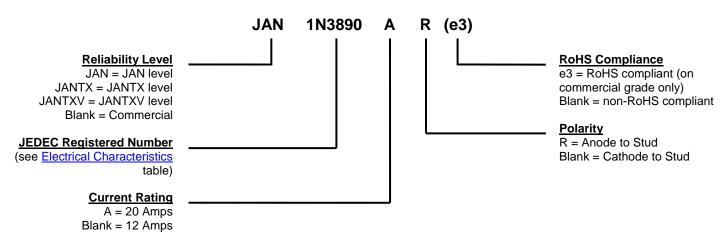


MECHANICAL and PACKAGING


- CASE: Hermetically sealed metal and glass case body with 10-32 UNF3A threaded stud.
- TERMINALS: Tin-lead plated or RoHS compliant matte-tin plating on nickel. Solder dipped eyelet.
- MARKING: Manufacturer's ID, part number, date code, polarity symbol.
- WEIGHT: 5 grams (approximate).
- Maximum Stud Torque: 10-15 inch pounds.
- See Package Dimensions on last page.

PART NOMENCLATURE

Applicable to 1N3889 only:

Applicable to 1N3890, 1N3891 and 1N3893 only:

SYMBOLS & DEFINITIONS						
Symbol	Definition					
Сл	Junction Capacitance: The junction capacitance in pF at a specified frequency.					
I _{F(AV)}	Average Forward Current: The average forward current dc value, no alternating component.					
I _{FSM}	Maximum Forward Surge Current: The forward current, surge peak or rated forward surge current.					
I _{RM}	Maximum Reverse Current: The maximum reverse (leakage) current that will flow at the specified voltage and temperature.					
t _{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified decay point after a peak reverse current occurs.					
V_{FM}	Maximum Forward Voltage: The maximum forward voltage the device will exhibit at a specified current.					
V_{RRM}	Repetitive Peak Reverse Voltage: The peak reverse voltage including all repetitive transient voltages but excluding all non-repetitive transient voltages.					
V_{RWM}	Working Peak Reverse Voltage: The maximum peak voltage that can be applied over the operating temperature range excluding all transient voltages (ref JESD282-B). Also sometimes known as PIV.					

ELECTRICAL CHARACTERISTICS @ T_A = 25 °C unless otherwise noted

Туре	Typical Junction Capacitance C _J	Average Forward Current I _{F(AV)}	Maximum Forward Voltage V _{FM}	Maximum Reverse Current I _{RM}		Maximum Reverse Recovery Time	
		T _C = 100 °C	T _C = 25 °C	T _C = 25 °C	T _C = 150 °C	t _{rr}	
1N3889(R)	115 pF ⁽¹⁾	12 A	1.5 V @ I _{FM} = 20 A ⁽²⁾	10 μA @ V _{RRM}	2 mA @ V _{RRM}	200 ns ⁽³⁾	

NOTES: 1. $V_R = 10 \text{ V}, f = 1 \text{ Mhz}, T_J = 25 \,^{\circ}\text{C}.$

Parameters / Test Conditions			Min.	Max.	Unit
Forward Voltage I _{FM} = 38 A, T _C = 25 °C*		V _{FM}		1.5	٧
Forward Voltage I _{FM} = 250 A, T _C = 150 °C**		V _{FM}		2.75	V
Reverse Current $V_{RM} = 100 \text{ V}, T_C = 25 \text{ °C}$ $V_{RM} = 200 \text{ V}, T_C = 25 \text{ °C}$ $V_{RM} = 400 \text{ V}, T_C = 25 \text{ °C}$	1N3890 / A / R / AR 1N3891 / A / R / AR 1N3893 / A / R / AR	I _{RM}		10	μА
Reverse Current V _{RM} = 100 V, T _C = 150 °C V _{RM} = 200 V, T _C = 150 °C V _{RM} = 400 V, T _C = 150 °C	1N3890 / A / R / AR 1N3891 / A / R / AR 1N3893 / A / R / AR	I _{RM}		2	mA
Reverse Recovery Time $V_{RM} = 30 \text{ V}, I_F = 1A, T_C = 55 ^{\circ}\text{C}^{*}$	1N3890, 1N3891, 1N3893 1N3890A, 1N3891A,1N3893A / AR	T _{rr}		200 150	ns

^{*} Pulse test: Pulse width 300 µsec, duty cycle 2%.

^{2.} $I_{FM} = 38$ A, $T_J = 25$ °C. Pulse test: pulse width 300 µsec, duty cycle 2%.

^{3.} IF = 1 A, V_R = 30 A, di/dt = 25 A/ μ s, T_C = 55 °C.

^{**} Pulse test: Pulse width 800 µsec.

GRAPHS

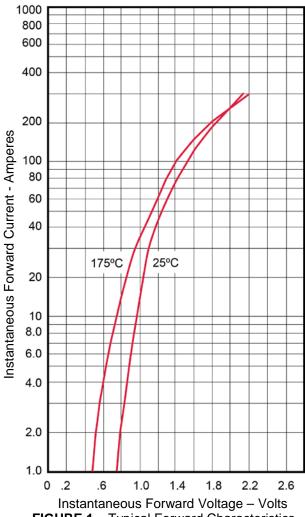


FIGURE 1 – Typical Forward Characteristics

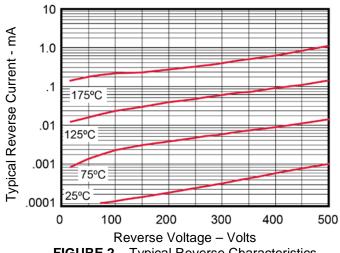


FIGURE 2 - Typical Reverse Characteristics

GRAPHS (continued)

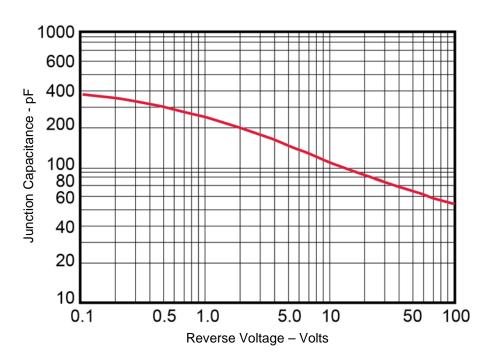


FIGURE 3 – Typical Junction Capacitance

FIGURE 4 - Forward Current Derating

GRAPHS (continued)

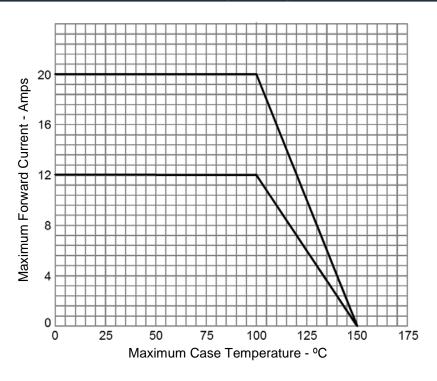


Figure 5 – <u>Maximum Forward Current vs. Maximum Case Temperature</u>

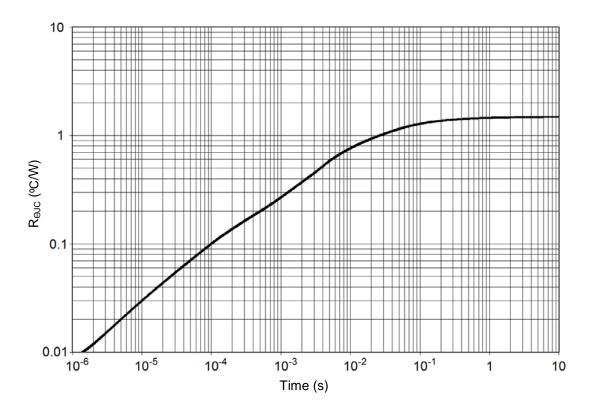
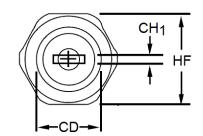
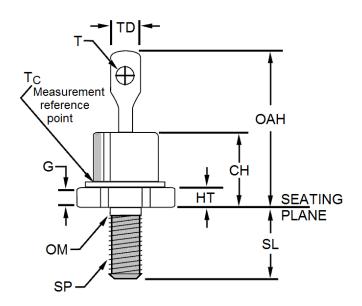




Figure 6 – Thermal Impedance for "A" type devices

PACKAGE DIMENSIONS

	Dimensions				
Ltr	Inch		Millimeters		Notes
	Min	Max	Min	Max	
CD		.424		10.77	
СН		.405		10.29	
CH ₁	.020	.065	0.51	1.65	9
G	.060		1.52		
HF	.424	.437	10.77	11.10	
HT	.075	.175	1.90	4.44	
OAH		.800		20.32	
ОМ	.163	.189	4.14	4.80	4
SL	.422	.453	10.72	11.50	
SP					5, 6, 7, 8
T	.060		1.52		_
TD		.250		6.35	

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Angular orientation of this terminal is undefined. Square or radius on end of terminals is optional.
- 4. Diameter variations within these limits are permitted.
- 5. The ANSI thread reference is 0.190-32 UNF-2A.
- 6. Max pitch diameter of plated threads shall be basic pitch diameter 0.169 inch (4.29 mm) reference FED-STD-H28 (Screw Thread Standards for Federal Services.)
- 7. Units must not be damaged by torque of 15 inch-pounds applied to 0.190-32 UNF-2B nut assembled on thread.
- 8. Complete threads to extend to within 0.078 inch (1.98 mm) of the seating plane.
- 9. Terminal-end shape is unrestricted.
- 10. Reversed (anode to stud) units shall be marked with an "R" following the last digit in the type number.
- 11. Forward polarity (cathode to stud) marking is not shown.