width Distortion, $ t_{PHL} - t_{PLH} $	R _L = 350 Ω, C _L = 15 pF		4	25	ns	12, 13, 15
t _{PSK}	Propagation Delay Skew	R_L = 350 Ω, C_L = 15 pF ⁽⁵⁾			40	ns	
t _R	Output Rise Time (10% to 90%)	R _L = 350 Ω, C _L = 15 pF		22		ns	14, 15
t _F	Output Fall Time (90% to 10%)	R _L = 350 Ω, C _L = 15 pF		9		ns	14, 15
CM _H	Common-Mode Transient Immunity at Output High	$I_{\rm F} = 0 \text{ mA, } V_{\rm O} > 2 \text{ V,} \\ V_{\rm CM} = 1,000 \text{ V}^{(6)}$	20	40		kV/µs	16
CM _L	Common-Mode Transient Immunity at Output Low	$I_{\rm F} = 6.0 \text{ mA}, V_{\rm O} < 0.8 \text{ V}, \\ V_{\rm CM} = 1,000 \text{ V}^{(6)}$	20	40		kV/µs	16

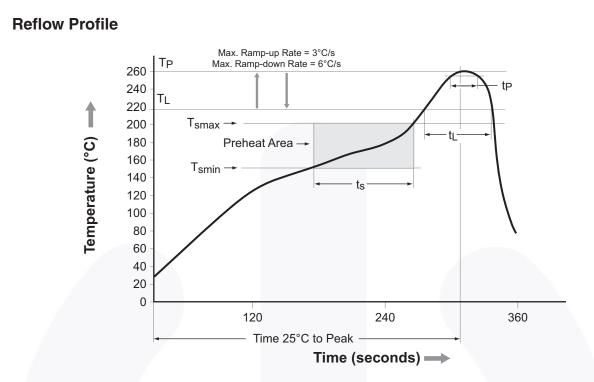

Notes:

- 5. t_{PSK} is equal to the magnitude of the worst-case difference in t_{PHL} and/or t_{PLH} between any two units from the same manufacturing date code that are operated at same case temperature (±5°C), at same operating conditions, with equal loads (R_L = 350 Ω , C_L = 15 pF), and with an input rise time less than 5 ns.
- Common-mode transient immunity at output HIGH is the maximum tolerable positive dVcm/dt on the leading edge of the common-mode impulse signal, V_{CM}, to assure that the output remains HIGH. Common-mode transient immunity at output LOW is the maximum tolerable negative dVcm/dt on the trailing edge of the common pulse signal, V_{CM}, to assure that the output remains LOW.

FOD8160 Rev. 1.0.2

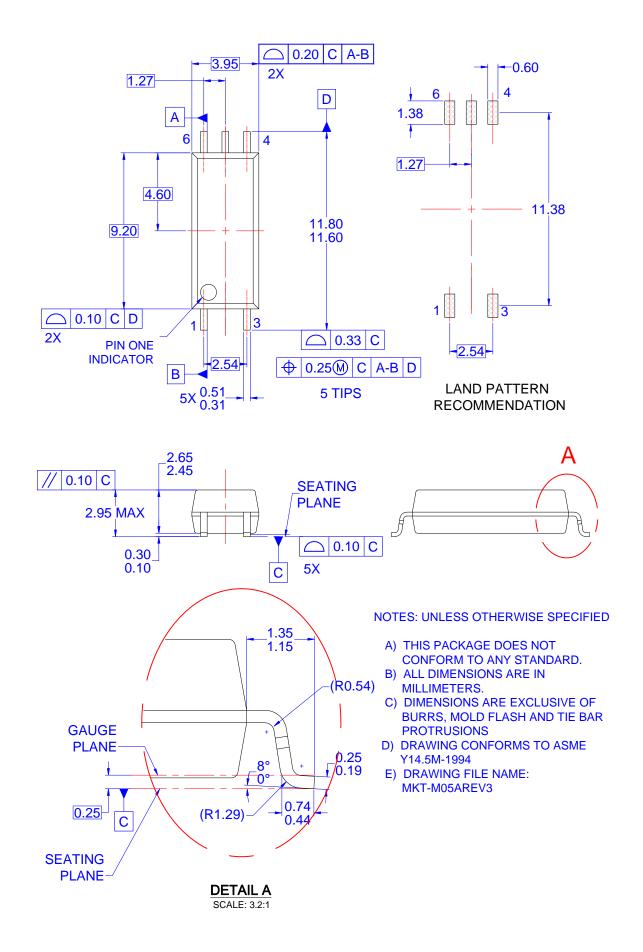

Downloaded from Arrow.com.

Ordering Information


Part Number	Package	Packing Method
FOD8160	Wide Body SOP 5-Pin	Tube (100 units per tube)
FOD8160R2	Wide Body SOP 5-Pin	Tape and Reel (1,000 units per reel)
FOD8160V	Wide Body SOP 5-Pin, DIN EN/IEC60747-5-5 Option	Tube (100 units per tube)
FOD8160R2V	Wide Body SOP 5-Pin, DIN EN/ IEC60747-5-5 Option	Tape and Reel (1,000 units per reel)

All packages are lead free per JEDEC: J-STD-020B standard.

Marking Information



Defini	Definitions				
1	Fairchild logo				
2	Device number, e.g., '8160' for FOD8160				
3	DIN EN/IEC60747-5-5 option (only appears on component ordered with this option)				
4	Plant code, e.g., 'D'				
5	Last-digit year code, e.g., 'E' for 2014				
6	Two-digit work week ranging from '01' to '53'				
7	Lot-traceability code				
8	Package assembly code, W				

Figure	17.	Reflow	Profile
--------	-----	--------	---------

Profile Freature	Pb-Free Assembly Profile
Temperature Minimum (T _{smin})	150°C
Temperature Maximum (T _{smax})	200°C
Time (t_S) from $(T_{smin} \text{ to } T_{smax})$	60 to 120 seconds
Ramp-Up Rate (t _L to t _P)	3°C/second maximum
Liquidous Temperature (T _L)	217°C
Time (t_L) Maintained Above (T_L)	60 to 150 seconds
Peak Body Package Temperature	260°C +0°C / –5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-Down Rate (T _P to T _L)	6°C/second maximum
Time 25°C to Peak Temperature	8 minutes maximum

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.