

www.vishay.com

VS-40TTS12PbF, VS-40TTS12-M3

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS	5					
PARAMETER	SYMBOL	TEST CON	VALUES	UNITS		
Maximum average on-state current	I _{T(AV)}	T _C = 93 °C, 180° conduct	ion half sine wave	25		
Maximum RMS on-state current	I _{RMS}			40	^	
Maximum peak, one-cycle	I	10 ms sine pulse, rated V	_{RRM} applied	300	A	
non-repetitive surge current	I _{TSM}	10 ms sine pulse, no volta	age reapplied	350		
Maximum I ² t for fusing	l ² t	10 ms sine pulse, rated V	_{RRM} applied	450	A ² s	
Maximum i-t for fusing	1 4 1	10 ms sine pulse, no voltage reapplied		630	A-5	
Maximum I ² \sqrt{t} for fusing	l²√t	t = 0.1 to 10 ms, no voltage	6300	A²√s		
Maximum on-state voltage	V _{TM}	80 A, T _J = 25 °C	1.6	V		
Low level value of on-state slope resistance	r _t	T _{.1} = 140 °C		11.4	mΩ	
Low level value of threshold voltage	V _{T(TO)}	1) = 140 0		0.96	V	
Maximum reverse and direct leakage	I _{RRM} /I _{DRM}	T _J = 25 °C	$V_{\rm R}$ = Rated $V_{\rm RRM}/V_{\rm DRM}$	0.5		
current		T _J = 140 °C	VR - Haleu VRRM/ VDRM	12		
Holding current	Ι _Η	Anode supply = 6 V, resistive load, initial I_T = 1 A, T_J = 25 °C		100	mA	
Maximum latching current	١L	Anode supply = 6 V, resis	200			
Maximum rate of rise of off-state voltage	dV/dt	$T_J = T_J max.$, linear to 80	°C, $V_{DRM} = R_g - k = Open$	500	V/µs	
Maximum rate of rise of turned-on current	dl/dt			150	A/µs	

TRIGGERING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum peak gate power	P _{GM}		8.0	W
Maximum average gate power	P _{G(AV)}		2.0	vv
Maximum peak positive gate current	+ I _{GM}		1.5	А
Maximum peak negative gate voltage	- V _{GM}		10	V
Maximum required DC gate current to trigger	I _{GT}	Anode supply = 6 V, resistive load, T_J = 25 °C	35	mA
Maximum required DC gate voltage to trigger	V _{GT}	Anode supply = 6 V, resistive load, T_J = 25 °C	1.3	V
Maximum DC gate voltage not to trigger	V _{GD}	T _{.I} = 140 °C, V _{DBM} = Rated value	0.2	
Maximum DC gate current not to trigger	I _{GD}	$T_{\rm J} = 140$ C, $V_{\rm DRM} = hated value$	1.5	mA

SWITCHING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Typical turn-on time	t _{gt}	T _J = 25 °C	0.9	
Typical reverse recovery time	t _{rr}	T _{.1} = 140 °C	4	μs
Typical turn-off time	t _q	1j = 140 C	110	

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum junction and storage temperature range		T _J , T _{Stg}		- 40 to 140	°C		
Maximum thermal resistance, junction to case		R _{thJC}	DC operation	0.8			
Maximum thermal resistance, junction to ambient		R _{thJA}		60	°C/W		
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.5			
Approximate weight				2	g		
Approximate weight				0.07	oz.		
Mounting torque	minimum			6 (5)	kgf ⋅ cm		
Mounting torque	maximum			12 (10)	(lbf ⋅ in)		
Marking device			Case style TO-220AB	40T	TS12		

Revision: 26-Jul-13

2

Document Number: 94390

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Maximum Allowable Case Temperature (°C 140 RthJC (DC) = 0.8 °C/W 130 120 Conduction Angle 110 30 100 60 90 90 120 180° 80 70 0 5 10 15 20 25 30 Average On-state Current (A)

Fig. 1 - Current Rating Characteristics



Fig. 2 - Current Rating Characteristics

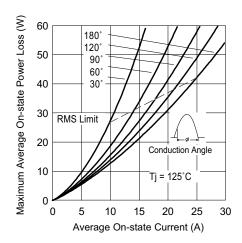


Fig. 3 - On-State Power Loss Characteristics

VS-40TTS12PbF, VS-40TTS12-M3

Vishay Semiconductors

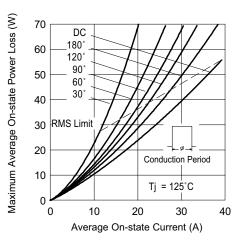


Fig. 4 - On-State Power Loss Characteristics

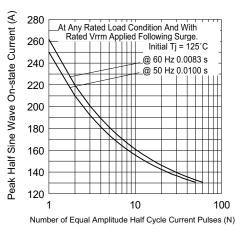


Fig. 5 - Maximum Non-Repetitive Surge Current

Fig. 6 - Maximum Non-Repetitive Surge Current

Revision: 26-Jul-13

3

Document Number: 94390

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

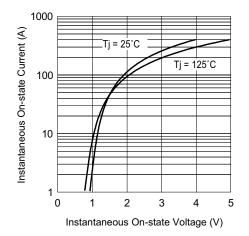
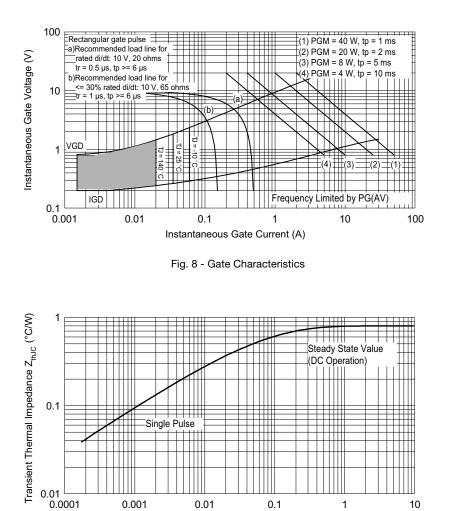
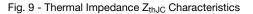



Fig. 7 - On-State Voltage Drop Characteristics


0.1

1

10

0.01

0.001

Revision: 26-Jul-13 Document Number: 94390 4 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Downloaded from Arrow.com.

SHA

www.vishay.com

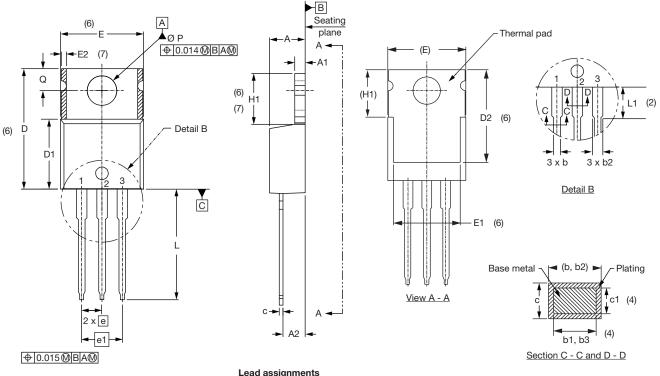
VS-40TTS12PbF, VS-40TTS12-M3

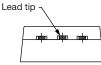
Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code	VS-	40	т	т	S	12	PbF
		2	3	4	5	6	7
	1		•		ctors pro	duct	
	2			ng, RMS guratior			
			Single t	-			
	4		kage: TO-220				
	5		e of silic			c.	
	6				ery recti : 1200 V		
	7	- Envi	ronmen	al digit:			
		PbF	= Lead	(Pb)-fre	e and R	oHS co	mpliant
		-M3	= Halog	en-free,	RoHS of	compliar	nt, and f

ORDERING INFORMATION (Example)						
PREFERRED P/N QUANTITY PER T/R MINIMUM ORDER QUANTITY PACKAGING DESCRIPTIO						
VS-40TTS12PbF	50	1000	Antistatic plastic tubes			
VS-40TTS12-M3	50	1000	Antistatic plastic tubes			


LINKS TO RELATED DOCUMENTS						
Dimensions		www.vishay.com/doc?95222				
Dart marking information	TO-220AB PbF	www.vishay.com/doc?95225				
Part marking information	TO-220AB -M3	www.vishay.com/doc?95028				



Vishay Semiconductors

TO-220AB

DIMENSIONS in millimeters and inches

ead.	assignments

Diodes

3. - Anode

1. - Anode/open 2. - Cathode

SYMBOL	MILLIN	MILLIMETERS INCHES		NOTES	
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.25	4.65	0.167	0.183	
A1	1.14	1.40	0.045	0.055	
A2	2.56	2.92	0.101	0.115	
b	0.69	1.01	0.027	0.040	
b1	0.38	0.97	0.015	0.038	4
b2	1.20	1.73	0.047	0.068	
b3	1.14	1.73	0.045	0.068	4
С	0.36	0.61	0.014	0.024	
c1	0.36	0.56	0.014	0.022	4
D	14.85	15.25	0.585	0.600	3
D1	8.38	9.02	0.330	0.355	
D2	11.68	12.88	0.460	0.507	6

Notes

- ⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994
- ⁽²⁾ Lead dimension and finish uncontrolled in L1
- ⁽³⁾ Dimension D, D1 and E do not include mold flash. Mold flash shall not exceed $0.127 \text{ mm} (0.005^{\circ})$ per side. These dimensions are measured at the outermost extremes of the plastic body
- $^{\left(4\right) }$ Dimension b1, b3 and c1 apply to base metal only
- (5) Controlling dimensions: inches
- (6) Thermal pad contour optional within dimensions E, H1, D2 and E1

SYMBOL		MILLIN	IETERS	INC	HES	NOTES
		MIN.	MAX.	MIN.	MAX.	NOTES
Е		10.11	10.51	0.398	0.414	3, 6
E1		6.86	8.89	0.270	0.350	6
E2		-	0.76	-	0.030	7
е		2.41	2.67	0.095	0.105	
e1		4.88	5.28	0.192	0.208	
H1		6.09	6.48	0.240	0.255	6, 7
L		13.52	14.02	0.532	0.552	
L1		3.32	3.82	0.131	0.150	2
ØΡ)	3.54	3.73	0.139	0.147	
Q		2.60	3.00	0.102	0.118	
θ		90° t	o 93°	90° t	o 93°	
θ		90° t	o 93°		90° t	90° to 93°

Conforms to JEDEC outline TO-220AB

- $^{(7)}$ Dimensions E2 x H1 define a zone where stamping and singulation irregularities are allowed
- Outline conforms to JEDEC TO-220, except A2 (maximum) and (8) D2 (minimum) where dimensions are derived from the actual package outline

Document Number: 95222 Revision: 08-Mar-11

For technical questions within your region, please contact one of the following: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.