Page 2 of 11

Selection Guide

		7C1041B-12	7C1041B-15	7C1041B-17	7C1041B-20	7C1041B-25	Unit
Maximum Access Time		12	15	17	20	25	ns
Maximum Operating Current	um Operating Current Com'l		190	180	170	160	mA
	Ind'I	220	210	200	190	180	
Maximum CMOS Standby Com'l		3	3	3	3	3	mA
Current	Com'l L	-	0.5	0.5	0.5	0.5	
	Ind'I	-	6	6	6	6	

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied55°C to +125°C

Supply Voltage on V_{CC} to Relative $GND^{[1]}$ –0.5V to +7.0V

DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to $\rm V_{CC}$ + 0.5V

DC Input Voltage^[1]......-0.5V to V_{CC} + 0.5V Current into Outputs (LOW)......20 mA

Operating Range

Range	Ambient Temperature ^[2]	V _{cc}
Commercial	0°C to +70°C	5V ± 0.5
Industrial	–40°C to +85°C	

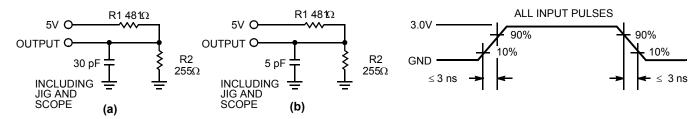
Electrical Characteristics Over the Operating Range

				7C10	41B-12	7C10	41B-15	7C1041B-17		
Parameter	Description	Test Conditi	Test Conditions		Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V_{CC} = Min., I_{OH} = -4	.0 mA	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0$) mA		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.5	2.2	V _{CC} + 0.5	2.2	V _{CC} + 0.5	V	
V_{IL}	Input LOW Voltage ^[1]		-0.5	8.0	-0.5	0.8	-0.5	0.8	V	
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	– 1	+1	-1	+1	-1	+1	mA	
I _{OZ}	Output Leakage Current	GND ≤ V _{OUT} ≤ V _{CC} , Output Disabled			+1	-1	+1	-1	+1	mA
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		200		190		180	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Ind'l		220		210		200	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{CC}, \overline{CE} \geq V_{IH} \\ &V_{IN} \geq V_{IH} \text{ or } \\ &V_{IN} \leq V_{IL}, f = f_{MAX} \end{aligned}$			40		40		40	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l		3		3		3	mA
	Power-Down Current —CMOS Inputs	$CE \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$,	Com'l L		-		0.5		0.5	mA
	- Cinco inputo	or $V_{IN} \le 0.3V$, f = 0	Ind'l		-		6		6	mA

- **Notes:** 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
- 2. T_A is the case temperature.

Document #: 38-05142 Rev. *A

[+] Feedback


Electrical Characteristics Over the Operating Range (continued)

		Test Condition	ons	7C1	041B-20	7C1	041B-25	
Parameter	Description			Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0$	2.4		2.4		V	
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0	mA		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.5	2.2	V _{CC} + 0.5	V
V _{IL}	Input LOW Voltage ^[1]			-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-1	+1	-1	+1	mA	
I _{OZ}	Output Leakage Current	$\begin{aligned} & \text{GND} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}, \\ & \text{Output Disabled} \end{aligned}$		– 1	+1	– 1	+1	mA
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		170		160	mA
	Supply Current	$f = f_{MAX} = 1/t_{RC}$	Ind'I		190		180	mA
I _{SB1}	Automatic CE Power-Down Current —TTL Inputs	$\begin{aligned} &\text{Max. V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{IH}} \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or} \\ &\text{V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \text{ f} = \text{f}_{\text{MAX}} \end{aligned}$			40		40	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l		3		3	mA
	Power-Down Current —CMOS Inputs	$CE \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$,	Com'l L		0.5		0.5	mA
		or $V_{IN} \le V_{CC} = 0.3V$, $f = 0$	Ind'I		6		6	mA

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	8	pF
C _{OUT}	I/O Capacitance	V _{CC} = 5.0V	8	pF

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT 00TPUT 0 01.73 $^{\circ}$

Note:

Document #: 38-05142 Rev. *A Page 3 of 11

^{3.} Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics^[4] Over the Operating Range

		7C10	41B-12	7C104	11B-15	7C104	41B-17	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle	1	•	•	•	•		1	•
t _{power}	V _{CC} (typical) to the First Access ^[5]	1		1		1		μS
t _{RC}	Read Cycle Time	12		15		17		ns
t _{AA}	Address to Data Valid		12		15		17	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE LOW to Data Valid		12		15		17	ns
t _{DOE}	OE LOW to Data Valid		6		7		7	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		6		7		7	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		6		7		7	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		12		15		17	ns
t _{DBE}	Byte Enable to Data Valid		6		7		7	ns
t _{LZBE}	Byte Enable to Low Z	0		0		0		ns
t _{HZBE}	Byte Disable to High Z		6		7		7	ns
Write Cycle	[8, 9]		•					
t _{WC}	Write Cycle Time	12		15		17		ns
t _{SCE}	CE LOW to Write End	10		12		14		ns
t _{AW}	Address Set-Up to Write End	10		12		14		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	10		12		14		ns
t _{SD}	Data Set-Up to Write End	7		8		8		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		6		7		7	ns
t _{BW}	Byte Enable to End of Write	10		12		12		ns

Notes:

Document #: 38-05142 Rev. *A Page 4 of 11

Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
 This part has a voltage regulator which steps down the voltage from 5V to 3.3V internally. t_{power} time has to be provided initially before a read/write operation is charged.

^{6.} t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.

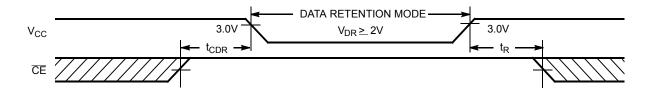
At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, t_{HZCE}, t_{HZCE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE} for any given device.
 The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
 The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

$\textbf{Switching Characteristics}^{[4]} \ \, \text{Over the Operating Range (continued)}$

		7C104	11B-20	7C104		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle						
t _{power}	V _{CC} (typical) to the First Access ^[5]	1		1		μS
t _{RC}	Read Cycle Time	20		25		ns
t _{AA}	Address to Data Valid		20		25	ns
t _{OHA}	Data Hold from Address Change	3		5		ns
t _{ACE}	CE LOW to Data Valid		20		25	ns
t _{DOE}	OE LOW to Data Valid		8		10	ns
t _{LZOE}	OE LOW to Low Z	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		8		10	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		5		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		8		10	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		20		25	ns
t _{DBE}	Byte Enable to Data Valid		8		10	ns
t _{LZBE}	Byte Enable to Low Z	0		0		ns
t _{HZBE}	Byte Disable to High Z		8		10	ns
WRITE CYC	LE ^[8, 9]	1			•	•
t _{WC}	Write Cycle Time	20		25		ns
t _{SCE}	CE LOW to Write End	13		15		ns
t _{AW}	Address Set-Up to Write End	13		15		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	13		15		ns
t _{SD}	Data Set-Up to Write End	9		10		ns
t _{HD}	Data Hold from Write End			0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		5		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		8		10	ns
t _{BW}	Byte Enable to End of Write	13		15		ns

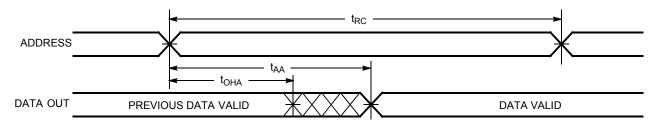
Data Retention Characteristics Over the Operating Range (L version only)

Parameter	Description			Conditions ^[11]	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention				2.0		V
I _{CCDR}	Data Retention Current	Com'l l	-	$V_{CC} = V_{DR} = 3.0V$, $CE \ge V_{CC} - 0.3V$,		200	mA
t _{CDR} ^[3]	Chip Deselect to Data Ref	ention Time		$V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$	0		ns
t _R ^[10]	Operation Recovery Time				t _{RC}		ns

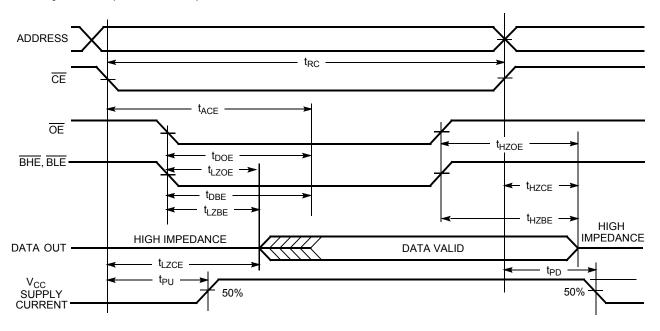

Notes:

Document #: 38-05142 Rev. *A Page 5 of 11

^{10.} $t_r \le 3$ ns for the -12 and -15 speeds. $t_r \le 5$ ns for the -20 and slower speeds. 11. No input may exceed V_{CC} + 0.5V.



Data Retention Waveform

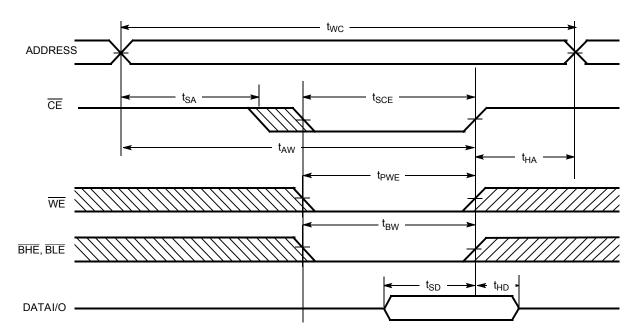


Switching Waveforms

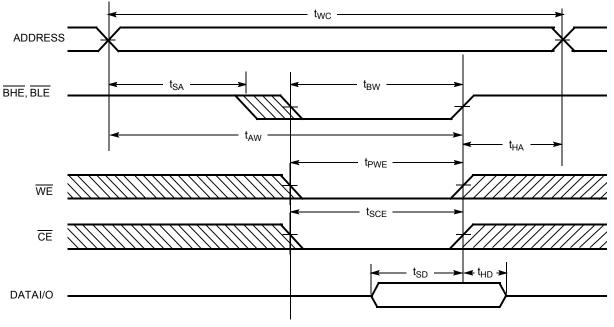
Read Cycle No. 1^[12, 13]

Read Cycle No. 2 (OE Controlled)[13, 14]

Notes:


- 12. <u>Device</u> is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} , and/or $\overline{BHE} = V_{IL}$.
- 13. WE is HIGH for read cycle.
- 14. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

[+] Feedback

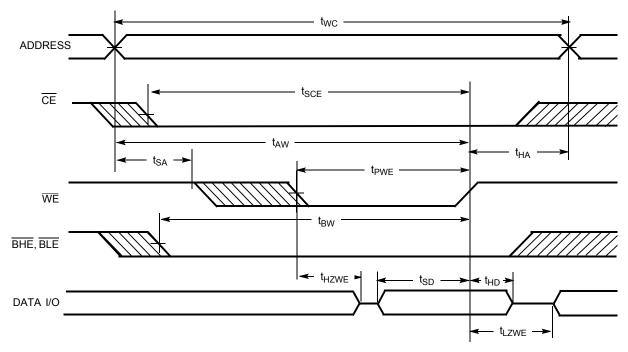


Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[15, 16]

Write Cycle No. 2 (BLE or BHE Controlled)

[+] Feedback


^{15.} Data I/O is high impedance if OE or BHE and/or BLE= V_{IH}.

16. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

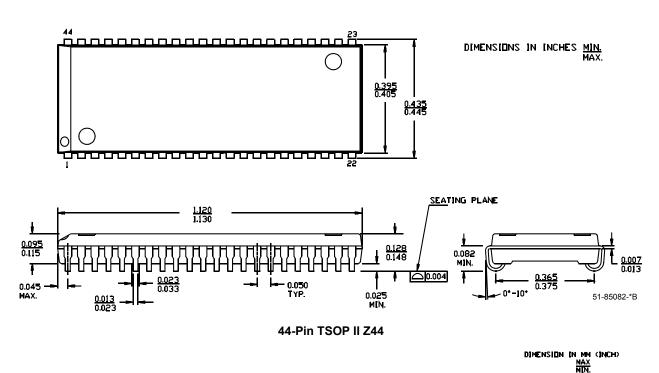
Switching Waveforms (continued)

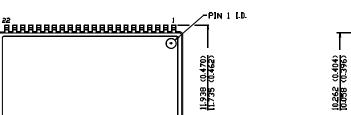
Write Cycle No. 3 (WE Controlled, OE LOW)

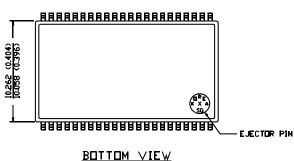
Truth Table

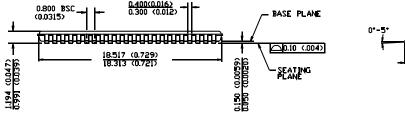
CE	OE	WE	BLE	вне	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Х	Χ	Х	Х	High Z	High Z	Power Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read All bits	Active (I _{CC})
Г	L	Н	L	Н	Data Out	High Z	Read Lower bits only	Active (I _{CC})
L	L	Н	Н	L	High Z	Data Out	Read Upper bits only	Active (I _{CC})
Г	Х	L	L	L	Data In	Data In	Write All bits	Active (I _{CC})
L	Χ	L	L	Н	Data In	High Z	Write Lower bits only	Active (I _{CC})
Г	Х	L	Н	L	High Z	Data In	Write Upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})

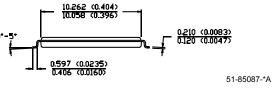
Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1041B-12VC	V34	44-Lead (400-Mil) Molded SOJ	Commercial
	CY7C1041B-12VXC	V34	44-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1041B-12ZC	Z44	44-Lead TSOP Type II	
	CY7C1041B-12ZXC	Z44	44-Lead TSOP Type II (Pb-free)	
15	CY7C1041B-15VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041B-15VXC	V34	44-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1041BL-15VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041B-15ZC	Z44	44-Lead TSOP Type II	
	CY7C1041B-15ZXC	Z44	44-Lead TSOP Type II (Pb-free)	
	CY7C1041BL-15ZC	Z44	44-Lead TSOP Type II	
	CY7C1041BL-15ZXC	Z44	44-Lead TSOP Type II (Pb-free)	
17	CY7C1041B-17VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041BL-17VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041B-17ZC	Z44	44-Lead TSOP Type II	
	CY7C1041BL-17ZC	Z44	44-Lead TSOP Type II	
20	CY7C1041B-20VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041B-20VXC	V34	44-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1041BL-20VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041BL-20VXC	V34	44-Lead (400-Mil) Molded SOJ (Pb-free)	
	CY7C1041B-20ZC	Z44	44-Lead TSOP Type II	
	CY7C1041B-20ZXC	Z44	44-Lead TSOP Type II (Pb-free)	
	CY7C1041BL-20ZC	Z44	44-Lead TSOP Type II	
25	CY7C1041B-25VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041BL-25VC	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041B-25ZC	Z44	44-Lead TSOP Type II	
	CY7C1041BL-25ZC	Z44	44-Lead TSOP Type II	
15	CY7C1041B-15ZI	Z44	44-Lead TSOP Type II	Industrial
	CY7C1041B-15ZXI	Z44	44-Lead TSOP Type II (Pb-free)	
	CY7C1041B-15VI	V34	44-Lead (400-Mil) Molded SOJ	
	CY7C1041B-15VXI	V34	44-Lead (400-Mil) Molded SOJ (Pb-free)	
17	CY7C1041B-17ZI	V34	44-Lead TSOP Type II	
	CY7C1041B-17VI	Z44	44-Lead (400-Mil) Molded SOJ	
20	CY7C1041B-20ZI	Z44	44-Lead TSOP Type II	
	CY7C1041B-20ZXI	Z44	44-Lead TSOP Type II (Pb-free)	
	CY7C1041B-20VI	Z44	44-Lead (400-Mil) Molded SOJ	
	CY7C1041B-20VXI	Z44	44-Lead (400-Mil) Molded SOJ (Pb-free)	
25	CY7C1041B-25ZI	Z44	44-Lead TSOP Type II	
	CY7C1041B-25VI	Z44	44-Lead (400-Mil) Molded SOJ	


Document #: 38-05142 Rev. *A Page 9 of 11


Package Diagrams


44-Lead (400-Mil) Molded SOJ V34



TOP VIEW

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 38-05142 Rev. *A

Page 10 of 11

Document History Page

	Document Title: CY7C1041B 256K x 16 Static RAM Document Number: 38-05142						
REV.	EEV. Issue Orig. of Date Change Description of Change						
**	109886	09/15/01	SZV	Change from Spec number: 38-00938 to 38-05142			
*A	341401	See ECN	AJU	Added Pb-free ordering information			

Document #: 38-05142 Rev. *A Page 11 of 11