AD9814S* PRODUCT PAGE QUICK LINKS

Last Content Update: 12/19/2017

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

 AD9814S: 14-Bit CCD/CIS Signal Processor Aerospace Data Sheet

DESIGN RESOURCES

- AD9814S Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all AD9814S EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

Pin Number	Name	<u>Type</u>	Description	
1	CDSCLK1	DI	CDS Reference Level Sampling Clock	
2	CDSCLK2	DI	CDS Data Level Sampling Clock	
3	ADCCLK	DI	A/D Converter Sampling Clock	
4	OEB	DI	Output Enable, Active Low	
5	DRVDD	Р	Digital Output Driver Supply	
6	DRVSS	Р	Digital Output Driver Ground	
7	D7	DO	Data Output MSB. ADC DB13 High Byte, ADC DB5 Low Byte	
8	D6	DO	Data Output. ADC DB12 High Byte, ADC DB4 Low Byte	
9	D5	DO	Data Output. ADC DB11 High Byte, ADC DB3 Low Byte	
10	D4	DO	Data Output. ADC DB10 High Byte, ADC DB2 Low Byte	
11	D3	DO	Data Output. ADC DB9 High Byte, ADC DB1 Low Byte	
12	D2	DO	Data Output. ADC DB8 High Byte, ADC DB0 Low Byte	
13	D1	DO	Data Output. ADC DB7 High Byte, Don't Care Low Byte	
14	D0	DO	Data Output LSB. ADC DB6 High Byte, Don't Care Low Byte	
15	SDATA	DI/DO	Serial Interface Data Input/Output	
16	SCLK	DI	Serial Interface Clock Input	
17	SLOAD	DI	Serial Interface Load Pulse	
18	AVDD	Р	+5 V Analog Supply	
19	AVSS	Р	Analog Ground	
20	САРВ	AO	ADC Bottom Reference Voltage Decoupling	
21	CAPT	AO	ADC Top Reference Voltage Decoupling	
22	VINB	AI	Analog Input, Blue Channel	
23	CML	AO	Internal Bias Level Decoupling	
24	VING	AI	Analog Input, Green Channel	
25	OFFSET	AO	Clamp Bias Level Decoupling	
26	VINR	AI	Analog Input, Red Channel	
27	AVSS	Р	Analog Ground	
28	AVDD	Р	+5 V Analog Supply	

Type: AI = Analog Input, AO = Analog Output, DI = Digital Input, DO = Digital Output, P = Power.

Figure 2 – Terminal Connections and Pin Function Descriptions

Parameter	With respect to	<u>Min</u>	Max	<u>Units</u>
VIN, CAPT, CAPB	AVSS	-0.3	AVDD + 0.3	V
Digital Inputs	AVSS	-0.3	AVDD + 0.3	V
AVDD	AVSS	-0.5	+6.5	V
DRVDD	DRVSS	-0.5	+6.5	V
AVSS	DRVSS	-0.3	+0.3	V
Digital Outputs	DRVSS	-0.3	DRVDD + 0.3	V
Junction Temperature			+150	°C
Storage Temperature		-65	+150	°C
Lead Temperature (10 sec)			+300	°C

4.0 Absolute Maximum Ratings. ($T_A = 25^{\circ}C$, unless otherwise noted)

NOTES:

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

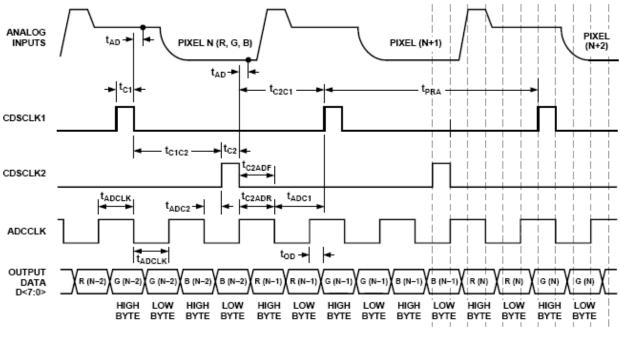
The input limits are defined as maximum tolerable voltage levels into the AD9814. These levels are not intended to be in the linear input range of the device. Signals beyond the input limits will turn on the overvoltage protection diodes.

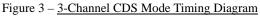
5.0 Thermal Characteristics:

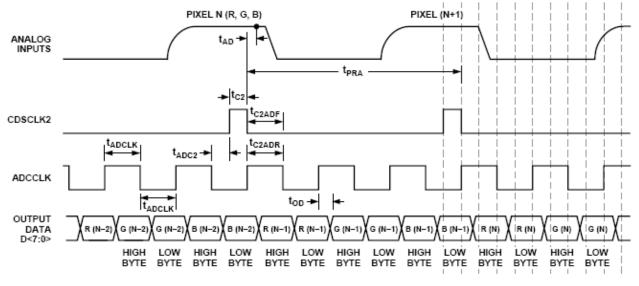
Package Type	Junction-to- Case (℗ _{JC})	Junction-to-Ambient (_{OJA})	Units
Thermal Resistance, Bottom Brazed (F)	22	60	°C/W Max

6.0 Table I. Electrical Table:

		Table I				
Parameter See notes at end of table	<u>Symbol</u>	<u>Conditions</u> <u>1</u> / Unless Otherwise Specified	Sub Group	Limit Min	Limit Max	<u>Units</u>
RESOLUTION	RES	No Missing Codes	1,2,3	14		Bits
Supply Currents	IAVDD		1,2,3		80	mA
	IDRVDD		1,2,3		10	mA
Power dissipation	PD		1,2,3		450	mW
Power supply rejection	PSR	AVDD= +5.0V ± 0.25V	1,2		0.3	%FSR
			3		0.5	%FSR
ACCURACY (Entire Signal Path)	INL		1,2	-11	11	LSB
Integral Nonlinearity <u>2</u> /			3	-18	11	LSB
ACCURACY (Entire Signal Path)			1	-1	1.25	LSB
Differential Nonlinearity	DNL		2	-1	1	LSB
			3	-1	1.5	LSB
ACCURACY (Entire Signal Path) Offset Error	VOS		1,2,3	-104	104	mV
ACCURACY (Entire Signal Path) Gain Error <u>3</u> /	GAIN		1,2,3	-5.3	5.3	%FSR
PGA Gain Ratio <u>4</u> /	PGA GAIN		1,2,3	5.7	5.9	
DIFFERENTIAL VREF CAPT-CAPB (4V Input Range)	VREF4		1,2,3	1.9	2.1	V
DIFFERENTIAL VREF CAPT-CAPB (2V Input Range)	VREF2		1,2,3	0.94	1.06	V


TABLE I NOTES:


1/ T_A = +25 °C, T_A Max = +125 °C, T_A Min = -55 °C. AVDD = +5 V, DRVDD = +5 V, 3-Channel CDS, F_{ADCCLK} = 6 MHz, F_{CDSCLK1} = F_{CDSCLK2} = 2 MHz, PGA Gain = 1, Input Range = 4V, unless otherwise noted.


2/ INL is measured using the "fixed endpoint" method, NOT using a "best-fit" calculation.

3/ The Gain Error specification is dominated by the tolerance of the internal differential voltage reference.

4/ The PGA Gain is approximately "linear in dB" and follows the equation: PGA Gain = (5.8 / (1 + 4.8 (63 - G) / 63)) where G is the register value.

6.0 Table II. Electrical Test Requirements:

Table II				
Test Requirements	Subgroups (in accordance with MIL-PRF-38535, Table III)			
Interim Electrical Parameters	1			
Final Electrical Parameters	1, 2, 3 <u>1/ 2</u> /			
Group A Test Requirements	1, 2, 3			
Group C end-point electrical parameters	1 <u>2</u> /			
Group D end-point electrical parameters	1			
Group E end-point electrical parameters	N/A			

Notes:

1/ PDA applies to Subgroup 1. Delta's excluded from PDA.

2/ See Table III for Delta limits.

7.0 Table III. Life Test / Burn-in Delta limits:

Table III				
<u>Test Symbol</u>	<u>Delta Limit</u>	<u>Units</u>		
IAVDD	+/-2	mA		
VOS	+/-13.2 (+/-54)	mV (LSB)		
GAIN	+/-0.56 (+/-91)	% (LSB)		
+INL	+/-6	LSB		
-INL	+/-5	LSB		
+DNL	+/-0.5	LSB		
-DNL	+/-0.35	LSB		

8.0 Life Test / Burn-In Circuit:

- 8.1 HTRB is not applicable for this drawing.
- 8.2 Burn-in is per MIL-STD-883 Method 1015, test condition D.
- 8.3 Steady state life test is per MIL-STD-883 Method 1005, test condition D.

9.0 MIL-STD-38535 QMLV exceptions:

- 9.1 Full WLA per MIL-STD-883 TM 5007 is not available for this product. SEM Inspection only is available per MIL-STD-883, TM2018.
- 9.2 This product is manufactured in a MIL-PRF-38535 QMLQ certified wafer fab facility.

Rev	Description of Change	Date
A	Initiate	Sept 9, 2007
В	Update header/footer and add to 1.0 Scope description.	March 7, 2008
С	Add reference notations to Section 4.0, Table I	April 7, 2008
D	Remove post Group C specification limits in Table III such that only Delta limits are listed. Remove QMLV exception for testing in QMLQ facility. Add Figure 2 pin descriptions. Formatting improvements.	March 24, 2010

© 2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. Printed in the U.S.A. 3/10

www.analog.com

ASD0016515 Rev. D | Page 7 of 7