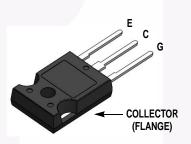
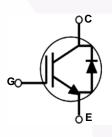


March 2015

FGH60N60SFD 600 V, 60 A Field Stop IGBT

Features


- High Current Capability
- Low Saturation Voltage: V_{CE(sat)} = 2.3 V @ I_C = 60 A
- High Input Impedance
- Fast Switching
- RoHS Compliant


Applications

• Solar Inverter, UPS, Welder, PFC

General Description

Using novel field stop IGBT technology, Fairchild's field stop IGBTs offer the optimum performance for solar inverter, UPS, welder and PFC applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

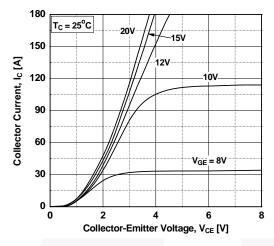
Symbol	Description		Ratings	Unit	
V _{CES}	Collector to Emitter Voltage		600	V	
V _{GES}	Gate to Emitter Voltage		±20	V	
	Transient Gate-to-Emitter Voltage	±30			
I _C	Collector Current	@ T _C = 25°C	120	A	
	Collector Current	@ T _C = 100 ^o C	60	А	
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25°C	180	A	
P _D	Maximum Power Dissipation	@ T _C = 25 ^o C	378	W	
	Maximum Power Dissipation	@ T _C = 100°C	151	W	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Notes:

1: Repetitive test, Pulse width limited by max. juntion temperature

Thermal Characteristics

Symbol Parameter		Тур.	Max.	Unit	
$R_{\theta JC}(IGBT)$	JC(IGBT) Thermal Resistance, Junction to Case		0.33	°C/W	
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case	-	1.1	°C/W	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	-	40	°C/W	


Part NumberTop MarkPackageFGH60N60SFDTUFGH60N60SFDTO-247		Packing Method	Reel Siz	e	Tape Wid	lth Qu	Quantity		
		Tube	N/A		N/A		30		
Electric	al Ch	aracteristics	s of the IC	GBT $T_c = 25^{\circ}C$ unless other	wise noted			I.	
Symbol			Test Condition		Min.	Тур.	Max.	Unit	
Off Charac	teristics	;							
BV _{CES}	Collector to Emitter Breakdown Voltage		V _{GE} = 0 V, I _C = 250 μA		600	-	-	V	
ΔBV _{CES} / ΔT _J	Temperature Coefficient of Breakdown Voltage		V _{GE} = 0 V, I _C = 250 μA		-	0.4	-	V/ºC	
ICES	Collect	Collector Cut-Off Current		V _{CE} = V _{CES} , V _{GE} = 0 V		-	-	250	μA
I _{GES}	G-E Leakage Current			$V_{GE} = V_{GES}, V_{CE} = 0 V$		-	-	±400	nA
On Charac	teristics								
V _{GE(th)}	G-E Threshold Voltage			$I_C = 250 \ \mu\text{A}, \ V_{CE} = V_{GE}$		4.0	5.0	6.5	V
				I _C = 60 A, V _{GE} = 15 V		-	2.3	2.9	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage		$I_{C} = 60 \text{ A}, V_{GE} = 15 \text{ V},$ $T_{C} = 125^{\circ}\text{C}$		-	2.5	-	V	
Dynamic C	haracte	ristics							
C _{ies}	Input Capacitance					-	2820	-	pF
C _{oes}	Output	Capacitance		$V_{CE} = 30 V, V_{GE} = 0 V,$		-	350	-	pF
C _{res}	Revers	e Transfer Capacitance		f = 1 MHz		-	140	-	pF
Switching	Charact	eristics			ľ				
t _{d(on)}	Turn-O	n Delay Time				-	22	-	ns
t _r	Rise Ti	me				-	42	-	ns
t _{d(off)}	Turn-O	ff Delay Time		V_{CC} = 400 V, I _C = 60 A, R _G = 5 Ω, V _{GE} = 15 V,		-	134	-	ns
t _f	Fall Tin	ne			-	-	31	62	ns
Eon	Turn-O	n Switching Loss		Inductive Load, T _C = 25 ^o	C	-	1.79	-	mJ
E _{off}	Turn-O	ff Switching Loss				-	0.67	-	mJ
E _{ts}	Total S	witching Loss				- /	2.46	-	mJ
t _{d(on)}	Turn-O	n Delay Time				22	22	-	ns
t _r	Rise Ti	me				-	44	-	ns
t _{d(off)}	Turn-O	ff Delay Time		$V_{\rm CC} = 400 \text{ V}, \text{ I}_{\rm C} = 60 \text{ A},$		-	144	-	ns
t _f	Fall Tin	ne	$R_{G} = 5 \Omega, V_{GE} = 15 V,$.00	-	43	-	ns
E _{on}	Turn-O	n Switching Loss		Inductive Load, T _C = 125		-	1.88	-	mJ
E _{off}	Turn-O	ff Switching Loss				-	1.0	-	mJ
E _{ts}	Total S	witching Loss					2.88	-	mJ
Q _g	Total G	ate Charge				-	198	-	nC
Q _{ge}	Gate to	Emitter Charge		$V_{CE} = 400 \text{ V}, I_{C} = 60 \text{ A},$		-	22	-	nC
Q _{gc}	Gate to	Collector Charge		V _{GE} = 15 V		-	106	-	nC

Symbol	Parameter	Test Conditions		Min.	Тур.	Max	Unit
V _{FM}	Diode Forward Voltage	I _F = 30 A	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	2.0	2.6	V
		1F - 00 / 1	$T_{\rm C} = 125^{\rm o}{\rm C}$	-	1.8	-	
t _{rr}	Diode Reverse Recovery Time		$T_{\rm C} = 25^{\rm o}{\rm C}$	-	47	-	ns
		I _F = 30 A, di _F /dt = 200 A/μs	$T_{C} = 125^{\circ}C$	-	179	-	
Q _{rr}	Diode Reverse Recovery Charge	$r_{\rm F} = 30$ A, $u_{\rm F}/u_{\rm c} = 200$ A/ μ 3	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	83	-	nC
			$T_{\rm C} = 125^{\rm o}{\rm C}$	-	567	-	

FGH60N60SFD — 600 V, 60 A Field Stop IGBT

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

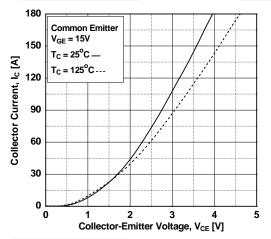
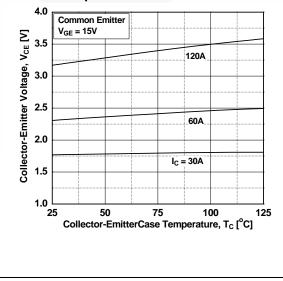
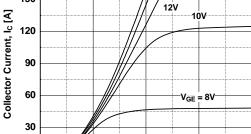




Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

4

Collector-Emitter Voltage, V_{CE} [V]

Figure 2. Typical Output Characteristics

20V

15V

6

8

180

150

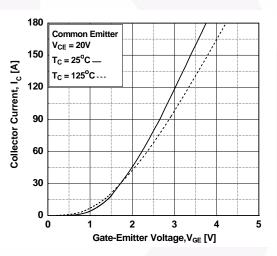
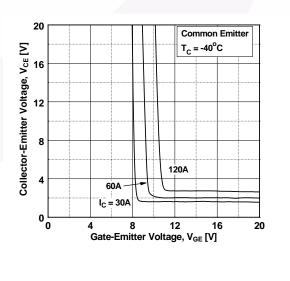
0

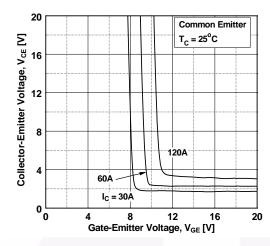
0

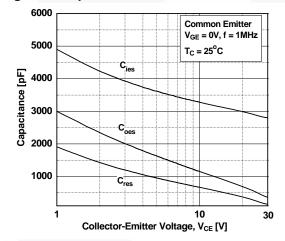
T_C = 125°C

Figure 4. Transfer Characteristics

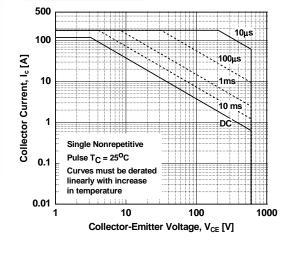
2


Figure 6. Saturation Voltage vs. V_{GE}


©2008 Fairchild Semiconductor Corporation FGH60N60SFD Rev. 1.4

Typical Performance Characteristics


Figure 7. Saturation Voltage vs. V_{GE}

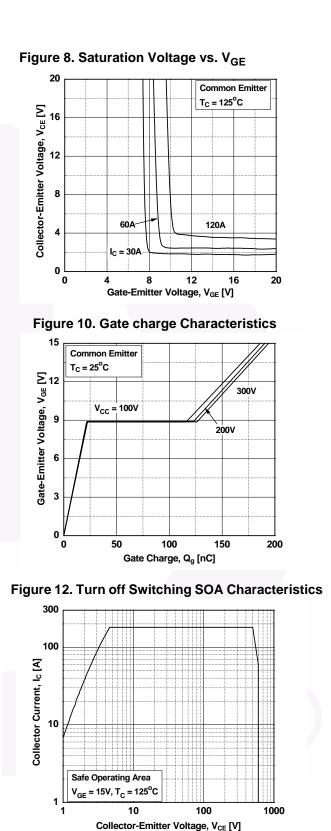
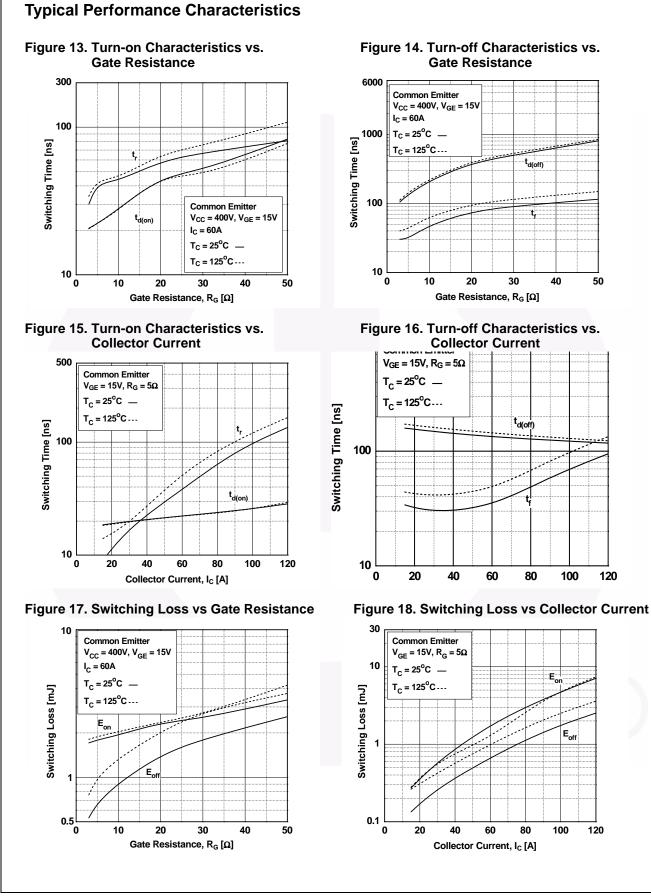
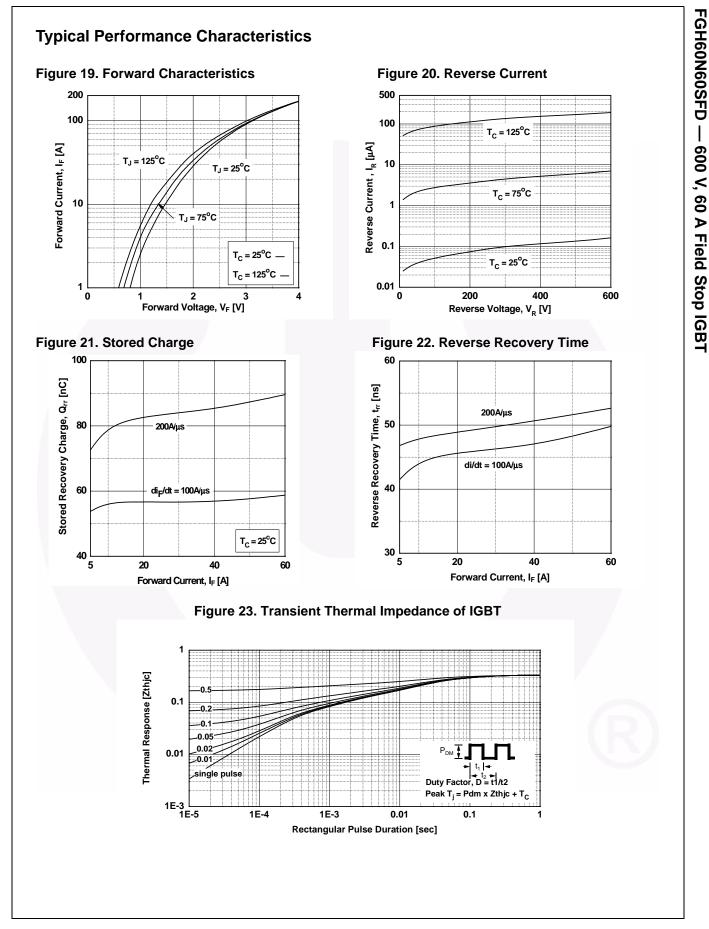
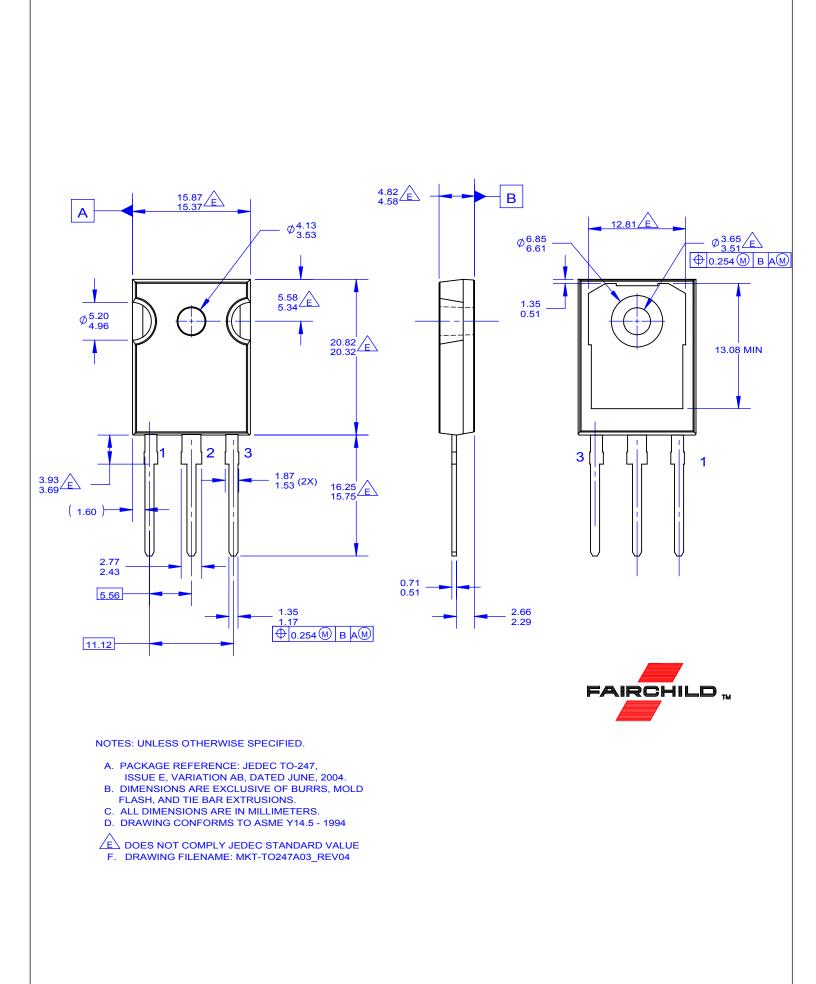


Figure 9. Capacitance Characteristics






©2008 Fairchild Semiconductor Corporation FGH60N60SFD Rev. 1.4

©2008 Fairchild Semiconductor Corporation FGH60N60SFD Rev. 1.4

©2008 Fairchild Semiconductor Corporation FGH60N60SFD Rev. 1.4

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC