

ON Semiconductor®

FAN7081-GF085 High Side Gate Driver

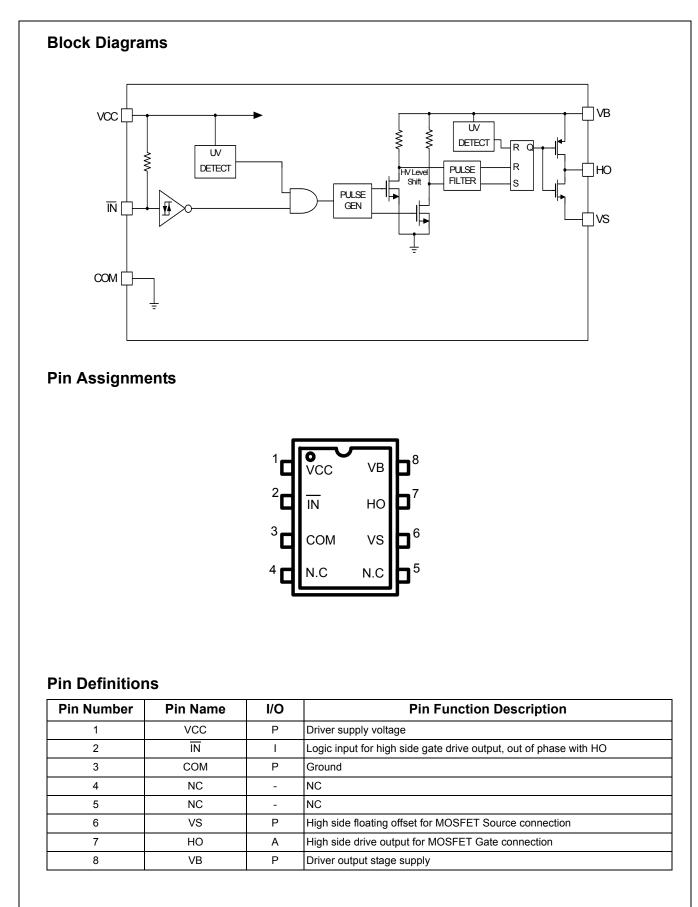
Features

- Qualified to AEC Q100
- Floating channel designed for bootstrap operation up fully operational to + 600V
- · Tolerance to negative transient voltage on VS pin
- dV/dt immune.
- Gate drive supply range from 10V to 20V
- Under-voltage lockout
- · CMOS Schmit-triggered inputs with pull-up
- · High side output out of phase with input (Inverted input)

Typical Applications

- · Diesel and gasoline Injectors/Valves
- MOSFET-and IGBT high side driver applications

Description


The FAN7081-GF085 is a high-side gate drive IC designed for high voltage and high speed driving of MOSFET or IGBT, which operates up to 600V. ON Semiconductor's high-voltage process and com-mon-mode noise cancellation technique provide stable opera-tion in the high side driver under high-dV/dt noise circumstances. An advanced level-shift circuit allows high-side gate driver operation up to VS=-5V (typical) at VBS=15V. Logic input is compatible with standard CMOS outputs. The UVLO cir-cuits prevent from malfunction when VCC and VBS are lower than the specified threshold voltage. It is available with space saving SOIC-8 Package. Minimum source and sink current capability of output driver is 250mA and 500mA respectively, which is suitable for magnetic- and piezo type injectors and gen-eral MOSFET/IGBT based high side driver applications.

Ordering Information

Device	Package	Operating Temp.
FAN7081M-GF085	SOIC-8	-40 °C ~ 125 °C
FAN7081MX-GF085	SOIC-8	-40 °C ~ 125 °C

X : Tape & Reel type

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM.

Parameter	Symbol	Min.	Max.	Unit
High side floating supply offset voltage	Vs	VB-25	VB+0.3	V
High side floating supply voltage	VB	-0.3	625	V
High side floating output voltage	Vно	Vs-0.3	VB+0.3	V
Supply voltage	Vcc	-0.3	25	V
Input voltage for IN	VIN	-0.3	Vcc+0.3	V
Power Dissipation ¹⁾	Pd		0.625	W
Thermal resistance, junction to ambient ¹⁾	Rthja		200	°C/W
Electrostatic discharge voltage (Human Body Model)	V _{ESD}	1K		V
Charge device model	V _{CDM}	500		V
Junction Temperature	Tj		150	٥°C
Storage Temperature	Τ _S	-55	150	٥C

Note: 1) The thermal resistance and power dissipation rating are measured bellow conditions;

JESD51-2: Integrated Circuit Thermal Test Method Environmental Conditions - Natural codition(StillAir)

JESD51-3: Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Package

Recommended Operating Conditions

For proper operations the device should be used within the recommended conditions. -40°C <= Ta <= 125°C

Parameter	Symbol	Min.	Max.	Unit
High side floating supply voltage(DC) Transient:-10V@ 0.2 us	VB	VS + 10	Vs + 20	V
High side floating supply offset voltage(DC)	Vs	-4 (@VBS >= 10V) -5 (@VBS >= 11.5V)	600	V
High side floating supply offset voltage(Tran- sient)	Vs	-25 (~200ns) -20(200ns ~240ns) -7(240ns~400ns)	600	V
High side floating output voltage	VHO	Vs	VB	V
Allowable offset voltage Slew Rate 1)	dv/dt	-	50	V/ns
Supply voltage	Vcc	10	20	V
Input voltage for IN	VIN	0	Vcc	V
Switching Frequency ²⁾	Fs		200	KHz
Minimum Pulse Width ⁽³⁾	T _{pulse}	85	-	ns
Ambient Temperature	Та	-40	125	۵°

Note: 1) Guaranteed by design.

2) Duty = 0.5

3) Guaranteed by design. Refer to Figure4a,4b and 4c on Page 8.

Statics Electrical Characteristics

Unless otherwise specified, -40°C <= Ta <= 125° C,VCC = 15V, VBS = 15V, VS = 0V, RL = 50Ω , CL = 2.5nF.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Vcc and VBS supply Characteristics	L				1	
VCC and VBS supply under voltage positive going threshold	VCCUV+ VBSUV+		-	8.7	9.8	V
VCC and VBS supply under voltage negative going threshold	VCCUV- VBSUV-		7.4	8.2	-	V
VCC and VBS supply under voltage hysteresis	VCCUVH VBSUVH	-	0.2	0.5	-	V
Under voltage lockout response time	tduvcc tduvbs	VCC: 10V>7.3V or 7.3V>10V VBS: 10V>7.3V or 7.3V>10V	0.5 0.5		20 20	us us
Offset supply leakage current	Ilk	VB=VS=600V	-	-	50	uA
Quiescent VBS supply current	IQBS	VIN=0	-	23	250	uA
Quiescent Vcc supply current	IQCC1	VIN= 0V	-	42	120	uA
Quiescent Vcc supply current	IQCC2	VIN=15V	-	25	100	uA
Input Characteristics						
High logic level input voltage	VIH		0.63VCC	-	-	V
Low logic level input voltage	VIL		-	-	0.4VCC	V
Low logic level input bias current for IN	lin+	VIN=0	-	15	50	uA
High logic level input bias current for IN	lin-	VIN=15V	-	0	1	uA
Output characteristics			•		•	
High level output voltage, VBIAS-VO	Voh	IO=0	-	-	0.1	V
Low level output voltage, VO	VOL	IO=0	-	-	0.1	V
Peak output source current	lO1+		250	-	-	mA
Peak output sink current	IO1-		500	-	-	mA
Equivalent output resistance	Rop			40	60	Ω
	RON			20	30	Ω

Note: The input parameter are referenced to COM. The VO and IO parameters are referenced to COM.

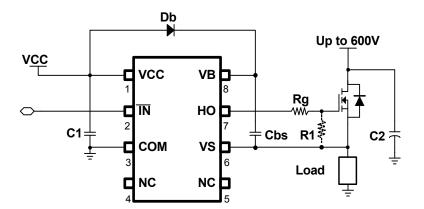
Dynamic Electrical Characteristics

Unless otherwise specified, -40°C <= Ta <= 125°C, VCC = 15V, VBS = 15V, VS = 0V, RL = 50Ω, CL = 2.5nF.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input-to-output turn-on propagation delay	tplh	50% input level to 10% output level, VS = 0V		130	300	ns
Input-to-output turn-off propagation delay	tphI	50% input level to 90% output level VS = 0V	-	140	300	ns
Output rising time	tr1	10% to 90%, Tj=25°C,V _{BS} =15V	-	15	400	ns
	tr2	10% to 90%		-	500	ns
Output falling time	tf1	90% to 10%, Tj=25°C,V _{BS} =15V	-	10	150	ns
	tf2	90% to 10%		-	500	ns

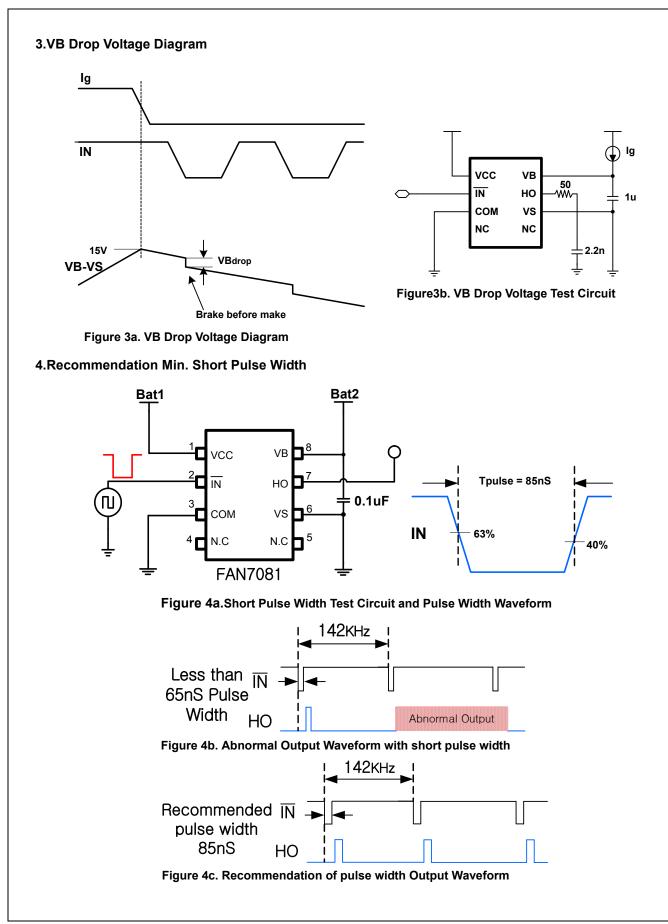
Application Information

1. Relationship in input/output and supplies

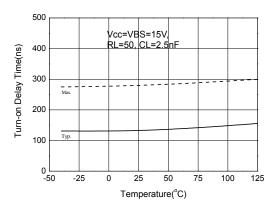

Table 1 Truth table for	or Vcc, VBS,VIN, and V	/HO

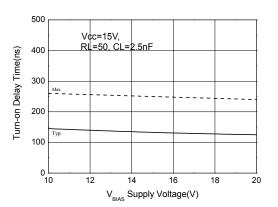
VCC	VBS	IN	НО
< VCCUVLO-	Х	Х	OFF
Х	< VBSUVLO-	Х	OFF
Х	Х	HIGH	OFF
> VCCUVLO+	> VBSUVLO+	LOW	ON

Notes:


X means independent from signal

Typical Application Circuit


Typical Waveforms


1. Input/Output Timing i N VS HO HO figure 1. Input / output Timing Diagram2. Ouput(HO) Switching Timing 90%figure 1. figure 1. figure 1. figure 1. figure 2. Switching Time Waveform Definitions

Performance Graphs

This performance graphs based on ambient temperature -40°C ~125°C

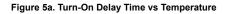


Figure 5b. Turn-On Delay Time vs VBS Supply Voltage

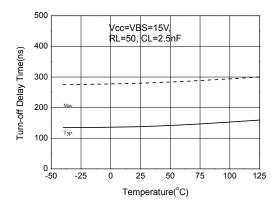
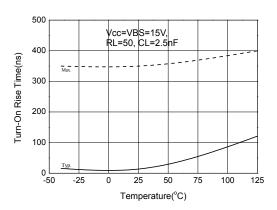
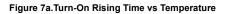




Figure 6a. Turn-Off Delay Time vs Temperature

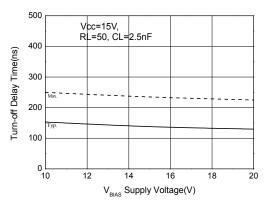
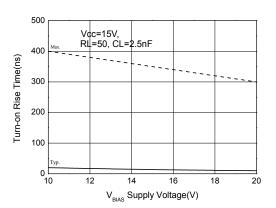



Figure 6b. Turn-Off Delay Time vs VBS Supply Voltage

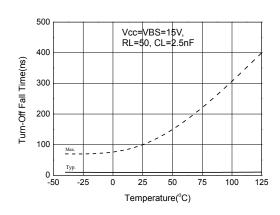


Figure 8a. Turn-Off Falling Time vs Temperature

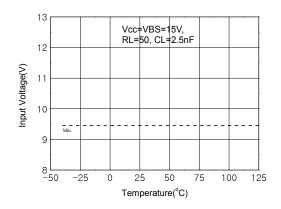


Figure 9a. Logic "1" IN Voltage vs Temperature

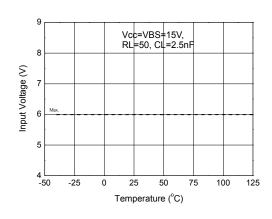


Figure 10a. Logic "0" IN Voltage vs Temperature

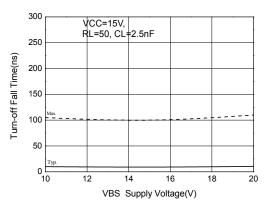


Figure 8b. Turn-Off Falling Time vs VBS Supply Voltage

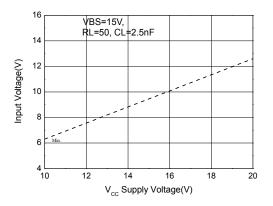
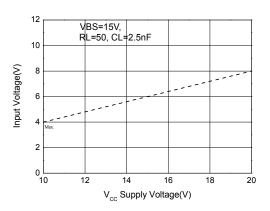
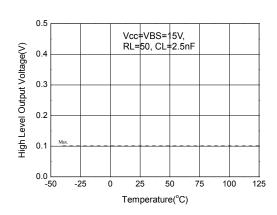
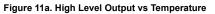





Figure 9b. Logic "1" IN Voltage vs VCC Supply Voltage

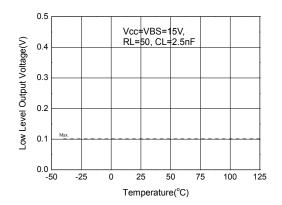
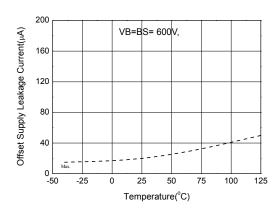



Figure 12a. Low Level Output vs Temperature

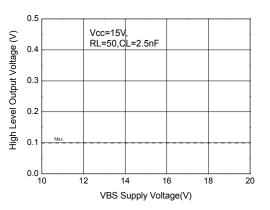


Figure 11b. High Level Output vs VBS Supply Voltage

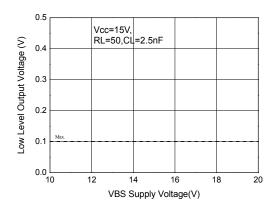
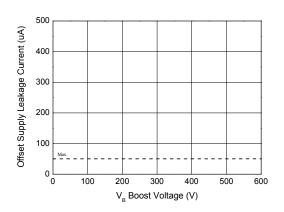
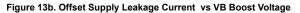
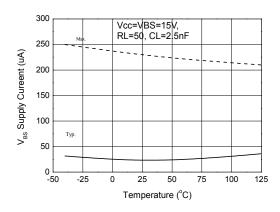
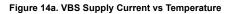






Figure 12b. Low Level Output vs VBS Supply Voltage

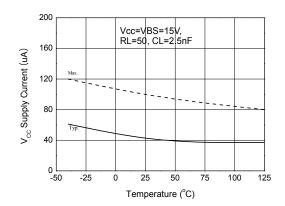
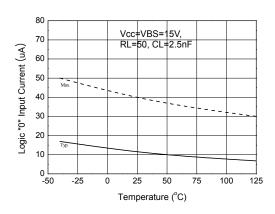



Figure 15a.VCC Supply Current vs Temperature

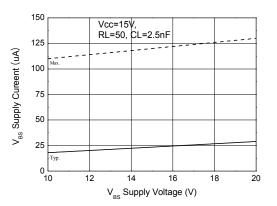


Figure 14b. VBS Supply Current vs VBS Supply Voltage

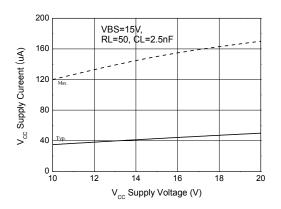


Figure 15b. VCC Supply Current vs VCC Supply Voltage

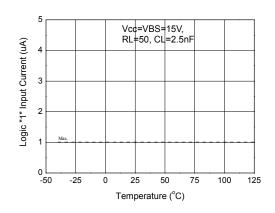


Figure 17a. Logic "1" IN Current vs Temperature

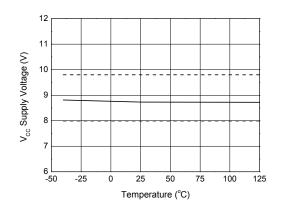
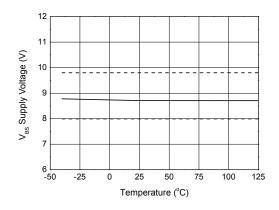



Figure 18a. VCC Under voltage Threshold(+) vs Temperature

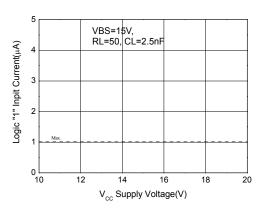


Figure 17b. Logic "1" IN Current vs VCC Supply Voltage

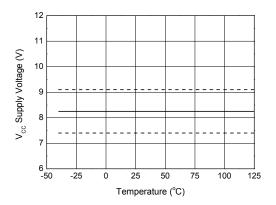
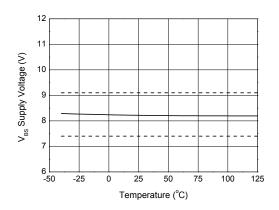
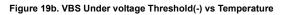
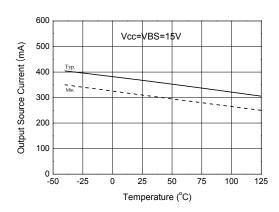





Figure 18b. VCC Under voltage Threshold(-) vs Temperature

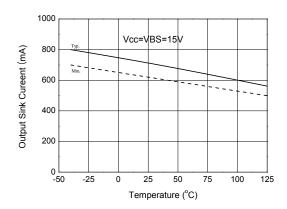
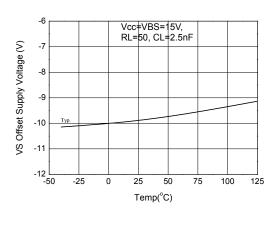



Figure 21a. Output Sink Current vs Temperature

 $(V_{\text{EMAS}}) = 0$

Figure 20b. Output Source Current vs VBS Supply Voltage

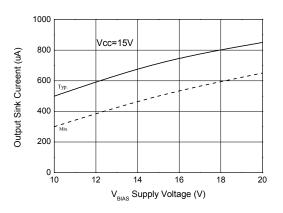
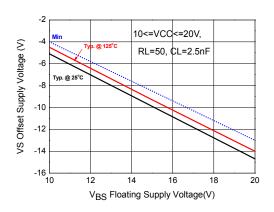
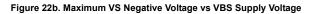




Figure 21b. Output Sink Current vs VBS Supply Voltage

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Semiconductor Components Industries, LLC