

MAXIMUM RATINGS (GND = 0V)

RATING	SYMBOL	VALUE	UNIT
Supply Voltage	VDDH	-0.3 to 4.0	V
	VDD	-0.3 to 4.0	V
	KAPWR	-0.3 to 4.0	V
	VDDSYN	-0.3 to 4.0	V
Input Voltage (JTAG and GPIO)	VIN	-0.3 to 5.8	V
Input Voltage (All other pins)	VIN	-0.3 to 3.3	V
Operating Temperature	T _A	0 to 70° or -40° to 85°	°C
Storage Temperature Range	T _{STG}	-55 to +150	°C

NOTES:

- Functional operating conditions are given in DC Electrical Characteristics (VCC = 3.0 3.6 V). Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.
- 2. **CAUTION**: The JTAG and GPIO input voltages cannot be more than 2.5 V greater than supply voltage, this restriction applies also on "power-on" as well as on normal operation.
- 3. 5 Volt friendly inputs are inputs that tolerate 5 volts for JTAG and GPIO pins.
- 4. If you are using Mask Revision Base #F98S (Revision 0), all pins except EXTAL and CLK4IN are 5V tolerant inputs.

THERMAL CHARACTERISTICS

CHARACTERISTIC	SYMBOL	VALUE	UNIT
Thermal Resistance for BGA	θ_{JC}	~30	°C/W

POWER CONSIDERATIONS

The average chip-junction temperature, T₁, in °C can be obtained from

$$T_{J} = T_{A} + (P_{D} \bullet q_{JA}) \qquad (1)$$

where

T _A =	Ambient Temperature, ∞C
q _{JA} =	Package Thermal Resistance, Junction to Ambient, $\infty C/W$
$P_D =$	P _{INT} + P _{I/O}
P _{INT} =	I _{DD} x V _{DD} , Watts—Chip Internal Power
P _{I/O} =	Power Dissipation on Input and Output Pins-User Determined

For most applications $P_{I/O} < 0.3 \cdot P_{INT}$ and can be neglected. If $P_{I/O}$ is neglected, an approximate relationship between P_D and T_I is:

$$P_{\rm D} = K \prod (T_{\rm J} + 273 \infty C)$$
 (2)

Solving equations (1) and (2) for K gives

$$K = P_{D} \cdot (T_{A} + 273 \times C) + q_{JA} \cdot P_{D}^{2}$$
(3)

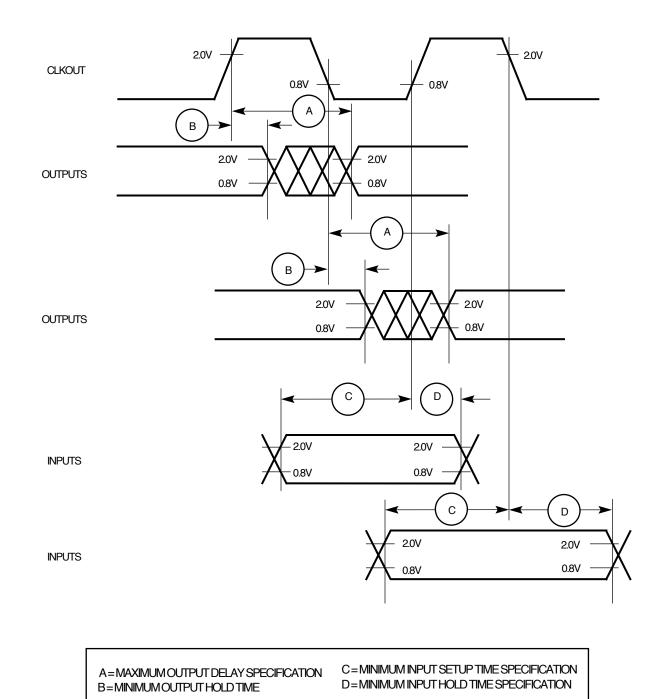
where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring P_p (at equilibrium) for a known T_A . Using this value of K, the values of P_p and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A .

Layout Practices

Each V_{CC} pin on the MPC823 should be provided with a low-impedance path to the board's supply. Each GND pin should be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The V_{CC} power supply should be bypassed to ground using at least four 0.1 μ F bypass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} and GND should be kept to less than half an inch per capacitor lead. A four-layer board that employs two inner layers as V_{CC} and GND planes should be used.

All output pins on the MPC823 have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data busses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.

DC ELECTRICAL CHARACTERISTICS ($V_{CC} = 3.0 - 3.6 V$)


CHARACTERISTIC	SYMBOL	MIN	МАХ	UNIT
Input High Voltage (for JTAG and GPIO)	V _{IH}	2.0	5.5	V
Input High Voltage (all other pins)	V _{IH}	2.0	3.6	V
Input Low Voltage	V _{IL}	GND	0.8	V
EXTAL and EXTCLK Input High Voltage	V _{IHC}	0.7*(V _{CC})	V _{CC} +0.3	V
Input Leakage Current, V _{IN} = 5.5 V	I _{IN}	_	±10	μA
Hi-z (Off State) Leakage Current, V _{IN} = 3.5V	I _{OZ}	_	±10	μA
Signal Low Input Current, V _{IL} = 0.8 V	١ _L		±10	μA
Signal High Input Current, V _{IH} = 2.0 V	I _Н		±10	μA
Output High Voltage, $I_{OH} = -2.0 \text{ mA}$, $V_{DDH} = 3.0 \text{V}$ Except XTAL, XFC, and Open-Drain Pins	V _{OH}	2.4	_	V
Output Low Voltage IOL = 2.0 mA CLKOUT IOL = 3.2 mAAI6:311, TSIZ0/REG, TSIZ1, D(0:31), DP[0:3]/IRQ[3:6], RD/WR, BURST, RSV/IRQ2, IP_B[0:1]/IWP[0:1]/VFLS[0:1], IP_B2/ IOIS16_B/AT2, IP_B3/IWP2/VE2, IP_B4/LWP0/VF0, IP_B5/LWP1/ VF1, IP_B6/DSDI/AT0, IP_B7/PTR/AT3, USBRXD/PA15, RXD2/ PA13, SMRXD2/L1TXDA/PA9, SMTXD2/L1RXDA/PA8, IRQ4/KR/ SPKROUT, TIN1/L1RCLKA/BRGO1/CLK1/PA7, TIN3/TOUT1/ CLK2/PA6, TIN2/L1TCLKA/BRGO2/CLK3/PA5, TIN4/TOUT2/CLK4/ PA4, LCD_A/SPISEL/PB31, SPICLK/PB30, SPIMOSI/PB29, BRG03/SPIMISO/PB28, BRG01/I2CSDA/PB27, BRG02/I2CSCL/ PB26, SMTXD1/PB25, SMRXD1/PB24, SMSYN1/SDACK1/PB23, SMSYN2/SDACK2/PB22, LCD_B/L1ST1/PB19, L1ST2/RTS2/ PB18, LCD_C/L1ST3/PB17, L1ST4/L1RQA/PB16, L1ST5/DREQ1/ PC15, L1ST6/RTS2/DREQ2/PC14, L1ST7/PC13, L1ST8/L1RQA/ PC12, USBRXP/PC11, USBRXN/TGATE1/PC10, CTS2/PC9, TGATE1/CD2/PC8, USBTXP/PC7, USBTXN/PC6, SDACK1/ L1TSYNCA/PC5, L1RSYNCA/PC4, LD8/VD7/PD15, LD7/VD6/ PD14, LD6/VD5/PD13, LD5/VD4/PD12, LD4/VD3/PD11, LD3/VD2/ PD10, LD2/VD1/PD9, LD1/VD0/PD8, FRAME/VSYNC/PD5, LCD_AC/LOE/BLANK/PD6, LD0/FIELD/PD7, LOAD/HSYNC/PD4, SHIFT/CLK/PD3	V _{OL}		0.5	V
$\begin{array}{l} \text{IOL} = 5.3 \text{ mA} \overline{\text{BDIP}}/\overline{\text{GPL}} \overline{\text{B5}}, \overline{\text{BR}}, \overline{\text{BG}}, \overline{\text{FRZ}}/\overline{\text{IRQ6}}, \overline{\text{CS}}[0:5], \overline{\text{CS6}}/\overline{\text{CE1}}, \overline{\text{CS7}}/\overline{\text{CE2}}, \overline{\text{B}}, \overline{\text{WE0}}/\overline{\text{BS}} \overline{\text{AB0}}/\overline{\text{IORD}}, \overline{\text{WE1}}/\overline{\text{BS}} \overline{\text{AB1}}/\overline{\text{IOWR}}, \overline{\text{WE2}}/\overline{\text{BS}} \overline{\text{AB2}}/\overline{\text{PCOE}}, \overline{\text{WE3}}/\overline{\text{BS}} \overline{\text{AB3}}/\overline{\text{PCWE}}, \overline{\text{GPL}} \overline{\text{A0}}/\overline{\text{GPL}} \overline{\text{B0}}, \overline{\text{OE}}/\overline{\text{GPL}} \overline{\text{GPL}} \overline{\text{A0}}/\overline{\text{GPL}} \overline{\text{B1}}, \overline{\text{GPL}} \overline{\text{A1}}/\overline{\text{GPL}} \overline{\text{B1}}, \overline{\text{GPL}} \overline{\text{A2}}/\overline{\text{S2}}/\overline{\text{CS}} \overline{\text{[2:3]}}, \overline{\text{UPWAITA}}/\overline{\text{GPL}} \overline{\text{GPL}} \overline{\text{A4}}, \overline{\text{AS}}, \overline{\text{UPWAITB}}/\overline{\text{GPL}} \overline{\text{B4}}, \overline{\text{GPL}} \overline{\text{A5}}, \overline{\text{ALE}} \overline{\text{B}}/\overline{\text{DSCK}}/\overline{\text{A11}}, \overline{\text{OP2}}/\overline{\text{MODCK1}}/\overline{\text{STS}}, \overline{\text{OP3}}/\overline{\text{MODCK2}}/\overline{\text{DSDO}} \overline{\text{IOL}} = 7.0 \text{ mA} \overline{\text{USBOE}}/\overline{\text{PA14}}, \overline{\text{TXD2}}/\overline{\text{PA12}} \overline{\text{IOL}} = 8.9 \text{ mATS}, \overline{\text{TA}}, \overline{\text{TEA}}, \overline{\text{B1}}, \overline{\text{BB}}, \overline{\text{HRESET}}, \overline{\text{SRESET}} \end{array}$				

NOTE: Input pin voltage specifications are $V_{CC} = +4$ V or 5.8 V, whichever is less. AC timings are based on a 50 pf load.

If you are using Mask Revision Base #F98S, all pins except EXTAL and CLK4IN are 5V tolerant inputs.

AC ELECTRICAL CHARACTERISTICS

EXTERNAL BUS ELECTRICAL CHARACTERISTICS

		251	ЛНz	401	MHz	501	ИНz	
NUM	CHARACTERISTIC	MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
B1	CLKOUT Period	40	—	25	—	20	—	ns
B1a	EXTCLK to CLKOUT Phase Skew (EXTCLK>15MHz and MF \leq 2)	-0.9	0.9	-0.9	0.9	-0.9	0.9	ns
B1b	EXTCLK to CLKOUT Phase Skew (EXTCLK>10MHz and MF \leq 10)	-2.3	2.3	-2.3	2.3	-2.3	2.3	ns
B1c	CLKOUT Phase Jitter (EXTCLK>15MHz and MF≤2)	-0.6	0.6	-0.6	0.6	-0.6	0.6	ns
B1d	CLKOUT Phase Jitter (EXTCLK>10MHz and MF≤10)	-2	2	-2	2	-2	2	ns
B1e	CLKOUT Frequency Jitter (MF<10)	_	0.5	_	0.5	_	0.5	%
B1f	CLKOUT Frequency Jitter (10 <mf<500)< td=""><td>_</td><td>2</td><td>_</td><td>2</td><td>-</td><td>2</td><td>%</td></mf<500)<>	_	2	_	2	-	2	%
B1g	CLKOUT Frequency Jitter (MF>500)	_	3	_	3	_	3	%
B1h	Frequency Jitter on EXTCLK	_	0.5	_	0.5	-	0.5	%
B2	Clock Pulse Width Low	16	_	10	-	8	_	ns
B3	Clock Pulse Width High	16	_	10	_	8	_	ns
B4	CLKOUT Rise Time	_	4	_	4	-	4	ns
B5	CLKOUT Fall Time	_	4	_	4	-	4	ns
B6	N/A (Used on Interactive Spreadsheet)							
B7	CLKOUT to A(6:31), RD/WR, BURST, D(0:31), DP(0:3) Invalid	10	_	5	_	5	_	ns
B7a	CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3), BDIP, PTR Invalid	10	_	5	-	5	_	ns
B7b	CLKOUT to BR, BG, FRZ, VFLS(0:1), VF(0:2), IWP(0:2), LWP(0:1), STS Invalid	10	_	5	_	5	_	ns
B8	CLKOUT to A(6:31), RD/WR, BURST, D(0:31), DP(0:3) Valid	10	19	5	13	5	12	ns
B8a	CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3), BDIP, PTR Valid	10	19	5	13	5	12	ns
B8b	CLKOUT to BR, BG, VFLS(0:1), VF(0:2), IWP(0:2), FRZ, LWP(0:1), STS Valid	10	19	5	13	5	12	ns
B9	CLKOUT t <u>o A(6:31),</u> RD/WR, BURST, D(0:31), DP(0:3), TSIZ(0:1),REG, RSV, AT(0:3), PTR Hi Z	10	19	5	13	5	12	ns
B10	N/A							
B11	CLKOUT to \overline{TS} , \overline{BB} Assertion	10	19	5	12.25	5	12.25	ns
B11a	CLKOUT to \overline{TA} , \overline{BI} Assertion (when driven by the Memory Controller or PCMCIA Interface)	2.5	11	2.5	9.25	2.5	9.25	ns
B12	CLKOUT to \overline{TS} , \overline{BB} Negation	10	19	5	13	5	12	ns
B12a	CLKOUT to \overline{TA} , \overline{BI} Negation (when driven by the Memory Controller or PCMCIA Interface)	2.5	11	2.5	11	2.5	11	ns
B13	CLKOUT to TS, BB Hi Z	10	24	5	21	5	19	ns

Table 1. Bus Operation Timing

Freescale Semiconductor, Inc.

		251	MHz	401	ЛНz	50MHz		
NUM	CHARACTERISTIC	MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
B13a	CLKOUT to TA, BI Hi Z (When Driven by the Memory Controller or PCMCIA Interface)	2.5	15	2.5	15	2.5	16	ns
B14	CLKOUT to TEA Assertion	2.5	11	2.5	11	2.5	10	ns
B15	CLKOUT to TEA Hi Z	2.5	15	2.5	15	2.5	15	ns
B16	TA, BI Valid to CLKOUT (Setup Time)	9.75	_	9.75	_	9.75	_	ns
B16a	TEA, KR, RETRY Valid to CLKOUT (Setup Time)	11	_	10	_	10	_	ns
B16b	BB, BG, BR Valid to CLKOUT (Setup Time)	8.5	_	8.5	_	8.5	_	ns
B17	CLKOUT to TA, TEA, BI , BB, BG, BR Valid (Hold Time)	1	-	1	_	1	-	ns
B17a	CLKOUT to KR, RETRY Valid (Hold Time)	2	_	2	_	2	_	ns
B18	D(0:31), DP(0:3) Valid to CLKOUT Rising Edge (Setup Time)	6	_	6	_	6	_	ns
B19	CLKOUT Rising Edge to D(0:31), DP(0:3) Valid (Hold Time)	2	_	2	_	2	_	ns
B20	D(0:31), DP(0:3) Valid to CLKOUT Falling Edge (Setup Time)	4	_	4	_	4	_	ns
B21	CLKOUT Falling Edge to D(0:31), DP(0:3) Valid (Hold Time)	2	_	2	_	2	_	ns
B22	CLKOUT Rising Edge to \overline{CS} Asserted -GPCM- ACS = 00	10	20	5	13	5	13	ns
B22a	CLKOUT Falling Edge to \overline{CS} Asserted -GPCM- ACS = 10, TRLX = 0	_	10	_	8	_	8	ns
B22b	CLKOUT Falling Edge to \overline{CS} Asserted -GPCM- ACS = 11, TRLX = 0, EBDF = 0	10	20	5	13	5	13	ns
B22c	CLKOUT Falling Edge to \overline{CS} Asserted -GPCM- ACS = 11, TRLX = 0, EBDF = 1	14	25	7	16	7	16	ns
B23	CLKOUT Rising Edge to \overline{CS} Negated -GPCM-Read Access - GPCM-Write Access, ACS=00, TRLX=0, CSNT=0	3	10	2	8	2	8	ns
B24	A(6:31) to \overline{CS} Asserted -GPCM- ACS = 10, TRLX = 0	8	_	3	_	3	_	ns
B24a	A(6:31) to \overline{CS} Asserted -GPCM- ACS = 11, TRLX = 0	18	_	8	_	8	_	ns
B25	CLKOUT Rising Edge to OE, WE(0:3) Asserted	_	11	_	9	_	9	ns
B26	CLKOUT Rising Edge to OE Negated	3	11	2	9	2	9	ns
B27	A(6:31) to \overline{CS} Asserted -GPCM- ACS = 10, TRLX = 1	48	_	23	_	23	_	ns
B27a	A(6:31) to \overline{CS} Asserted -GPCM- ACS = 11, TRLX = 1	58	_	28	_	28	_	ns
B28	CLKOUT Rising Edge to $\overline{WE}(0:3)$ Negated -GPCM-Write Access CSNT = '0'	—	11	_	9	-	9	ns
B28a	CLKOUT Falling Edge to \overline{WE} (0:3) Negated -GPCM-Write Access TRLX = '0', CSNT = '1', EBDF=0	10	20	5	13	5	13	ns
B28b	CLKOUT Falling Edge to \overline{CS} Negated -GPCM-Write Access TRLX = '0', CSNT = '1', ACS = '10' or ACS='11', EBDF = 0	_	20	_	13	_	13	ns

Table 1. Bus Operation Timing (Continued)

		251	MHz	401	MHz	50MHz		
NUM	CHARACTERISTIC	MIN	MAX	MIN	МАХ	MIN	MAX	UNIT
B28c	CLKOUT Falling Edge to \overline{WE} (0:3) Negated -GPCM-Write Access TRLX = '0', CSNT = '1', EBDF=1	14	25	7	16	7	16	ns
B28d	CLKOUT Falling Edge to \overline{CS} Negated -GPCM-Write Access TRLX = '0', CSNT = '1', ACS = '10' or ACS='11', EBDF = 1	_	25	_	16	_	16	ns
B29	WE(0:3) Negated to D(0:31), DP(0:3) Hi Z -GPCM- Write Access, CSNT = '0'	8	_	3	-	3	_	ns
B29a	WE(0:3) Negated to D(0:31), DP(0:3) Hi Z -GPCM- Write Access, TRLX = '0', CSNT = '1', EBDF = 0	18	_	8	_	8	_	ns
B29b	\overline{CS} Negated to D(0:31), DP(0:3) Hi Z -GPCM- Write Access, ACS = '00', TRLX = '0' & CSNT = '0'	8	_	3	_	3	_	ns
B29c	\overline{CS} Negated to D(0:31), DP(0:3) Hi Z -GPCM- Write Access, TRLX = '0', CSNT = '1', ACS = '10' or ACS='11', EBDF = 0	18	_	8	_	8	_	ns
B29d	WE(0:3) Negated to D(0:31), DP(0:3) Hi Z -GPCM- Write Access, TRLX = '1', CSNT = '1', EBDF = 0	58	_	28	-	28	_	ns
B29e	\overline{CS} Negated to D(0:31), DP(0:3) Hi Z -GPCM- Write Access, TRLX = '1', CSNT = '1', ACS = '10' or ACS='11', EBDF = 0	58	_	28	-	28	_	ns
B29f	WE(0:3) Negated to D(0:31), DP(0:3) Hi Z -GPCM- Write Access, TRLX = '0', CSNT = '1', EBDF = 1	12	-	5	-	5	-	ns
B29g	\overline{CS} Negated to D(0:31), DP(0:3) Hi Z -GPCM- Write Access, TRLX = '0', CSNT = '1', ACS = '10' or ACS='11', EBDF = 1	12	_	5	-	5	-	ns
B29h	WE(0:3) Negated to D(0:31), DP(0:3) Hi Z -GPCM- Write Access, TRLX = '1', CSNT = '1', EBDF = 1	52	_	24	_	24	_	ns
B29i	\overline{CS} Negated to D(0:31), DP(0:3) Hi Z -GPCM- Write Access, TRLX = '1', CSNT = '1', ACS = '10' or ACS='11', EBDF =1	52	_	24	_	24	_	ns
B30	\overline{CS} , $\overline{WE}(0:3)$ Negated to A(6:31) invalid -GPCM- Write Access.	8	_	3	_	3	_	
B30a	WE(0:3) Negated to A(6:31) Invalid -GPCM- Write Access, TRLX='0', CSNT = '1', CS Negated to A(6:31) Invalid -GPCM- Write Access, TRLX='0', CSNT = '1', ACS = 10,ACS = ='11', EBDF = 0	18	-	8	_	8	_	ns
B30b	WE(0:3) Negated to A(6:31)Invalid -GPCM- Write Access, TRLX='1', CSNT = '1', CS Negated to A(6:31)Invalid -GPCM- Write Access, TRLX='1', CSNT = '1', ACS = 10,ACS = ='11', EBDF = 0	58	-	28	_	28	-	ns
B30c	WE(0:3) Negated to A(6:31) Invalid -GPCM- Write Access, TRLX='0', CSNT = '1'. CS Negated to A(6:31) Invalid -GPCM- Write Access, TRLX='0', CSNT = '1', ACS = 10, ACS = ='11', EBDF = 1	12	-	4	-	4	-	ns
B30d	WE(0:3) Negated to A(6:31) Invalid -GPCM- Write Access, TRLX='1', CSNT = '1', CS Negated to A(6:31) Invalid -GPCM- Write Access, TRLX='1', CSNT = '1', ACS = 10,ACS = ='11', EBDF = 1	52	-	24	-	24	_	ns
B31	CLKOUT Falling Edge to $\overline{\text{CS}}$ valid as requested by CST4 in the corresponding word of the UPM	1.5	10	1.5	8	1.5	8	ns

Table 1. Bus Operation Timing (Continued)

Freescale Semiconductor, Inc.

		251	MHz	40N	ЛНz	50MHz		
NUM	CHARACTERISTIC	MIN	MAX	MIN	MAX	MIN	МАХ	UNIT
B31a	CLKOUT Falling Edge to \overline{CS} valid as requested by CST1 in the corresponding word of the UPM, EBDF = 0	10	20	5	13	5	13	ns
B31b	CLKOUT Rising Edge to $\overline{\text{CS}}$ valid as requested by CST2 in the corresponding word of the UPM	1.5	10	1.5	8	1.5	8	ns
B31c	CLKOUT Rising Edge to $\overline{\rm CS}$ valid as requested by CST3 in the corresponding word of the UPM	10	20	5	13	5	13	ns
B31d	CLKOUT Falling Edge to \overline{CS} valid as requested by CST1 in the corresponding word of the UPM, EBDF = 1	10	25	5	16	5	16	ns
B32	CLKOUT Falling Edge to $\overline{\text{BS}}$ valid as requested by BST4 in the corresponding word of the UPM	1.5	10	1.5	8	1.5	8	ns
B32a	CLKOUT Falling Edge to $\overline{\text{BS}}$ valid as requested by BST1 in the corresponding word of the UPM, EBDF = 0	10	20	5	13	5	13	ns
B32b	CLKOUT Rising Edge to $\overline{\text{BS}}$ valid as requested by BST2 in the corresponding word of the UPM	1.5	10	1.5	8	1.5	8	ns
B32c	CLKOUT Rising Edge to $\overline{\text{BS}}$ valid as requested by BST3 in the corresponding word of the UPM	10	20	5	13	5	13	ns
B32d	CLKOUT Falling Edge to $\overline{\text{BS}}$ valid as requested by BST1 in the corresponding word of the UPM, EBDF = 1	10	25	5	16	5	16	ns
B33	CLKOUT Falling Edge to $\overline{\text{GPL}}$ valid as requested by GxT4 in the corresponding word of the UPM	1.5	10	1.5	8	1.5	8	ns
B33a	CLKOUT Rising Edge to $\overline{\text{GPL}}$ valid as requested by GxT3 in the corresponding word of the UPM	10	20	5	13	5	13	ns
B34	A(6:31) and D(0:31) to \overline{CS} valid as requested by CST4 in the corresponding word of the UPM	8	-	3	_	3	_	ns
B34a	A(6:31) and D(0:31) to $\overline{\text{CS}}$ valid as requested by CST1 in the corresponding word of the UPM	18	-	8	_	8	_	ns
B34b	A(6:31) and D(0:31) to $\overline{\text{CS}}$ valid as requested by CST2 in the corresponding word of the UPM	28	-	13	_	13	-	ns
B35	A(6:31) and D(0:31) to $\overline{\text{BS}}$ valid as requested by BST4 in the corresponding word of the UPM	8	-	3	_	3	-	ns
B35a	A(6:31) and D(0:31) to $\overline{\text{BS}}$ valid as requested by BST1 in the corresponding word of the UPM	18	-	8	_	8	-	ns
B35b	A(6:31) and D(0:31) to $\overline{\text{BS}}$ valid as requested by BST2 in the corresponding word of the UPM	28	_	13	_	13	_	ns
B36	A(6:31) and D(0:31) to $\overline{\text{GPL}}$ valid as requested by GxT4 in the corresponding word of the UPM	8	_	3	_	3	_	ns
B37	UPWAIT Valid to CLKOUT Falling Edge	6	_	6	_	6	_	ns
B38	CLKOUT Falling Edge to UPWAIT Valid	1	-	1	_	1	-	ns
B39	AS Valid to CLKOUT Rising Edge	9	_	7	_	7	_	ns

Table 1. Bus Operation Timing (Continued)

NIL INA	UM CHARACTERISTIC	25MHz		40MHz		50MHz		
NUM		MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
B40	A(6:31), TSIZ(0:1), RD/WR, BURST, Valid to CLKOUT Rising Edge	9	-	7	_	7	_	ns
B41	TS Valid to CLKOUT Rising Edge (Setup Time)	9	_	7	_	7	_	ns
B42	CLKOUT Rising Edge to \overline{TS} Valid (Hold Time)	2	_	2	_	2	_	ns
B43	AS Negation to Memory Controller Signals Negation	—	13	—	13	_	13	ns

Table 1. Bus Operation Timing (Continued)

NOTES:

- 1. The timing for BR output is relevant when the MPC823 is selected to work with the external bus arbiter. The timing for BG output is relevant when the MPC823 is selected to work with the internal bus arbiter.
- 2. The setup times required for TA, TEA and BI are relevant only when they are supplied by an external device (and not when the memory controller or the PCMCIA interface drive them).
- 3. The timing required for BR input is relevant when the MPC823 is selected to work with the internal bus arbiter. The timing for BG input is relevant when the MPC823 is selected to work with the external bus arbiter.
- 4. The D(0:31) and DP(0:3) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.
- 5. The D(0:31) and DP(0:3) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only under control of the UPM in the memory controller.
- 6. The timing B30 refers to \overline{CS} when ACS = '00' and to $\overline{WE}(0:3)$ when CSNT = '0'.
- 7. The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals.
- 8. The $\overline{\text{AS}}$ signal is considered asynchronous to the CLKOUT signal.

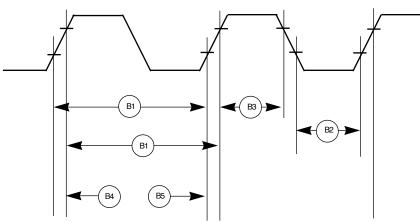
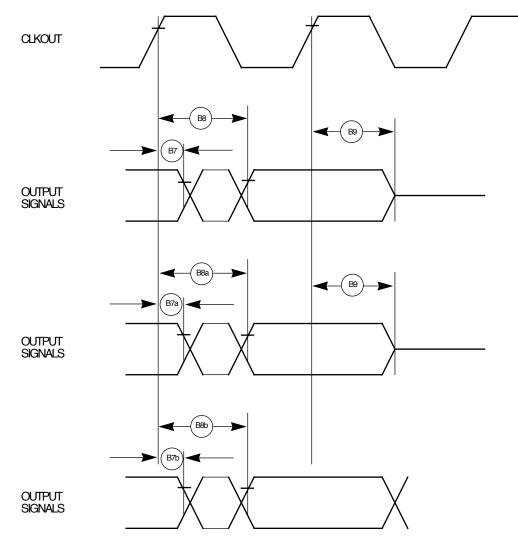



Figure 1. External Clock Timing Diagram

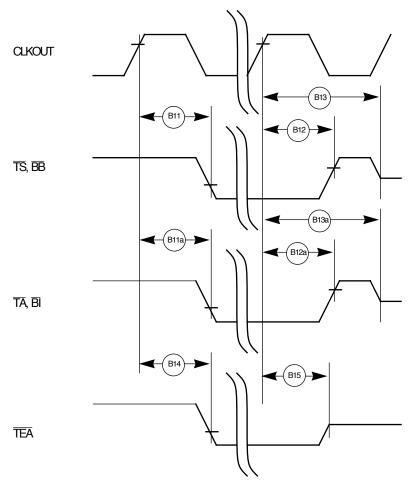
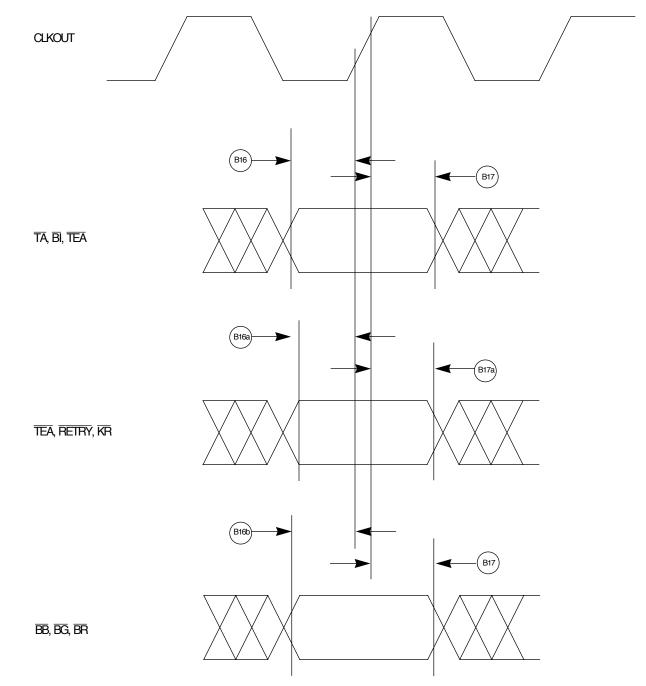



Figure 3. Synchronous Active Pull-Up and Open-Drain Outputs Signals Timing Diagram

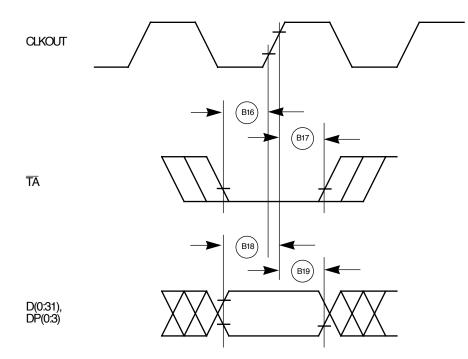


Figure 5. Input Data In Normal Case Timing Diagram

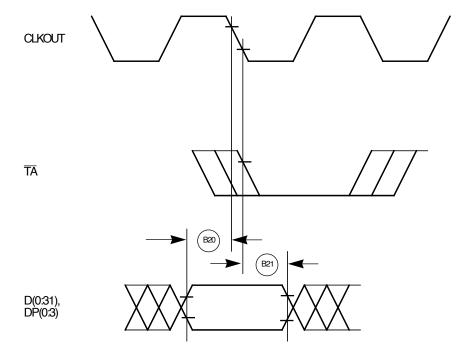


Figure 6. Input Data When Controlled by the UPM Timing Diagram

For More Information On This Product, Go to: www.freescale.com

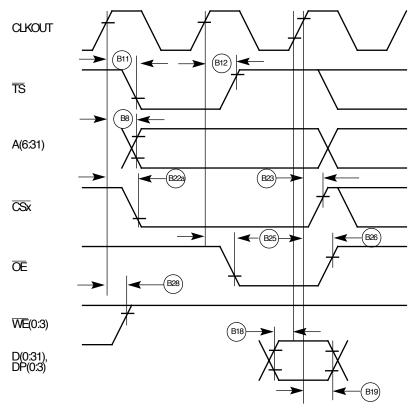


Figure 7. External Bus Read Timing Diagram (GPCM Controlled–ACS = '00')

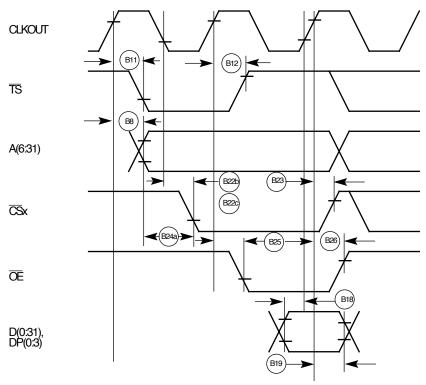


Figure 8. External Bus Read Timing Diagram (GPCM Controlled–TRLX = '0', ACS = '10')

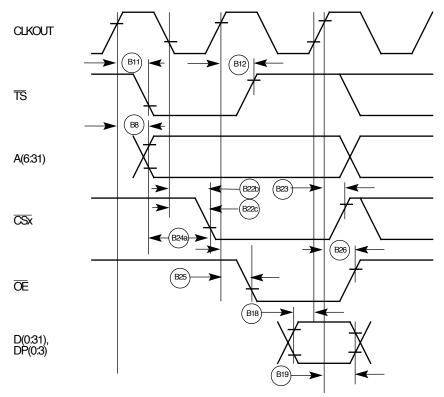
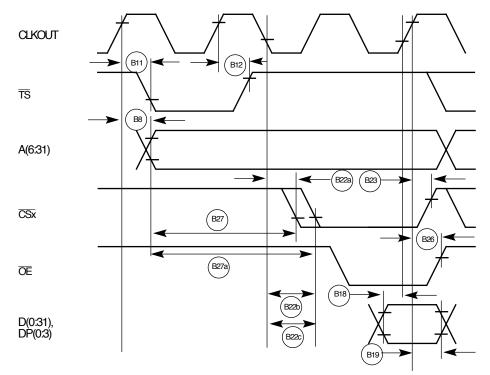
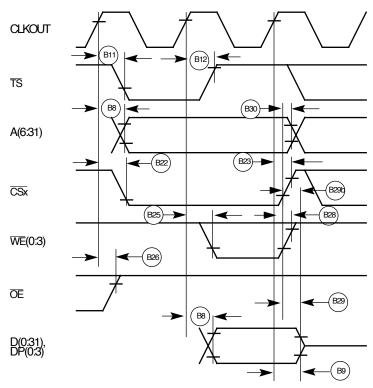
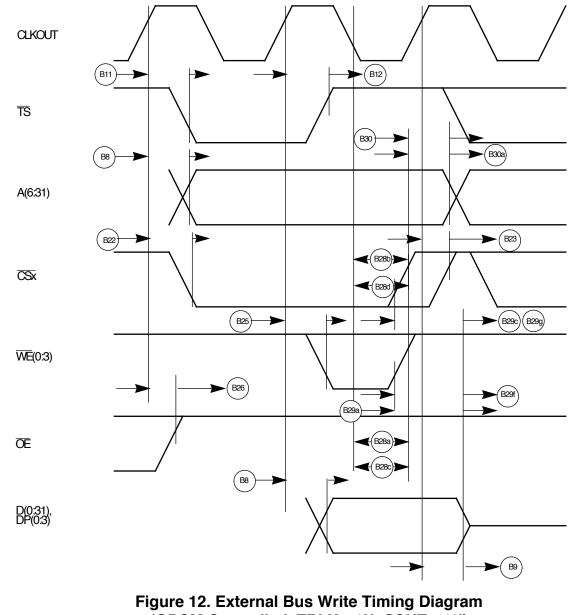
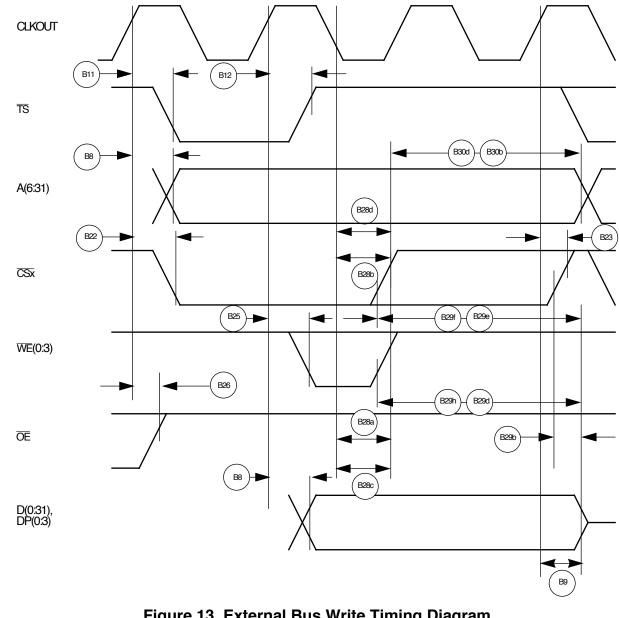
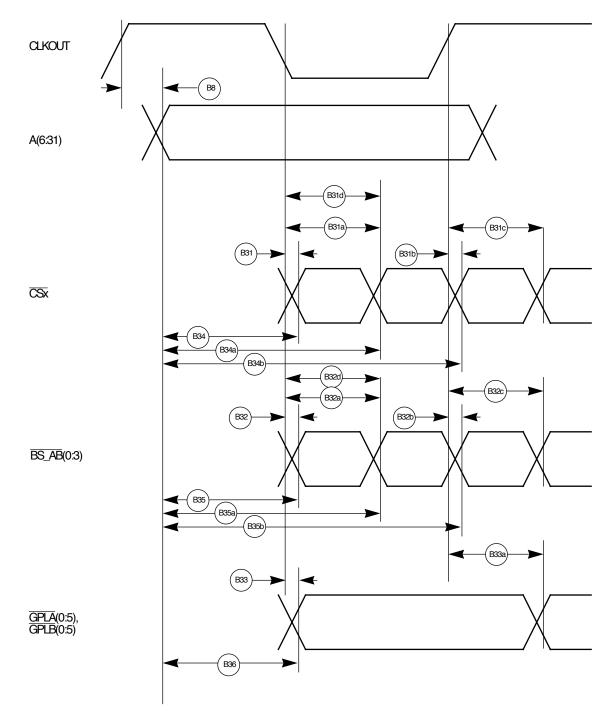


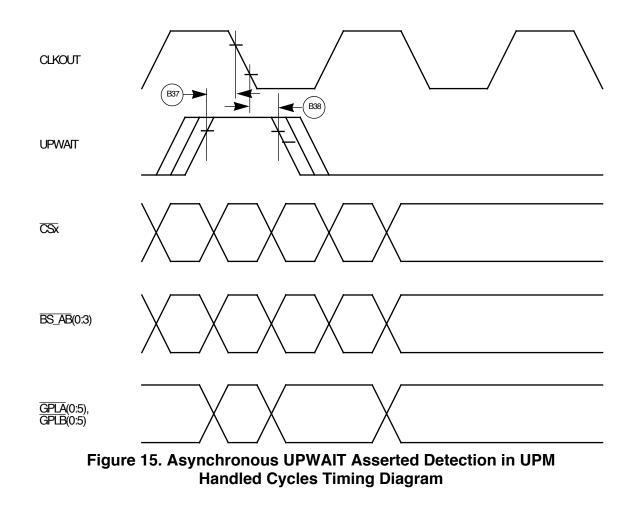
Figure 9. External Bus Read Timing Diagram (GPCM Controlled–TRLX = '0', ACS = '11')

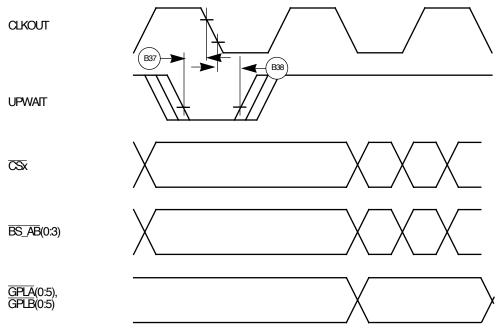



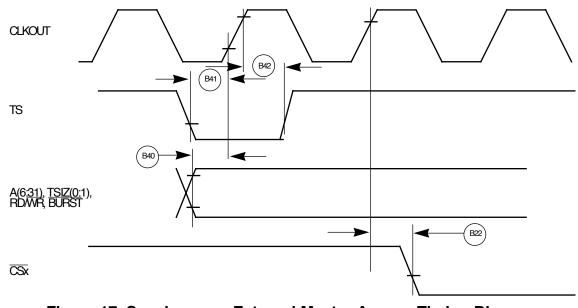

Figure 10. External Bus Read Timing Diagram (GPCM Controlled–TRLX = '1', ACS = '10', ACS = '11')

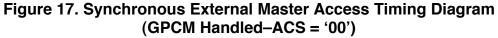
(GPCM Controlled–TRLX = '0', CSNT = '1')


Figure 13. External Bus Write Timing Diagram (GPCM Controlled–TRLX = '1', CSNT = '1')







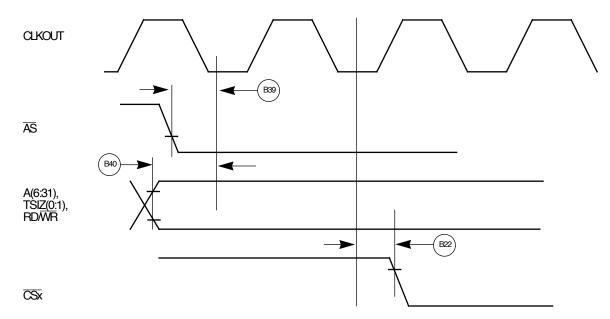
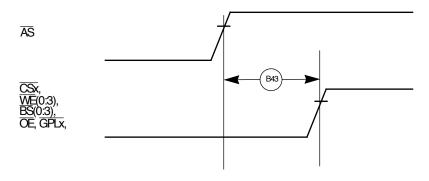



Figure 18. Asynchronous External Master Memory Access Timing Diagram (GPCM Controlled–ACS = '00')

NUM	CHARACTERISTIC	25MHZ		40MHZ		50MHZ		
NUM		MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
139	IRQx valid to CLKOUT rising edge (setup time)	6	-	6/6	_	6/6	_	ns
140	IRQx hold time after CLKOUT	2	-	2/2	_	2/2	_	ns
141	IRQx pulse width low	3	-	3/3	_	3/3	_	ns
142	IRQx pulse width high	3	-	3/3	_	3/3	_	ns
143	IRQx edge to edge time	160	_	80/80	—	80/80	_	ns

Table 2. Interrupt Timing

NOTES:

- 1. The timings I39 and I40 describe the testing conditions under which the IRQ lines are tested when defined as level sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.
- 2. The timings I41 and I42 are specified to allow the correct function of the IRQ lines detection circuitry, and has no direct relation with the total system interrupt latency that the MPC823 can support.

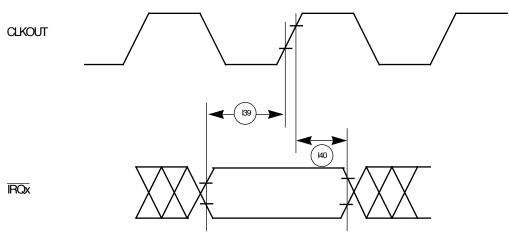
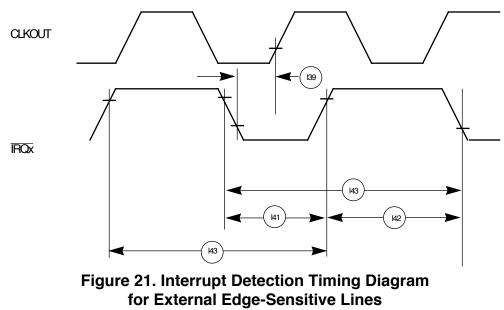



Figure 20. Interrupt Detection Timing Diagram for External Level-Sensitive Lines

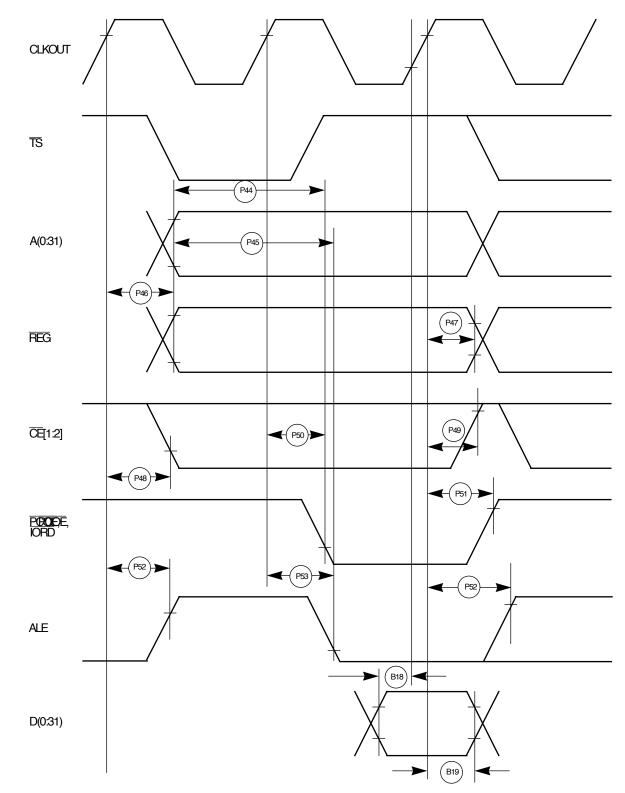

		251	ЛНZ	401	ЛНZ	50MHZ		
NUM	CHARACTERISTIC	MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
P44	A(6:31), REG valid to PCMCIA strobe asserted	28	_	13	_	13	_	ns
P45	A(6:31), REG valid to ALE negation	38	_	18	_	18	_	ns
P46	CLKOUT to REG valid	10	19	5	13	5	13	ns
P47	CLKOUT to REG invalid	11	_	6	_	6	_	ns
P48	CLKOUT to CE1, CE2 asserted	10	19	5	13	5	13	ns
P49	CLKOUT to CE1, CE2 negated	10	19	5	13	5	13	ns
P50	CLKOUT to PCOE, IORD, PCWE, IOWR assert time	_	12	_	11	_	11	ns
P51	CLKOUT to PCOE, IORD, PCWE, IOWR negate time	3	12	2	11	2	11	ns
P52	CLKOUT to ALE assert time	10	19	5	13	5	13	ns
P53	CLKOUT to ALE negate time	_	19	_	13	_	13	ns
P54	PCWE, IOWR negated to D(0:31) invalid	8	_	3	_	3	_	ns
P55	WAIT_B valid to CLKOUT rising edge	8	_	8	_	8	_	ns
P56	CLKOUT rising edge to WAIT_B invalid	2	_	2	—	2	_	ns

Table 3. PCMCIA Timing

NOTES:

- 1. PSST = 1. Otherwise, add PSST times cycle time.
- 2. PSHT = 0. Otherwise, add PSHT times cycle time.
- 3. These synchronous timings define when the WAIT_B signal is detected in order to freeze (or relieve) the PCMCIA current cycle. The WAIT_B assertion will be effective only if it is detected two cycles before the PSL timer expiration.

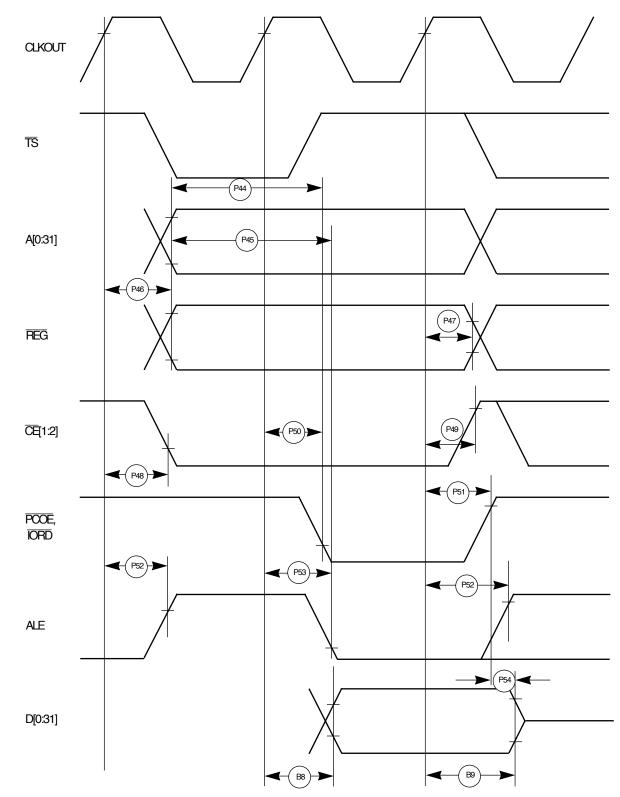


Figure 23. PCMCIA Access Cycles Timing Diagram (External Bus Write)

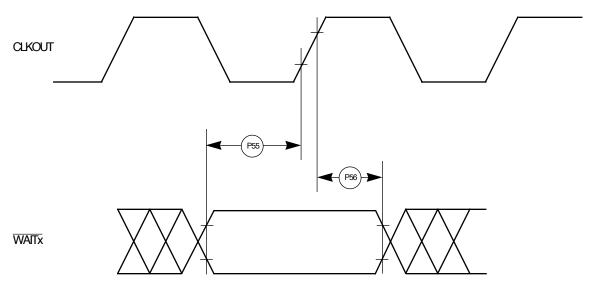


Figure 24. PCMCIA Wait Signals Detection Timing Diagram

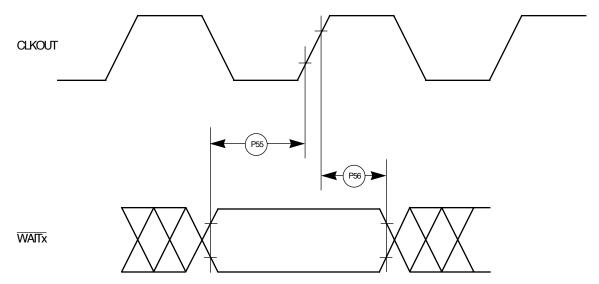


Figure 25. PCMCIA Wait Signals Detection Timing Diagram

NUM	CHARACTERISTIC	25MHZ		40N	ИНZ	50N		
		MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
P57	CLKOUT to OPx Valid	_	25	_	19	—	19	ns
P58	HRESET negated to OPx drive	30	_	18	_	18	_	ns
P59	IP_Bx valid to CLKOUT Rising Edge	6	_	5	_	5	_	ns
P60	CLKOUT Rising Edge to IP_Bx invalid	2	_	1	_	1	_	ns

Table 4. PCMCIA Port Timing

NOTE: *OP2 and OP3 only.

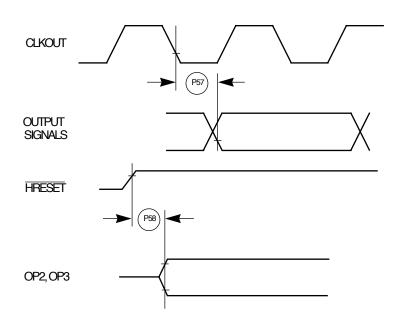


Figure 26. PCMCIA Output Port Timing Diagram

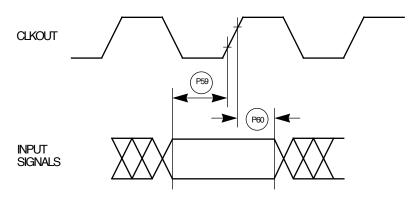


Figure 27. PCMCIA Input Port Timing Diagram

MPC823 ELECTRICAL SPECIFICATIONS

For More Information On This Product, Go to: www.freescale.com

NUM	CHARACTERISTIC	25MHZ		40MHZ		50MHZ		
		MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
D61	DSCK cycle time	120	_	60	_	60	_	ns
D62	DSCK clock pulse width	50	_	25	_	25	_	ns
D63	DSCK rise and fall times	0	3	0	3	0	3	ns
D64	DSDI input data setup time	8	_	8	_	8	_	ns
D65	DSDI data hold time	5	_	5	_	5	_	ns
D66	DSCK low to DSDO data valid	0	15	0	15	0	15	ns
D67	DSCK low to DSDO invalid	0	2	0	2	0	2	ns

Table 5. Debug Port Timing

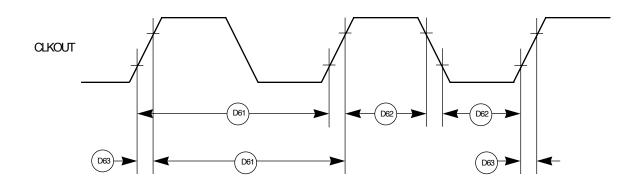
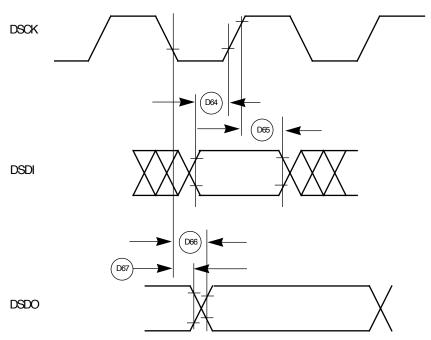
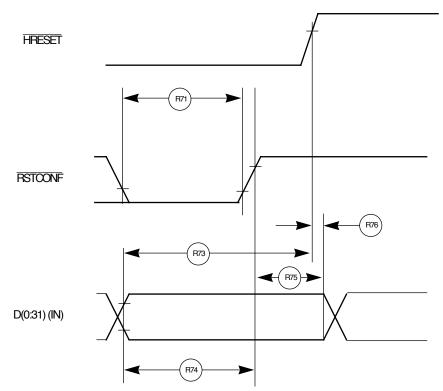


Figure 28. Debug Port Clock Input Timing Diagram




Figure 29. Debug Port Timing Diagram

NUM	CHARACTERISTIC	25MHZ		40MHZ		50MHZ		
		MIN	MAX	MIN	МАХ	MIN	МАХ	UNIT
R68	CLKOUT to HRESET high impedance	_	20	_	20	_	20	ns
R69	CLKOUT to SRESET high impedance	_	20	_	20	_	20	ns
R70	RSTCONF pulse width	680	_	425	_	340	_	ns
R71	N/A							
R72	Configuration data to HRESET rising edge setup time	650	_	425	_	350	_	ns
R73	Configuration data to RSTCONF rising edge setup time	650	_	425	_	350	_	ns
R74	Configuration data hold time after RSTCONF negation	0	_	0	_	0	_	ns
R75	Configuration data hold time after HRESET negation	0	_	0	_	0	_	ns
R76	HRESET and RSTCONF asserted to data out drive	-	25	_	25	_	25	ns
R77	RSTCONF negated to data out high impedance	_	25	_	25	_	25	ns
R78	<u>CLKOUT</u> of last rising edge before chip three-states HRESET to data out high impedance	-	25	_	25	_	25	ns
R79	DSDI and DSCK setup	120	_	75	_	60	_	ns
R80	DSDI and DSCK hold time	0	_	0	_	0	_	ns
R81	SRESET negated to CLKOUT rising edge for DSDI and DSCK sample	320	_	200	_	160	_	ns

Table 6. Reset Timing

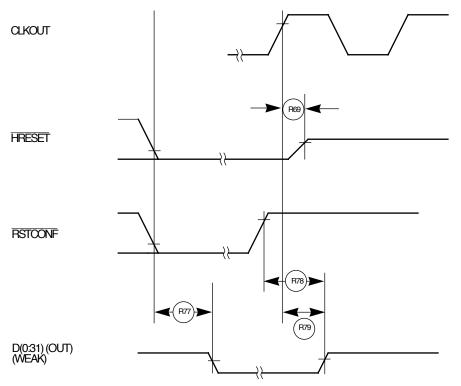


Figure 31. Reset Timing Diagram–MPC823 Data Bus Weak Drive During Configuration

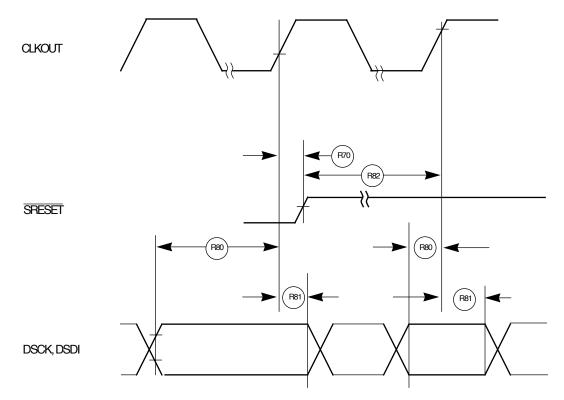


Figure 32. Reset Timing Diagram–Debug Port Configuration

Freescale Semiconductor, Inc.

NUM	CHARACTERISTIC	25MHZ		40MHZ		50MHZ		
		MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
J82	TCK cycle time	100	-	100	_	100	_	ns
J83	TCK clock pulse width measured at 1.5V	40	-	40	_	40	_	ns
J84	TCK rise and fall times	0	10	0	10	0	10	ns
J85	TMS, TDI data setup time	5	_	5	_	5	_	ns
J86	TMS, TDI data hold time	25	_	25	_	25	_	ns
J87	TCK low to TDO data valid	_	27	_	27	_	27	ns
J88	TCK low to TDO data invalid	0	_	0	_	0	_	ns
J89	TCK low to TDO high impedance	_	20	_	20	_	20	ns
J90	TRST assert time	100	_	100	_	100	_	ns
J91	TRST setup time to TCK low	40	_	40	_	40	_	ns
J92	TCK falling edge to output valid	_	50	_	50	_	50	ns
J93	TCK falling edge to ouput valid out of high impedance	_	50	_	50	_	50	ns
J94	TCK falling edge to output high impedance	_	50	_	50	_	50	ns
J95	Boundary scan input valid to TCK rising edge	50	_	50	_	50	_	ns
J96	TCK rising edge to boundary scan input invalid	50	_	50	_	50	_	ns

Table 7. JTAG Timing

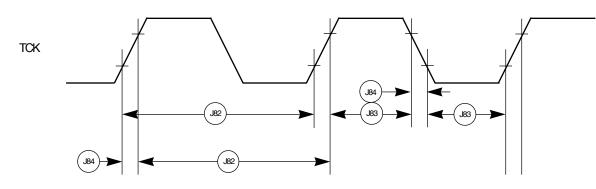
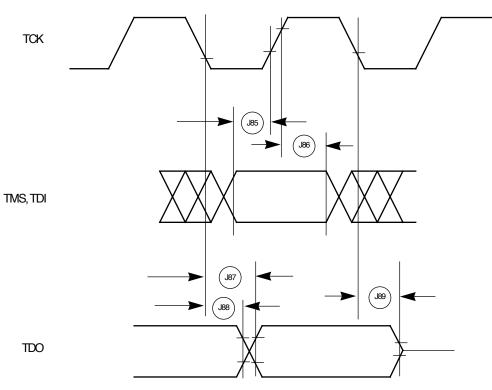




Figure 33. JTAG Test Clock Input Timing Diagram

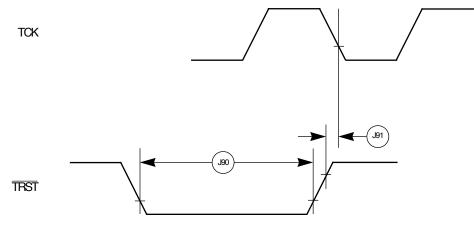
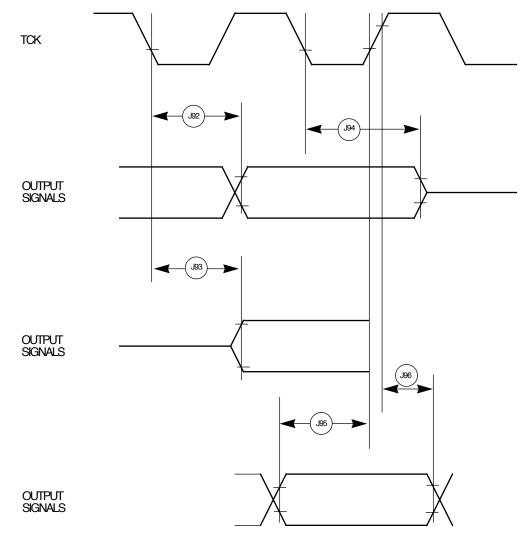



Figure 35. JTAG–TRST Timing Diagram

COMMUNICATION ELECTRICAL CHARACTERISTICS

			25MHZ		40MHZ		50MHZ	
NUM	CHARACTERISTIC	MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
29	Data-in setup time to clock high	20	_	15	_	15	_	ns
30	Data-in hold time from clock high	10	_	7.5	_	7.5	_	ns
31	Clock high to data-out valid (CPU writes data, control, or direction)	—	25	_	25	—	25	ns

Table 8. Parallel Input/Output Port Timing

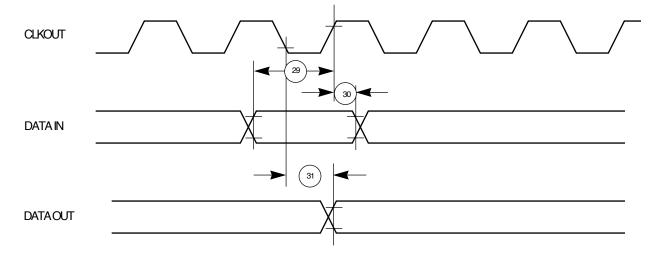


Figure 37. Parallel Input/Output Data-In/Data-Out Timing Diagram

		251	ИНZ	40N	40MHZ		50MHZ	
NUM	CHARACTERISTIC	MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
40	DREQ setup time to clock high	12	_	7	—	7	_	nsec
41	DREQ hold time from clock high	5	_	3	_	3	_	nsec
42	SDACK assertion delay from clock high	_	20	_	12	_	12	nsec
43	SDACK negation delay from clock low	_	20	_	12	_	12	nsec
44	SDACK negation delay from TA low	_	25	_	20	_	20	nsec
45	SDACK negation delay from clock high	_	20	_	15	_	15	nsec
46	TA assertion to falling edge of the clock setup time	12	—	7	—	7	—	nsec

Table 9. IDMA Timing

NOTE: Applies to external \overline{TA} .

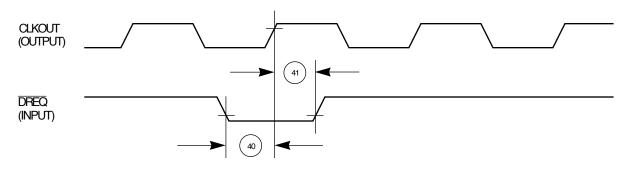


Figure 38. IDMA External Requests Timing Diagram

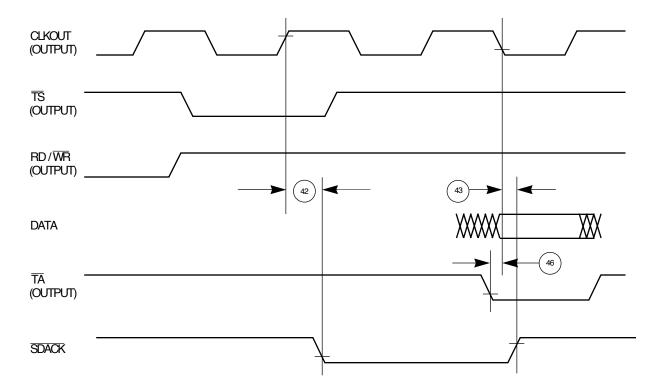


Figure 39. SDACK Timing Diagram–Peripheral Write, TA Sampled Low at the Falling Edge of the Clock

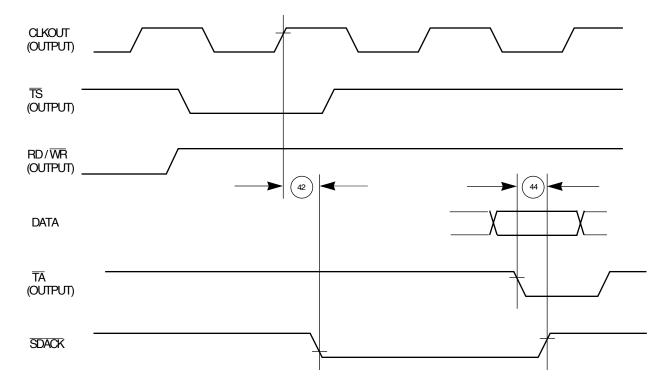


Figure 40. SDACK Timing Diagram–Peripheral Write, TA Sampled High at the Falling Edge of the Clock

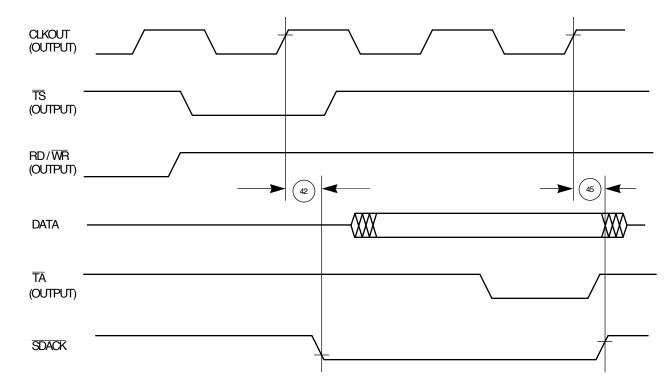


Figure 41. SDACK Timing Diagram–Peripheral Read

		CHARACTERISTIC 25MHZ		40MHZ		50MHZ		UNIT
NUM	CHARACTERISTIC	MIN	МАХ	MIN	МАХ	MIN	МАХ	
50	BRGO rise and fall times	—	10	—	10	_	10	ns
51	BRGO duty cycle	40	60	40	60	40	60	%
52	BRGO cycle	40	_	40	-	40	_	ns

Table 10. Baud Rate Generator Timing

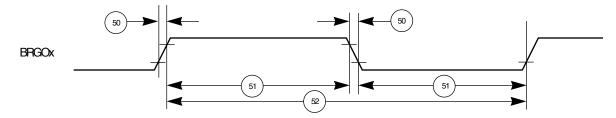


Figure 42. Baud Rate Generator Timing Diagram

		25MHZ		40MHZ		50MHZ		
NUM	CHARACTERISTIC	MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
61	TIN/TGATE rise and fall times	12	10	7	10	7	10	ns
62	TIN/TGATE low time	5	1	3	1	3	1	clk
63	TIN/TGATE high time	_	20	_	12	_	12	clk
64	TIN/TGATE cycle time	_	20	_	12	_	12	clk
65	CLKO low to TOUT valid	_	25	-	20	_	20	ns

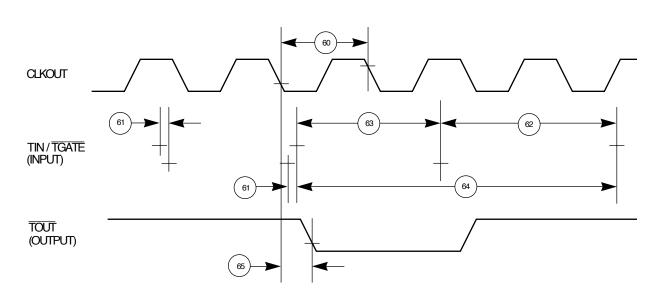


Figure 43. General-Purpose Timers Timing Diagram

Semiconductor, Inc.

reescale

Freescale Semiconductor, Inc.

		25N	ЛНZ	40N	ЛНZ	50N	ЛНZ	
NUM	CHARACTERISTIC	MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
70	L1RCLK and L1TCLK frequency (DSC=0) ^{1,3}	—	10	_	10	_	10	MHz
71	L1RCLK and L1TCLK width low (DSC=0) ³	P+10	_	P+10	_	P+10	_	ns
71a	L1RCLK and L1TCLK width high (DSC=0) ²	P+10	_	P+10	_	P+10	_	ns
72	L1TXD, L1ST(1–8), L1RQ, L1CLKO rise and fall times	-	15	_	15	_	15	ns
73	L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)	20	_	20	_	20	_	ns
74	L1CLK edge to L1RSYNC and L1TSYNC invalid (SYNC hold time)	35	_	35	_	35	-	ns
75	L1RSYNC and L1TSYNC rise and fall times	l	15	—	15	—	15	ns
76	L1RXD valid to L1CLK edge (L1RXD setup time)	42	—	42	—	42		ns
77	L1CLK edge to L1RXD invalid (L1RXD hold time)	35	_	35	_	35	-	ns
78	L1CLK edge to L1ST(1-8) valid	10	45	10	45	10	45	ns
78a	L1SYNC valid to L1ST(1–8) valid ⁴	10	45	10	45	10	45	ns
79	L1CLK edge to L1ST(1-8) invalid	10	45	10	45	10	45	ns
80	L1CLK edge to L1TXD valid	10	65	10	65	10	65	ns
80a	L1TSYNC valid to L1TXD valid ⁴	10	65	10	65	10	65	ns
81	L1CLK edge to L1TXD high impedance	0	42	0	42	0	42	ns
82	L1RCLK and L1TCLK frequency (DSC=1)	1	12.5	_	16	_	16	MHz
83	L1RCLK and L1TCLK width low (DSC=1)	P+10	_	P+10	_	P+10	_	ns
83a	L1RCLK and L1TCLK width high (DSC=1) ²	P+10	_	P+10	_	P+10	_	ns
84	L1CLK edge to L1CLKO valid (DSC=1)	_	30	_	30	_	30	ns
85	L1RQ valid before falling edge of L1TSYNC ³	1	_	1	_	1	_	L1TCLK
86	L1GR setup time ³	42	_	42	_	42	_	ns
87	L1GR hold time ³	42	_	42	_	42	_	ns
88	L1CLK edge to L1SYNC valid (FSD = 00, CNT = 0000, BYT = 0, DSC=0)	—	0	_	0	_	0	ns

Table 12. Serial Interface Timing

NOTES:

- 1. The ratio SyncCLK/L1RCLK must be greater than 2.5/1.
- 2. Where P=1/CLKO1. For a 25MHz CLKO1 rate, P=40ns.
- 3. These electrical specifications are only valid for IDL mode.
- 4. The strobes and TXD2 on the first bit of the frame becomes valid after L1CLK edge or L1SYNC, whichever is later.

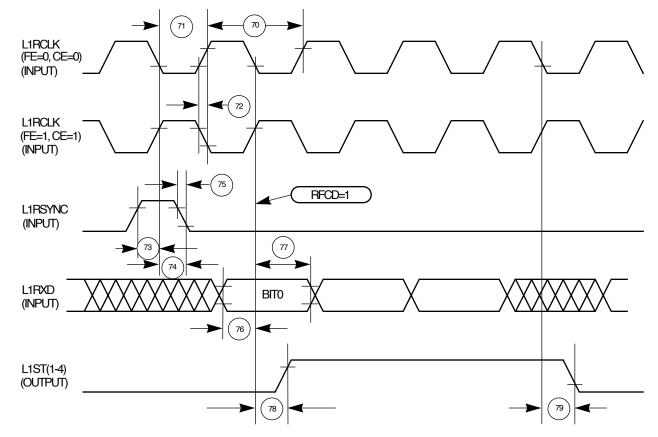


Figure 44. Serial Interface Receive Timing Diagram With Normal Clocking (DSC =0)

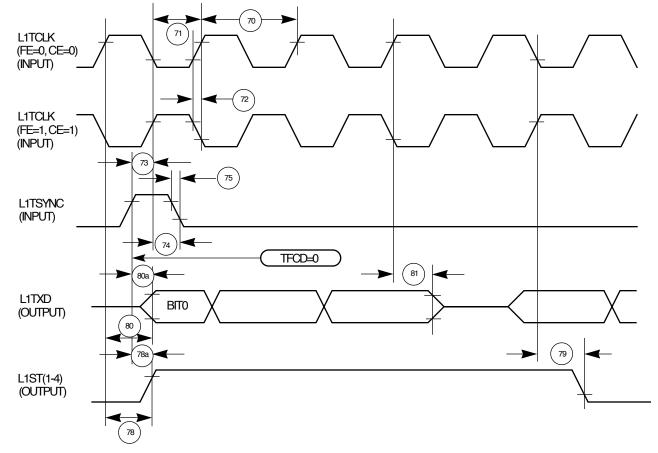


Figure 45. Serial Interface Transmit Timing Diagram

NUM	CHARACTERISTIC	25N	IHZ	40N	IHZ	50N	IHZ	
NOM	CHARACTERISTIC	MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
100	RCLK1 and TCLK1 width high ¹	CLKOUT F	_	CLKOUT F	_	CLKOUT F	_	MHz
101	RCLK1 and TCLK1 width low	CLKOUT +5ns	—	CLKOUT +5ns	_	CLKOUT +5ns	_	ns
102	RCLK1 and TCLK1 rise and fall times	-	15	-	15	_	15	ns
103	TXD2 active delay (from TCLK1 falling edge)	0	50	0	50	0	50	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0	50	0	50	0	50	ns
105	CTS1 setup time to TCLK1 rising edge	5	_	5	—	5	_	ns
106	RXD2 setup time to RCLK1 rising edge	5	_	5	—	5	_	ns
107	RXD2 hold time from RCLK1 rising edge2	5	_	5	_	5	_	ns
108	CD1 setup time to RCLK1 rising edge	5	_	5	_	5	_	ns

Table 13. Serial Communication Controller in NMSI External Timing

NOTES:

1. The ratio SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.

2. Applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as external sync signals.

NUM		25N	ИНZ	401	ЛНZ	50N	ЛНZ	
NUM	CHARACTERISTIC	MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
100	RCLK1 and TCLK1 frequency ¹	0	8.3	0	13	0	16	MHz
102	RCLK1 and TCLK1 rise and all times	_	_	_	_	_	_	ns
103	TXD2 active delay (from TCLK1 falling edge)	0	30	0	30	0	30	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0	30	0	30	0	30	ns
105	CTS1 setup time to TCLK1 rising edge	40	_	40	_	40	_	ns
106	RXD2 setup time to RCLK1 rising edge	40	_	40	_	40	_	ns
107	RXD2 hold time from RCLK1 rising edge ²	0	_	0	_	0	_	ns
108	CD1 setup time to RCLK1 rising edge	40	_	40	_	40	_	ns

Table 14. Serial Communication Controller in NMSI Internal Timing

NOTES:

- 1. The ratio SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 3/1.
- 2. Applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as external sync signals.

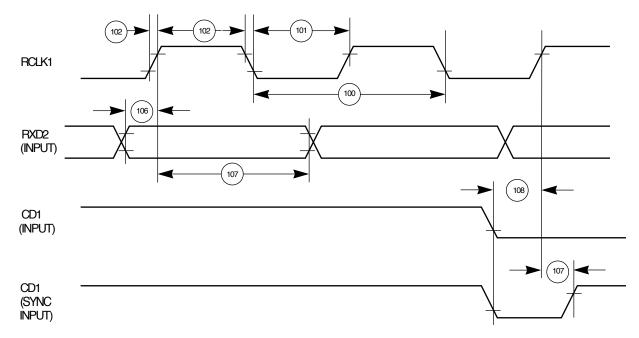


Figure 46. SCC NMSI Receive Timing Diagram

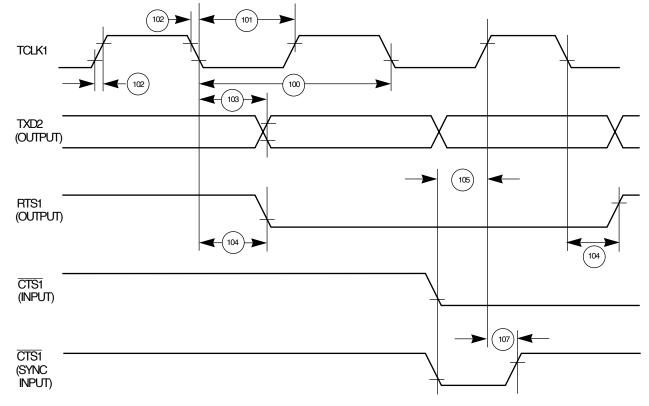


Figure 47. SCC NMSI Transmit Timing Diagram

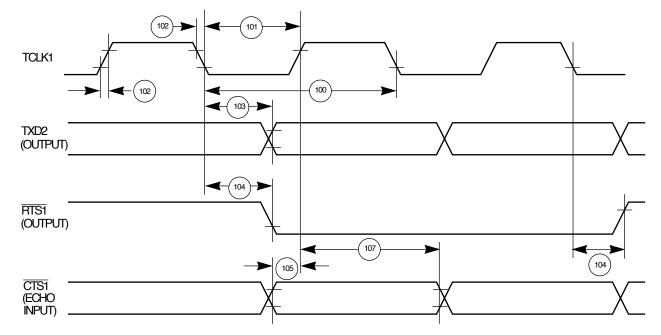


Figure 48. HDLC Bus Timing Diagram

		25N	ЛНZ	401	ЛНZ	50N	ИНZ	
NUM	CHARACTERISTIC	MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
120	CLSN (CTS2) width high	40	_	40	_	40	_	ns
121	RCLK1 rise and fall times	_	15	_	15	_	15	ns
122	RCLK1 width low	40	_	40	-	40	_	ns
123	RCLK1 clock period ¹	80	120	80	120	80	120	ns
124	RXD2 setup time	20	_	20	_	20	_	ns
125	RXD2 hold time	5	_	5	_	5	_	ns
126	RENA (CD2) active delay (from RCLK1 rising edge of the last data bit)	10	_	10	_	10	-	ns
127	RENA (CD2) width low	100	—	100	—	100	—	ns
128	TCLK1 rise and fall times	_	15	_	15	_	15	ns
129	TCLK1 width low	40	—	40	—	40	—	ns
130	TCLK1 clock period ¹	99	101	99	101	99	101	ns
131	TXD2 active delay (from TCLK1 rising edge)	10	50	10	50	10	50	ns
132	TXD2 inactive delay (from TCLK1 rising edge)	10	50	10	50	10	50	ns
133	TENA (RTS2) active delay (from TCLK1 rising edge)	10	50	10	50	10	50	ns
134	TENA (RTS2) inactive delay (from TCLK1 rising edge)	10	50	10	50	10	50	ns
135	N/A							
136	N/A							
137	N/A							
138	CLKx low to SDACK asserted ²	_	20	—	20	_	20	ns
139	CLKx low to SDACK negated ³	_	20	_	20	_	20	ns

Table 15. Ethernet Timing

NOTES:

- 1. The ratio SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2/1.
- 2. SDACK is asserted when the SDMA writes the incoming frame DA into memory.

Freescale Semiconductor, Inc.

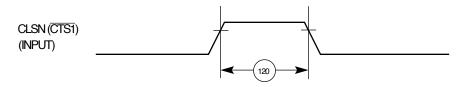


Figure 49. Ethernet Collision Timing Diagram

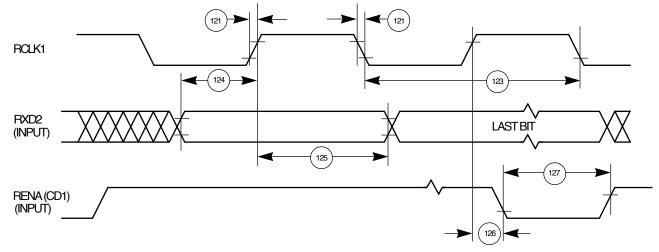
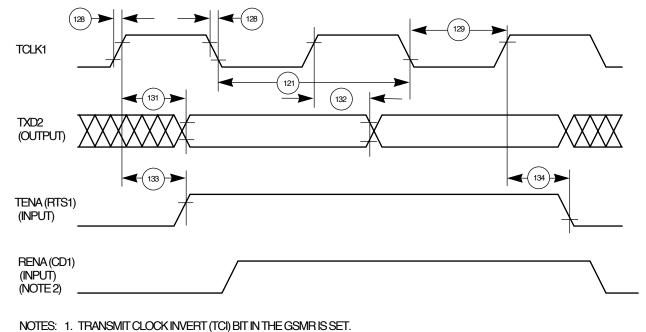



Figure 50. Ethernet Receive Timing Diagram

 IF RENA IS DEASSERTED BEFORE TENA, OR RENA IS NOT ASSERTED AT ALL DURING TRANSMIT, THEN THE CSL BIT IS SET IN THE BUFFER DESCRIPTOR AT THE END OF FRAME TRANSMISSION.

Figure 51. Ethernet Transmit Timing Diagram

		25	25MHZ		40MHZ		50MHZ	
NUM	CHARACTERISTIC	MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
160	Master cycle time	4	1,024	4	1,024	4	1,024	tcyc
161	Master clock (SCK) high or low time	2	512	2	512	2	512	tcyc
162	Master data setup time (inputs)	50	_	50	_	50	_	ns
163	Master data hold time (inputs)	0	_	0	_	0	_	ns
164	Master data valid (after SCK edge)	_	20	_	20	_	20	ns
165	Master data hold time (outputs)	0	_	0	_	0	_	ns
166	Rise time output	_	15	_	15	_	15	ns
167	Fall time output	_	15	_	15	_	15	ns

Table 16. Serial Peripheral Interface Master Timing

NOTE: The ratio SyncCLK/SMCLK must be greater than or equal to 2/1.

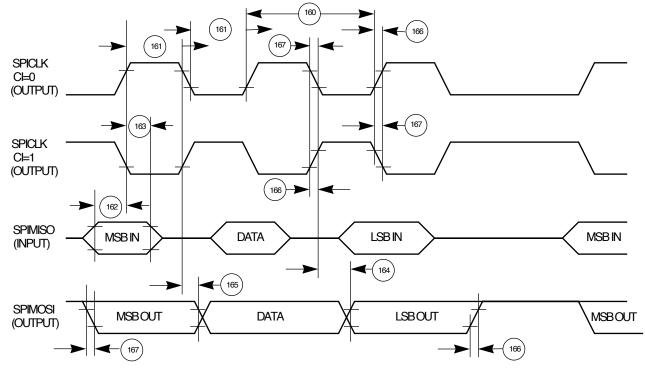


Figure 52. SPI Master (CP=0) Timing Diagram

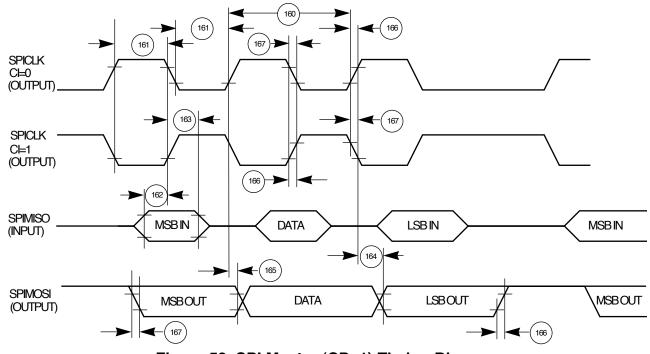


Figure 53. SPI Master (CP=1) Timing Diagram

		-				-		
		25N	ЛНZ	40N	ЛНZ	50N	ЛНZ	
NUM	CHARACTERISTIC	MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
170	Slave cycle time	2	_	2	_	2	—	tcyc
171	Slave enable lead time	15	_	15	_	15	_	ns
172	Slave enable lag time	15	_	15	_	15	_	ns
173	Slave clock (SPICLK) high or low time	1	_	1	_	1	_	tcyc
174	Slave sequential transfer delay (does not require deselect)	1	_	1	_	1	_	tcyc
175	Slave data setup time (inputs)	20	_	20	_	20	_	ns
176	Slave data hold time (inputs)	20	_	20	_	20	_	ns
177	Slave access time	_	50	_	50	_	50	ns
178	Slave SPI MISO disable time	_	50	_	50	_	50	ns
179	Slave data valid (after SPICLK edge)	_	50	_	50	_	50	ns
180	Slave data hold time (outputs)	0	_	0	_	0	_	ns
181	Rise time (input)	_	15	_	15	_	15	ns
182	Fall time (input)	_	15	_	15	_	15	ns

Table 17. Serial Peripheral Interface Slave Timing

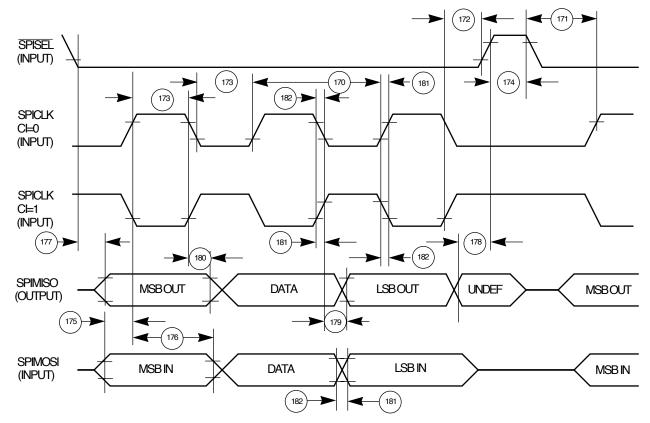


Figure 54. SPI Slave (CP=0) Timing Diagram

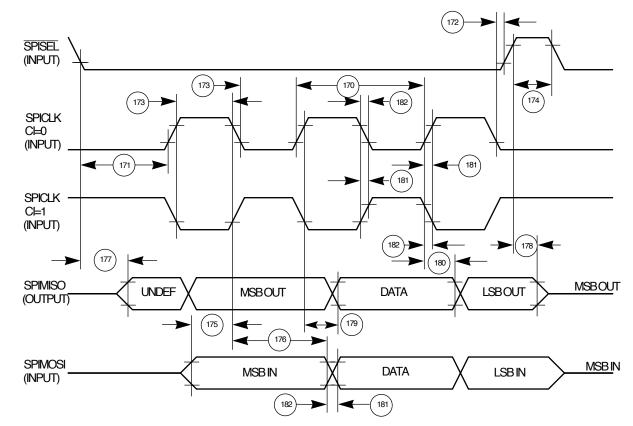


Figure 55. SPI Slave (CP=1) Timing Diagram

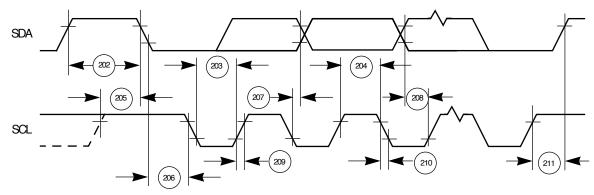
		251	ИНZ	40N	ЛНZ	50N	ИНZ	
NUM	CHARACTERISTIC	MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
200	SCL clock frequency (slave)	0	100	0	100	0	100	kHz
200	SCL clock frequency (master)	1.5	100	1.5	100	1.5	100	kHz
202	Bus free time between transmissions	4.7	—	4.7	_	4.7	-	μS
203	Low period of SCL	4.7	—	4.7	_	4.7	-	μS
204	High period of SCL	4.0	—	4.0	_	4.0	-	μS
205	Start condition setup time	4.7	—	4.7	_	4.7	-	μS
206	Start condition hold time	4.0	—	4.0	_	4.0	-	μS
207	Data hold time	0	—	0	_	0	-	μS
208	Data setup time	250	_	250	_	250	_	ns
209	SDL/SCL rise time	_	1	_	1	_	1	μS
210	SDL/SCL fall time	_	300	_	300	_	300	ns
211	STOP condition setup time	4.7	_	4.7	_	4.7	_	μS

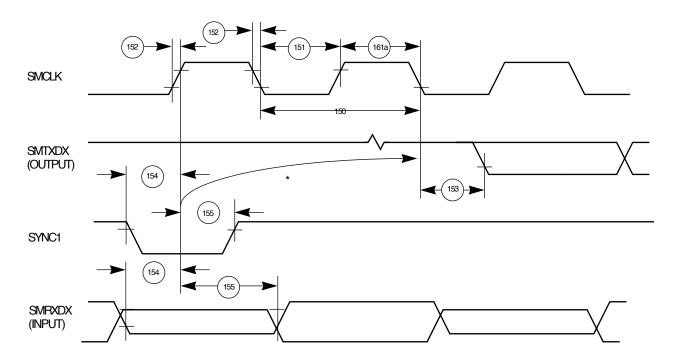
Table 18	. I ² C Timing-	-SCL < 100 kHz
----------	----------------------------	----------------

NOTE: SCL frequency is given by SCL = BRGCLK_frequency/((BRG register + 3) * pre_scaler * 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater than or equal to 4/1.

NUM	CHARACTERISTIC	MINIMUM	MAXIMUM	UNIT
200	SCL clock frequency (slave)	0	BRGCLK/48	Hz
200	SCL clock frequency (master)	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions	1/(2.2 * fSCL)	_	sec
203	Low period of SCL	1/(2.2 * fSCL)	_	sec
204	High period of SCL	1/(2.2 * fSCL)	_	sec
205	Start condition setup time	1/(2.2 * fSCL)	_	sec
206	Start condition hold time	1/(2.2 * fSCL)	_	sec
207	Data hold time	0	_	sec
208	Data setup time	1/(40 * fSCL)	_	sec
209	SDL/SCL rise time	_	1/(10 * fSCL)	sec
210	SDL/SCL fall time	_	1/(33 * fSCL)	sec
211	Stop condition setup time	1/(2.2 * fSCL)	_	sec

Table 19. I²C Timing—SCL > 100 kHz




Figure 56. I²C Bus Timing Diagram

NUM	CHARACTERISTIC	25MHZ		40MHZ		50MHZ		
		MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
150	CLK1 clock period	100	_	100	_	100	_	ns
151	CLK1 width low	50	_	50	_	50	_	ns
151A	CLK1 width high	50	_	50	_	50	_	ns
152	CLK1 rise and fall times	_	15	_	15	_	15	ns
153	SMTXDx active delay (from CLK1 falling edge)	10	50	10	50	10	50	ns
154	SMRXDx/SYNC1 setup time	20	_	20	_	20	_	ns
155	SMRXDx/SYNC1 hold time	5	_	5	_	5	_	ns

Table 20. Serial Management Controller Timing

NOTE: The ratio SyncCLK/SMCLK must be greater than or equal to 2/1.

NOTE: * THIS DELAY IS EQUAL TO AN INTEGER NUMBER OF "CHARACTER LENGTH" CLOCKS.

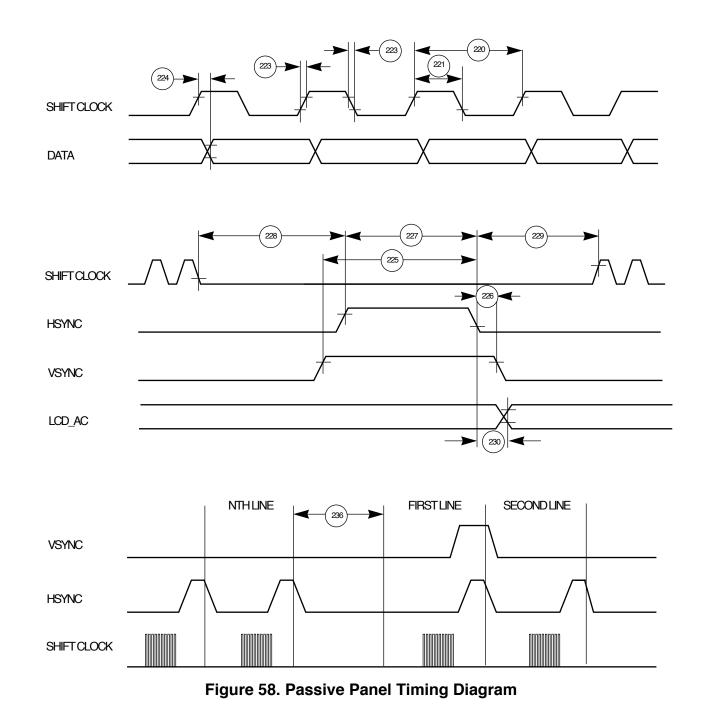
NUM	CHARACTERISTIC	25MHZ		40MHZ		50MHZ		
		MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
220	Shift clock cycle time	40	_	40	_	40	_	nsec
221	Shift clock high time	20	_	20	_	20	_	nsec
223	CLOCK/HSYNC/VSYNC/OE rise and fall times	_	10	_	10	_	10	nsec
224	Data valid delay from shift clock high	_	15	—	15	_	15	nsec
225	VSYNC to HSYNC setup time ¹	5	_	5	_	5	_	Т
226	VSYNC hold time	1	_	1	_	1	_	Т
227	HSYNC pulse width	4	_	4	_	4	_	Т
228	Time from clock falling edge to HSYNC rising edge	4.5	_	4.5	_	4.5	_	Т
229	Time from HSYNC falling edge to clock rising edge ²	4	_	4	_	4	_	Т
230	AC active delay	_	25	_	25	_	25	nsec
231	VSYNC pulse width (TFT)	1	16	1	16	1	16	Line
232	HSYNC to $\overline{\text{OE}}$ delay ³	4	_	4	_	4	_	Т
233	OE to HSYNC delay	4	_	4	_	4	_	т
234	VSYNC to OE delay (TFT)	0	1,023	0	1,023	0	1,023	Т
235	VSYNC/HSYNC/OE active delay (TFT)	_	15	_	15	_	15	nsec
236	Wait between frames ⁴	WBF	—	WBF	—	WBF	_	Line

Table 21. LCD Controller Timing

NOTES:

Semiconductor, Inc.

reescale


11.

- 1. T = shift clock cycle (220).
- 2. This number is given for wbl(wait between lines) ≤ 2 . For wbl=n {n>2} the timing will be (n+2)T.
- 3. This number is given for wbl(wait between lines) ≤ 2 . For wbl=n {n>2} the timing will be (n+2)T.

4. Wait Between Frames (WBF) is a programmable parameter.

Tcyc is the cycle time of the LCD clock (shift clock). Tdelay is a circuit delay that is specified in the AC electrical specifications. 1-16 lines is a time period that can vary between one scan line and 16, depending on how the LCD controller is programmed in the VPW field of the LCVCR. 0-1,023 lines is a time period that can vary between 0 and 1,023 scan lines in the WBF field of the LCVCR.

Freescale Semiconductor, Inc.

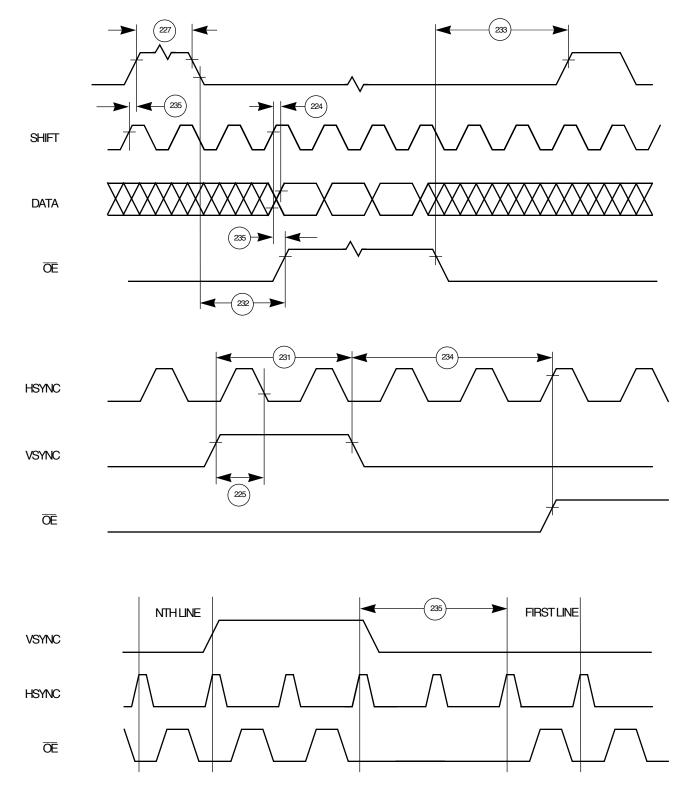


Figure 59. TFT Panel Timing Diagram

NUM	CHARACTERISTIC	25MHZ		40MHZ		50MHZ		
		MIN	МАХ	MIN	МАХ	MIN	МАХ	UNIT
240	Clock cycle time	32	_	32	_	32	_	nsec
241	Clock high time	13	—	13	—	13	—	nsec
242	CLK/HSYNC/VSYNC/BLANK/FIELD rise and fall times	_	10	_	10	_	10	nsec
243	Clock high to data valid	10	25	10	25	10	25	nsec

Table 22. Video Controller Timing

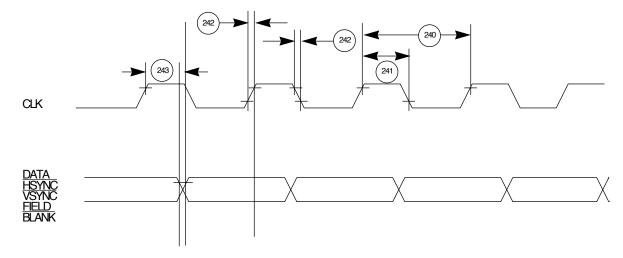


Figure 60. Video Controller Timing

