International **TOR** Rectifier

Specifications

 $\rm T_{CASE}$ = -55°C to +85°C, $\rm ~V_{_{IN}}$ = +28V \pm 5% unless otherwise specified

Absolute Maximum Ratings				
Input voltage	-0.5V to +50VDC			
Power Output	Internally limited, 17.5W typical			
Soldering temperature	300°C for 10 seconds			
Temperature Range ⁶	Operating case temperature	-55°C to +115°C		
	Storage case temperature	-65°C to +135°C		

		Condition											
TEST	SYMBOL	$-55^{\circ}C \leq T_C \leq +85^{\circ}C, V_{IN} = 28 \ V_{DC}$	±5%, CL=0	ATO	2812T	ATO2	2815T						
		unless otherwise specified		Min	Max	Min	Max	Units					
STATIC CHARACTERISTICS OUTPUT													
Voltage 1	Vout	$I_{OUT} = 0$ (main)	TC = 25°C	4.95	5.05	4.95	5.05	V					
		1	Over Temp	4.90	5.10	4.90	5.10	V					
		I _{OUT} = 0 (dual) ¹	TC = 25°C Over Temp	±11.88	±12.12	±14.85	±15.15 +15.30	V V					
Current 1,2,3	IOUT	V _{IN} = 16, 28, and 40 VDC (main)	Over remp	±11.76 0.0	±12.24 2000	±14.70 0.0	±15.30 2000	mA					
Current	1001	$V_{IN} = 16, 28, and 40 VDC (mail)^{1}$		0.0	±2000	0.0	±167	mA					
		$V_{IN} = 16, 28, and 40 VDC (dual)$			80		80	mVp-p					
Ripple Voltage 1,4	V _{RIP}	BW = DC to 2 MHz (main)											
		V _{IN} = 16, 28, and 40 VDC			40		40	mVp-p					
Power 1,2,3	Pout	BW = DC to 2 MHz (dual)) $V_{IN} = 16, 28, and 40 VDC (main)$		10		10		w					
FOWEI	FOUT	$V_{\rm IN} = 10, 20, and 40 VDC (main) (+dual)$		2.5		2.5		Ŵ					
		(-dual)		2.5		2.5		Ŵ					
		(total)		15		15		W					
REGULATION Line ^{1,3}													
Line "	VR _{LINE}	V _{IN} = 16, 28, and 40 VDC I _{OUT} = 0, 1000, 2000mA (main)			25		25						
		$V_{IN} = 16, 28, and 40 VDC (dual)$	TC = 25°C		±30		±35						
		$I_{OUT} = 0, \pm 84, \pm 167 \text{mA} \text{ (dual)}$	Over Temp		±60		±75	mV					
Load 1,3	VRLOAD	V _{IN} = 16, 28, and 40 VDC			50		50						
		$I_{OUT} = 0, 1000, 2000 \text{mA} \text{(main)}$											
		V _{IN} = 16, 28, and 40 VDC I _{OUT} = 0, ±84, ±167mA (dual)			±60		±75						
INPUT		1001 - 0, ±01, ±1071117 (ddd)											
Current	I _{IN}	I _{OUT} = 0, Inhibit (pin 8)			15		15	mA					
		Tied to input return (pin 10)											
Ripple Current ⁴		$I_{OUT} = 0$, inhibit (pin 2) = open			40		40	mA					
	I _{RIP}	$I_{OUT} = 2000 \text{ mA} \text{ (main)}$ $I_{OUT} = \pm 167 \text{mA} \text{ (dual)}$			50		50	mAp-p					
		BW = DC to 2MHz											
EFFICIENCY	E _{FF}	$I_{OUT} = 2000 \text{mA} \text{ (main)}$	TC = 25°C	76		76		%					
		$I_{OUT} = \pm 167 \text{mA} \text{ (dual)}$											
ISOLATION	ISO	Input to output or any pin to	TC = 25°C	100		100		MΩ					
Load Fault	Po	case (except pin 7) at 500 VDC Overload	TC = 25°C		8.0		8.0	w					
Power Dissipation ³	10	Short Circuit	10 = 25'0		6.0		6.0	vv					
Switching Frequency	Fs	I _{OUT} = 2000mA (main)		225	275	225	275	KHz					
• • •	-	$I_{OUT} = \pm 167 \text{mA} \text{ (dual)}$											
Inhibit Open Circuit	Voi			9.0	13	9.0	13	V					
Voltage		L		ļ									

Notes to Specifications

Tested at each output. 1.

Parameter guaranteed by line and load regulation tests. 2.

З.

4.

At least 20 percent of the total output power should be taken from the (+5V) main output. Bandwidth guaranteed by design. Tested for 20KHz to 2.0MHz. An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit 5. protection and is the condition of maximum power dissipation.

6. Above $85^{\circ}C$ case temperature, derate output power linearly to 0 at $115^{\circ}C$ case.

International **TOR** Rectifier Specifications

$\rm T_{CASE}$ = -55°C to +105°C, $\rm ~V_{IN}$ = +28V ± 5% unless otherwise specified

Absolute Maximum Ratings				
Input voltage	-0.5V to +50VDC			
Power Output	Internally limited, 17.5W typical			
Soldering temperature	300°C for 10 seconds			
Temperature Range ⁶	Operating case temperature	-55°C to +125°C		
	Storage case temperature	-65°C to +135°C		

TEST	SYMBOL	Condition -55°C \leq T _C \leq +105°C, V _{IN} = 28 V _{DC} ±5%, C _L =0		ATO2812T/ES		ATO2815T/ES		
		unless otherwise specif						
STATIC				Min	Max	Min	Max	Units
CHARACTERISTICS								
Voltage ¹	V _{OUT}	I _{OUT} = 0 (main)	TC = 25°C Over Temp	4.95 4.90	5.05 5.10	4.95 4.90	5.05 5.10	V V
		$I_{OUT} = 0 (dual)^1$	TC = 25°C Over Temp	±11.88 ±11.76	±12.12 ±12.24	±14.85 ±14.70	±15.15 ±15.30	V V
Current ^{1,2,3}	I _{OUT}	V_{IN} = 16, 28, and 40 VDC (main) V_{IN} = 16, 28, and 40 VDC (dual) ¹		0.0 0.0	2000 ±208	0.0 0.0	2000 ±167	mA mA
Ripple Voltage ^{1,4}	V _{RIP}	V_{IN} = 16, 28, and 40 VDC BW = DC to 2 MHz (main)			80		80	mVp-p
		V _{IN} = 16, 28, and 40 VDC BW = DC to 2 MHz (dual))			40		40	mVp-p
Power ^{1,2,3}	Pout	V _{IN} = 16, 28, and 40 VDC (main) (+dual) (-dual) (total)		10 2.5 2.5 15		10 2.5 2.5 15		W W W
REGULATION Line ^{1,3}	VRLINE	V _{IN} = 16, 28, and 40 VDC		10	25		25	
		$I_{OUT} = 0, 1000, 2000mA (main)$ $V_{IN} = 16, 28, and 40 VDC (dual)$ $I_{OUT} = 0, \pm 84, \pm 167mA (dual)$	TC = 25°C Over Temp		±30 ±60		±35 ±75	mV
Load ^{1,3}	VR _{LOAD}	$V_{IN} = 16, 28, and 40 VDC$ $I_{OUT} = 0, 1000, 2000mA (main)$ $V_{IN} = 16, 28, and 40 VDC$ $I_{OUT} = 0, \pm 84, \pm 167mA (dual)$			50 ±60		50 ±75	
INPUT		$1007 = 0, \pm 04, \pm 107 \text{ mA (dual)}$						
Current	I _{IN}	I _{OUT} = 0, Inhibit (pin 8) Tied to input return (pin 10)			15		15	mA
Ripple Current ⁴	I _{RIP}	$I_{OUT} = 0$, inhibit (pin 2) = open $I_{OUT} = 2000 \text{ mA} \text{ (main)}$ $I_{OUT} = \pm 167\text{ mA} \text{ (dual)}$			40 50		40 50	mA mAp-p
EFFICIENCY	E _{FF}	$BW = DC \text{ to } 2MHz$ $I_{OUT} = 2000\text{mA} \text{ (main)}$ $I_{OUT} = \pm 167\text{mA} \text{ (dual)}$ $TC = \pm 25^{\circ}C$	TC = 25°C	76		76		%
ISOLATION	ISO	Input to output or any pin to case (except pin 7) at 500 VDC	TC = 25°C	100		100		MΩ
Load Fault Power Dissipation ³	P _D	Overload, TC = $+25^{\circ}C^{5}$ Short Circuit, TC = $+25^{\circ}C$	TC = 25°C		8.0 6.0		8.0 6.0	w
Switching Frequency	Fs	$I_{OUT} = 2000$ mA (main) $I_{OUT} = \pm 167$ mA (dual)		225	275	225	275	KHz
Inhibit Open Circuit Voltage	V _{OI}			9.0	13	9.0	13	v

Notes to Specifications

1. Tested at each output.

Parameter guaranteed by line and load regulation tests. 2.

3. At least 20 percent of the total output power should be taken from the (+5V) main output.

4.

Bandwidth guaranteed by design. Tested for 20KHz to 2.0MHz. An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit 5. protection and is the condition of maximum power dissipation.

6. Above 105°C case temperature, derate output power linearly to 0 at 125°C case

www.irf.com

International **TOR** Rectifier

ATO28XXT Series

Specifications

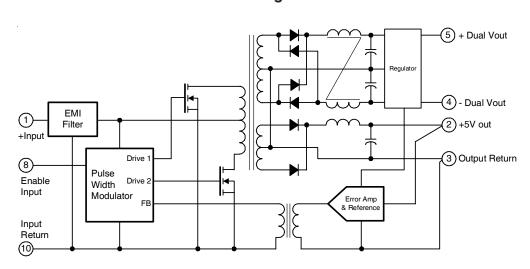
 $\rm T_{CASE}$ = -55°C to +125°C, $\rm ~V_{_{IN}}$ = +28V ± 5% unless otherwise specified

Absolute Maximum Rating	S				
Input voltage	-0.5V to +50VDC				
Power Output	Internally limited, 17.5W typical	Internally limited, 17.5W typical			
Soldering temperature	300°C for 10 seconds	300°C for 10 seconds			
Temperature Range ⁶	Operating case temperature	-55°C to +135°C			
	Storage case temperature	-65°C to +135°C			

		Condition						1
TEST	SYMBOL	$\text{-55}^{\circ}\text{C} \leq \text{T}_{C} \leq \text{+125}^{\circ}\text{C}, \ \text{V}_{\text{IN}} = 28 \ \text{V}_{\text{DC}} \pm 5\%, \ \text{C}_{\text{L}} = 0$		ATO2812T/HB		ATO2815T/HB		
		unless otherwise specified		Min Max		Min Max		Units
STATIC CHARACTERISTICS OUTPUT Voltage ¹	V _{OUT}	I _{ουτ} = 0 (main) I _{ουτ} = 0 (dual) ¹	TC = 25°C Over Temp TC = 25°C	4.95 4.90 ±11.88	5.05 5.10 ±12.12	4.95 4.90 ±14.85	5.05 5.10 ±15.15	V V V
Current ^{1,2,3}	Ι _{ουτ}	$V_{IN} = 16, 28, and 40 VDC (main)$ $V_{IN} = 16, 28, and 40 VDC (dual)^{1}$	Over Temp	±11.76 0.0 0.0	±12.24 2000 ±208	±14.70 0.0 0.0	±15.30 2000 ±167	V mA mA
Ripple Voltage ^{1,4}	V _{RIP}	$V_{IN} = 16, 28, and 40 VDC$ BW = DC to 2 MHz (main) $V_{IN} = 16, 28, and 40 VDC$			80 40		80 40	mVp-p mVp-p
Power ^{1,2,3}	Pout	BW = DC to 2 MHz (dual)) $V_{ N } = 16, 28, \text{ and } 40 \text{ VDC (main)}$ (+dual) (-dual) (total)		10 2.5 2.5 15		10 2.5 2.5 15		W W W W
REGULATION Line ^{1,3}	VR _{LINE}	V _{IN} = 16, 28, and 40 VDC I _{OUT} = 0, 1000, 2000mA (main) V _{IN} = 16, 28, and 40 VDC (dual)	TC = 25°C		25 ±30		25 ±35	
Load ^{1,3}	VR _{LOAD}		Over Temp		±30 ±60 50 ±60		±35 ±75 50 ±75	mV
INPUT								
Current Ripple Current ⁴	I _{IN} I _{RIP}	$\begin{split} &I_{OUT} = 0, \text{ Inhibit (pin 8)} \\ &\text{Tied to input return (pin 10)} \\ &I_{OUT} = 0, \text{ inhibit (pin 2) = open} \\ &I_{OUT} = 2000 \text{ mA (main)} \\ &I_{OUT} = \pm 167\text{mA (dual)} \\ &\text{BW} = \text{DC to 2MHz} \end{split}$			15 40 50		15 40 50	mA mA mAp-p
EFFICIENCY	E _{FF}	$I_{OUT} = 2000 \text{mA} \text{ (main)}$ $I_{OUT} = \pm 167 \text{mA} \text{ (dual)}$ TC = $\pm 25^{\circ}\text{C}$	TC = 25°C	76		76		%
ISOLATION	ISO	Input to output or any pin to case (except pin 7) at 500 VDC	TC = 25°C	100		100		MΩ
Load Fault Power Dissipation ³	P _D	Overload, TC = $+25^{\circ}C^{5}$ Short Circuit, TC = $+25^{\circ}C$	TC = 25°C		8.0 6.0		8.0 6.0	w
Switching Frequency	Fs	I _{OUT} = 2000mA (main) I _{OUT} = ±167mA (dual)		225	275	225	275	KHz
Inhibit Open Circuit Voltage	V _{OI}			9.0	13	9.0	13	V

Notes to Specifications

Tested at each output. 1.

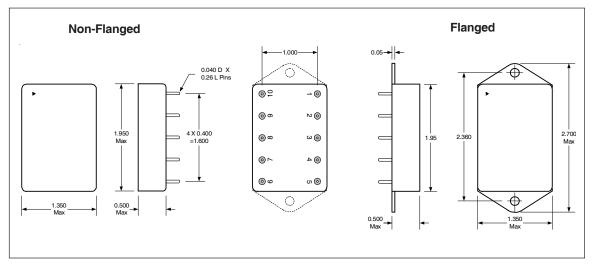

Parameter guaranteed by line and load regulation tests. 2.

At least 20 percent of the total output power should be taken from the (+5V) main output. Bandwidth guaranteed by design. Tested for 20KHz to 2.0MHz. 3.

4.

An overload is that condition with a load in excess of the rated load but less than that necessary to trigger the short circuit protection and is the condition of maximum power dissipation. Above 125°C case temperature, derate output power linearly to 0 at 135°C case 5.

6.


Block Diagram

Standard Microcircuit Drawing Equivalence Table

Standard Microcircuit Drawing Number	Vendor Cage Code	IR Standard Part Number
5962-90954	52467	ATO2815T
5962-91602	52467	ATO2812T

www.irf.com

International

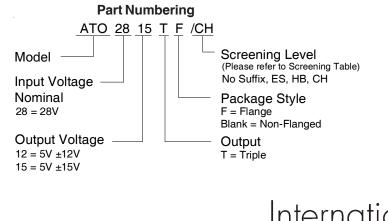
Mechanical Outlines

Pin Designation

Pin #	Designation	
1	+ Input	
2	+5V Output	
3	Output Return	
4	- Dual Output	
5	+ Dual Output	
6	NC	
7	Case Ground	
8	Enable Input	
9	NC	
10	Input Return	

International

Device Screening


Requirement	MIL-STD-883 Method	No Suffix	ES ©	HB	СН
Temperature Range		-20°C to +85°C	-55°C to +125°C ③	-55°C to +125°C	-55°C to +125°C
Element Evaluation	MIL-PRF-38534	N/A	N/A	N/A	Class H
Non-Destructive Bond Pull	2023	N/A	N/A	N/A	N/A
Internal Visual	2017	0	Yes	Yes	Yes
Temperature Cycle	1010	N/A	Cond B	Cond C	Cond C
Constant Acceleration	2001, Y1 Axis	N/A	500 Gs	3000 Gs	3000 Gs
PIND	2020	N/A	N/A	N/A	N/A
Burn-In	1015	N/A	48 hrs@hi temp	160 hrs@125°C	160 hrs@125°C
Final Electrical	MIL-PRF-38534	25°C	25°C ©	-55°C, +25°C,	-55°C, +25°C,
(Group A)	& Specification			+125°C	+125°C
PDA	MIL-PRF-38534	N/A	N/A	N/A	10%
Seal, Fine and Gross	1014	Cond A	Cond A, C	Cond A, C	Cond A, C
Radiographic	2012	N/A	N/A	N/A	N/A
External Visual	2009	0	Yes	Yes	Yes

Notes:

① Best commercial practice

② Sample tests at low and high temperatures

3 -55°C to +105°C for AHE, ATO, ATW

International

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 252-7105 IR SANTA CLARA: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 01/2007

www.irf.com