

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

V _{IN}	7.0V
V _{ENX} , V _{FLGX}	0.3V to 7.0V
Storage Temperature	65°C to 150°C
Junction Temperature	150°C
Power Dissipation	Internally Limited
Lead Temperature (Soldering, 10 sec)	260°C
ESD Rating (HBM - Human Body Model)	2kV

OPERATING RATINGS

Input Voltage Range V _{IN}	2.7V to 6.5V
Ambient Temperature Range	40°C to 85°C
Thermal Resistance θ _{JA}	160°C/W

ELECTRICAL SPECIFICATIONS

Specifications are for an Operating Temperature of $T_A = T_J = 25^{\circ}\text{C}$ only; limits applying over the full Operating Ambient Temperature range are denoted by a "•". Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_A = 25^{\circ}\text{C}$, and are provided for reference purposes only. Unless otherwise indicated, $V_{IN} = 5V$, $C_{IN} = C_{OUT} = 1\mu\text{F}$, $T_A = 25^{\circ}\text{C}$.

Parameter	Min.	Тур.	Max.	Units	Conditions
Input Supply Voltage	2.7		6.5	V	
Input Quiescent Current		80	160	μA	V _{IN} =5V, No load Both channels enabled
Input Shutdown Current		0.2	2	μA	V _{IN} =5V, No load, Switch OFF
Maximum Output Current per channel	1			А	
Output Leakage Current		0.5	1	μA	V _{EN} =0V, V _{OUT} =0V
Output MOSFET Resistance		90	110	mΩ	I _{OUT} =0.1A
Output turn-on rise time		1000	2500	μs	$R_L=10\Omega$ each output, C_{OUT} not used
Output turn-off fall time		0.7	20	μs	$R_L=10\Omega$ each output, C_{OUT} not used
Current limit threshold	1	1.5	2	Α	
EN input threshold	0.6	1.3	1.8	V	
EN Input Current		0.01	0.1	μΑ	EN = HIGH
Over temperature shutdown threshold		150		°C	Temperature rising
Over temperature shutdown threshold hysteresis		30		°C	
Under-voltage lockout threshold		2.3		V	V _{IN} rising
Under-voltage lockout hysteresis		200		mV	
FLG blanking time		9		ms	
FLG Leakage Current		0.01	1	μA	V _{FLG} =5V

BLOCK DIAGRAM

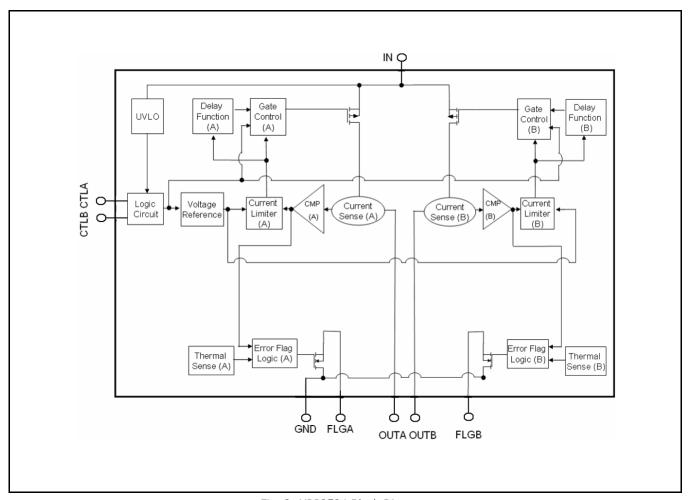


Fig. 2: XRP2524 Block Diagram

PIN ASSIGNMENT

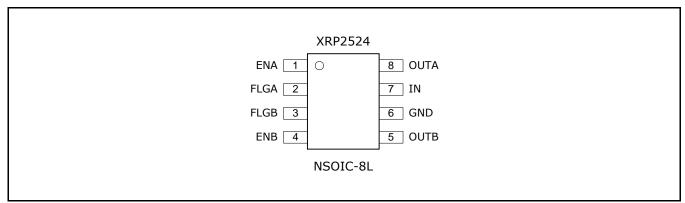


Fig. 3: XRP2524 Pin Assignment

PIN DESCRIPTION

Name	Pin Number	Description
EN _x	1, 4	Channel Enable Input Active High
FLG _X		Error Flag Signal Active low open drain output. Active on over-current, over-temperature or short-circuit conditions.
GND	6	Ground Signal
IN	7	Voltage Input Pin
OUT _X	5, 8	Voltage Output Pin

ORDERING INFORMATION

Part Number	Temperature Range	Marking	Package	Packing Quantity	Note 1	Note 2
XRP2524IDTR-F	-40°C≤T _A ≤+85°C	2524ID YYWWF XXX	NSOIC-8		rtorio compilario	Dual Channel Active high
XRP2524EVB	XRP2524 Evaluation Board					

[&]quot;YY" = Year - "WW" = Work Week - "X" = Lot Number; when applicable.

TYPICAL PERFORMANCE CHARACTERISTICS

All data taken at $V_{IN}=5V$, $C_{IN}=1\mu F$, $C_{OUT}=1\mu F$, $T_{J}=T_{A}=25^{\circ}C$, unless otherwise specified - Schematic and BOM from Application Information section of this datasheet.

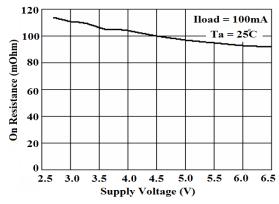


Fig. 4: Output On-Resistance vs. Supply Voltage

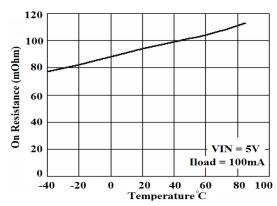


Fig. 5: Output On-Resistance vs. Temperature

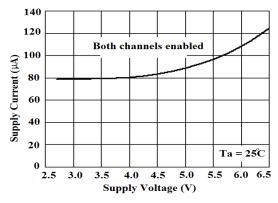


Fig. 6: ON-State Supply Current vs. Supply Voltage

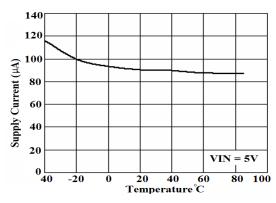


Fig. 7: ON-State Supply Current vs. Temperature

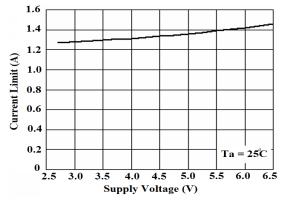


Fig. 8: Current Limit Threshold vs. Supply Voltage

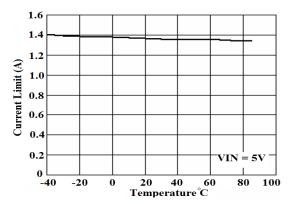


Fig. 9: Current Limit Threshold vs. Temperature

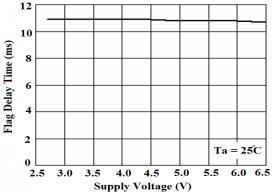


Fig. 10: Flag Delay Time vs. Supply Voltage

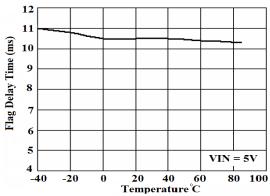


Fig. 11: Flag Delay Time vs. Temperature

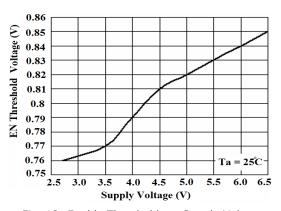


Fig. 12: Enable Threshold vs. Supply Voltage

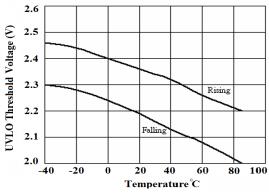


Fig. 13: UVLO Threshold Voltage vs. Temperature

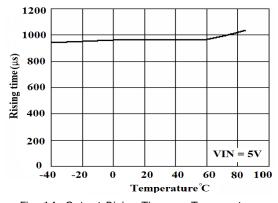


Fig. 14: Output Rising Time vs. Temperature

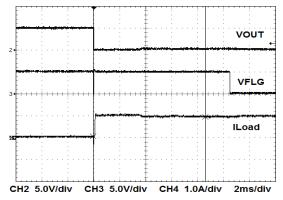


Fig. 15: Short circuit protection $V_{IN} = 5.0V$

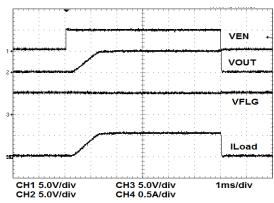


Fig. 16: Turn-On/Off Characteristics $C_{OUT}=1\mu F,\ R_{LOAD}=10\Omega$

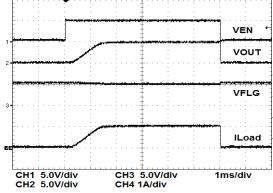


Fig. 17: Turn-On/Off Characteristics $C_{OUT}=1\mu F,\ R_{LOAD}=5.1\Omega$

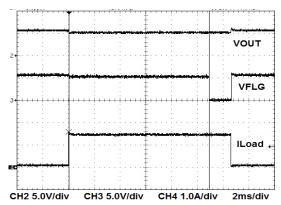


Fig. 18: Current Limit Operation V_{IN} = 5.5V, R_{LOAD} = 3.3 Ω

Downloaded from Arrow.com.

APPLICATION INFORMATION

The XRP2524 device is a dual channel integrated high-side power distribution switch that can be used in any self or bus powered USB applications. It is compliant with the latest USB 3.0 specifications. The reverse current protection feature prevents current to flow from OUT to IN when the device is disabled.

INPUT & OUTPUT

It is important to place a 1µF ceramic bypass capacitor from IN to GND as close as possible to the device in order to control supply transients. A high capacitor value and short wires from power supply to VIN can further reduce voltage droop on the input.

Placing bulk capacitance of at least $22\mu F$ at the output pin reduces power supply transients under heavy current load conditions.

Furthermore, bypassing the output pin with a $0.1\mu\text{F}$ to $1\mu\text{F}$ ceramic capacitor placed close to OUT and PGND improves the device response to short-circuit transients.

ENABLE CONTROL

The device is disabled when the enable pin is in logic low condition. During this condition, the internal circuitry and the switch are turned off thereby reducing the supply current to 0.1µA typical. Enable must be driven logic high for a clearly defined input. Floating the input may cause unpredictable operation.

ERROR FLAG

The error flag signal (FLG output pin) is an open-drain output and is pulled low (active low) upon detection of the following fault conditions:

- Over-current condition
- Over-temperature condition
- Short-circuit condition

Over-current, over-temperature and short-circuit conditions are reported only if the

condition persists continuously for longer than the blanking time of 9ms typical. The blanking time prevents erroneous reporting of current faults due to brief output current spikes.

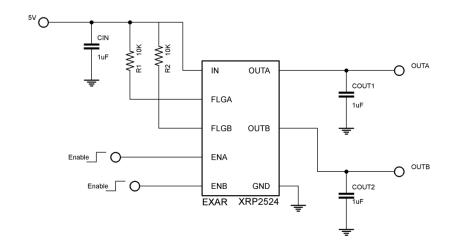
Once activated, the error flag signal remains low until all fault conditions have been removed.

CURRENT LIMIT

The current limit threshold is preset internally. It protects the output MOSFET switch from damages resulting from undesirable short circuit conditions or excess inrush current, which is often encountered during hot plug-in. The low limit of the current limit threshold of the XRP2524 allows a minimum current of 1A through the MOSFET switch.

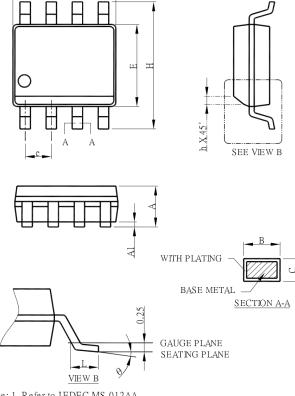
An over-current condition is detected once the current limit threshold is exceeded, and output current is then limited to a constant current value. Triggering the current limit function is signaled by the Error Flag after 9ms of blanking time period.

UNDER-VOLTAGE LOCKOUT


Under-voltage lockout function (UVLO) keeps the internal power switch from being turned on until the power supply exceeds 2.3V typically, even if the switch is enabled. Upon detection of an input voltage below approximately 2.1V, the power switch is turned off.

THERMAL PROTECTION

Internal thermal sensing circuitry monitors the operating temperature of the device. Upon detection of a temperature in excess of 145°C, the power switch is disabled preventing any damages to the device while a fault condition is reported by the error flag signal. A built-in 30°C hysteresis allows the device to cool down to 130°C before resuming normal operation by turning the switch on. At this time, the error flag signal is cleared.



TEST CIRCUIT

PACKAGE SPECIFICATION

8-PIN NSOIC

- Note: 1. Refer to JEDEC MS-012AA.
 - 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.
 - 3. Dimension "E" does not include inter-lead flash or protrusions.
 - 4. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

S Y	SOP-8			
M B O L	MILLIMETERS			
O L	MIN.	MAX.		
А	1.35	1.75		
Al	0.10	0.25		
В	0.33	0.51		
С	0.19	0.25		
D	4.80	5.00		
Е	3.80	4.00		
e	1.2	7 BSC		
Н	5.80	6.20		
h	0.25	0.50		
L	0.40	1.27		
θ	0°	8"		

REVISION HISTORY

Revision	Date	Description
1.0.0	11/05/2012	Initial release of datasheet

FOR FURTHER ASSISTANCE

Email: customersupport@exar.com

powertechsupport@exar.com

Exar Technical Documentation: http://www.exar.com/TechDoc/default.aspx?

EXAR CORPORATION

HEADQUARTERS AND SALES OFFICES

48720 Kato Road

Fremont, CA 94538 - USA

Tel.: +1 (510) 668-7000

Fax: +1 (510) 668-7030

www.exar.com

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.