Contents VND5T035AK-E

Contents

1	Bloc	ck diagram and pin description	5
2	Elec	trical specifications	7
	2.1	Absolute maximum ratings	7
	2.2	Thermal data	8
	2.3	Electrical characteristics	9
	2.4	Electrical characteristics curves	18
3	Арр	lication information	20
	3.1	GND protection network against reverse battery	20
		3.1.1 Solution 1: resistor in the ground line (RGND only)	20
		3.1.2 Solution 2: diode (DGND) in the ground line	21
	3.2	Load dump protection	21
	3.3	MCU I/Os protection	21
	3.4	Maximum demagnetization energy (V _{CC} = 24 V)	22
4	Pacl	kage and PCB thermal data	23
	4.1	PowerSSO-24 thermal data	23
5	Pacl	kage and packing information	26
	5.1	ECOPACK [®]	26
	5.2	PowerSSO-24 package information	26
	5.3	PowerSSO-24 packing information	28
6	Orde	er codes	29
7	Revi	ision history	30

VND5T035AK-E List of tables

List of tables

Table 1.	Pin function	5
Table 2.	Suggested connections for unused and not connected pins	. 6
Table 3.	Absolute maximum ratings	7
Table 4.	Thermal data	8
Table 5.	Power section	9
Table 6.	Switching (VCC = 24 V; Tj = 25 °C)	. 9
Table 7.	Logic inputs	. 10
Table 8.	Protections and diagnostics	. 11
Table 9.	Current sense (8 V < V _{CC} < 36 V)	. 12
Table 10.	Openload detection (V _{FR Stbv} = 5 V)	. 13
Table 11.	Truth table	. 16
Table 12.	Electrical transient requirements (part 1)	. 17
Table 13.	Electrical transient requirements (part 2)	. 17
Table 14.	Electrical transient requirements (part 3)	. 17
Table 15.	Thermal parameters	25
Table 16.	PowerSSO-24 mechanical data	27
Table 17.	Device summary	29
Table 18	Document revision history	30

List of figures VND5T035AK-E

List of figures

Figure 1.	Block diagram	5
Figure 2.	Configuration diagram PowerSSO-24 (top view)	6
Figure 3.	Current and voltage conventions	7
Figure 4.	Treset definition	. 10
Figure 5.	Tstby definition	. 11
Figure 6.	Current sense delay characteristics	. 13
Figure 7.	Openload off-state delay timing	. 13
Figure 8.	Switching characteristics	
Figure 9.	Output stuck to VCC detection delay time at FRSTBY activation	. 14
Figure 10.	Delay response time between rising edge of ouput current and rising edge of current	
	sense	. 15
Figure 11.	Output voltage drop limitation	. 15
Figure 12.	Device behavior in overload condition	. 16
Figure 13.	Off-state output current	
Figure 14.	High-level input current	. 18
Figure 15.	Input clamp voltage	. 18
Figure 16.	High-level input voltage	. 18
Figure 17.	Low-level input voltage	. 18
Figure 18.	Input hysteresis voltage	. 18
Figure 19.	On-state resistance vs T _{case}	. 19
Figure 20.	On-state resistance vs V _{CC}	
Figure 21.	I _{LIMH} vs T _{case}	. 19
Figure 22.	Turn-on voltage slope	. 19
Figure 23.	Turn-off voltage slope	
Figure 24.	Application schematic	
Figure 25.	Maximum turn-off current versus inductance	
Figure 26.	PowerSSO-24 PC board	
Figure 27.	Rthj-amb vs PCB copper area in open box free air condition (one channel ON)	
Figure 28.	PowerSSO-24 thermal impedance junction ambient single pulse (one channel ON)	
Figure 29.	Thermal fitting model of a double channel HSD in PowerSSO-24	
Figure 30.	PowerSSO-24 package dimensions	
Figure 31.	PowerSSO-24 tube shipment (no suffix)	
Figure 32.	PowerSSO-24 tape and reel shipment (suffix "TR")	. 28

1 Block diagram and pin description

Figure 1. Block diagram

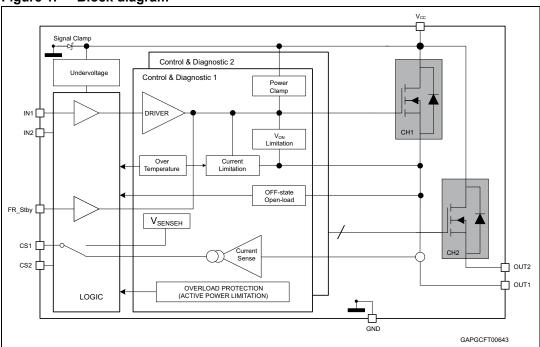
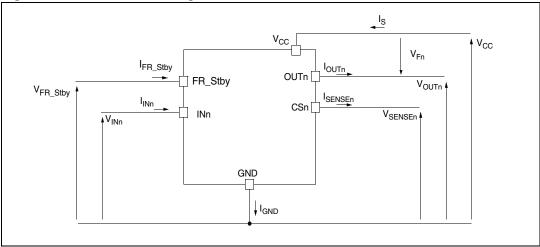


Table 1. Pin function

Name	Function
V _{CC}	Battery connection
OUT _{1,2}	Power outputs
GND	Ground connection
IN _{1,2}	Voltage controlled input pins with hysteresis, CMOS compatible. They Control output switch state
CS _{1,2}	Analog current sense pins, they deliver a current proportional to the load current
FR_Stby	In case of latch-off for overtemperature/overcurrent condition, a low pulse on the FR_Stby pin is needed to reset the channel. The device enters in standby mode if all inputs and the FR_Stby pin are low.

Figure 2. Configuration diagram PowerSSO-24 (top view)


Table 2. Suggested connections for unused and not connected pins

Connection / pin	CurrentSense	N.C.	Output	Input	FR_Stby
Floating	Not allowed	X ⁽¹⁾	X	Х	Х
To ground	Through 10 KΩ resistor	Х	Not allowed	Through 10 KΩ resistor	Through 10 KΩ

1. X: do not care.

2 Electrical specifications

Figure 3. Current and voltage conventions

Note: $V_{Fn} = V_{OUTn} - V_{CC}$ during reverse battery condition.

2.1 Absolute maximum ratings

Stressing the device above the ratings listed in the *Table 3* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to the conditions reported in this section for extended periods may affect device reliability.

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	58	V
-V _{CC}	Reverse DC supply voltage	0.3	V
-I _{GND}	DC reverse ground pin current	200	mA
I _{OUT}	DC output current	Internally limited	Α
-l _{OUT}	Reverse DC output current	40	Α
I _{IN}	DC input current	-1 to 10	mA
I _{FR_Stby}	Fault reset standby DC input current	-1 to 1.5	mA
-I _{CSENSE}	DC reverse CS pin current	200	mA
V _{CSENSE}	Current sense maximum voltage	V _{CC} - 58 to +V _{CC}	V
E _{MAX}	Maximum switching energy (L = 2.3 mH; V _{BAT} = 32 V; T _{jstart} = 150 °C; I _{OUT} = I _{limL (typ)})	250	mJ

Table 3. Absolute maximum ratings (continued)

Symbol	Parameter	Value	Unit
L _{smax}	Maximum strain inductance in short circuit condition $R_L = 300 \text{ m}\Omega$, $V_{BAT} = 32 \text{ V}$, $T_{jstart} = 150 ^{\circ}\text{C}$, $I_{OUT} = I_{LMHmax}$	40	μΗ
	Electrostatic discharge (Human Body Model: R = 1.5 K Ω ; C = 100 pF)	4000	V
V _{ESD}	- IN _{1,2} - CS _{1,2} - FR_Stby	4000 2000 4000	V V
	- OUT _{1,2} - V _{CC}	5000 5000	V V
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
T _j	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	°C

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case (max) (with one channel ON)	2	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (max)	See Figure 27	°C/W

2.3 Electrical characteristics

8 V < V_{CC} < 36 V; -40 °C < T $_j$ < 150 °C, unless otherwise specified.

Table 5. Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		8	24	36	V
V _{USD}	Undervoltage shutdown			3.5	5	٧
V _{USDhyst}	Undervoltage shutdown hysteresis			0.5		V
R _{ON}	On-state resistance ⁽¹⁾	$I_{OUT} = 3 \text{ A}; T_j = 25^{\circ}\text{C}$		35		mΩ
I ION	On-state resistance	$I_{OUT} = 3 \text{ A}; T_j = 150^{\circ}\text{C}$			70	11122
V _{clamp}	Clamp voltage	I _S = 20 mA	58	64	70	٧
1.	Cupply ourrent	Off-state; $V_{CC} = 24 \text{ V}$; $T_j = 25^{\circ}\text{C}$; $V_{IN} = V_{OUT} = V_{SENSE} = 0 \text{ V}$		2 ⁽²⁾	5 ⁽²⁾	μΑ
l _S	Supply current	On-state; $V_{CC} = 24 \text{ V}$; $V_{IN} = 5 \text{ V}$; $I_{OUT} = 0 \text{ A}$		4.2	6	mA
l	Off-state output current	$V_{IN} = V_{OUT} = 0 \text{ V; } V_{CC} = 24 \text{ V;}$ $T_j = 25^{\circ}\text{C}$	0	0.01	3	
I _{L(off)}	Off-state output current	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 24 \text{ V};$ $T_j = 125^{\circ}\text{C}$	0		5	- μΑ
V _F	Output - V _{CC} diode voltage	-l _{OUT} = 3 A; T _j = 150°C			0.7	V

^{1.} For each channel

Table 6. Switching ($V_{CC} = 24 \text{ V}; T_j = 25 \text{ °C}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$R_L = 8 \Omega$		46		μs
t _{d(off)}	Turn-off delay time	$R_L = 8 \Omega$		54		μs
dV _{OUT} /dt _(on)	Turn-on voltage slope	$R_L = 8 \Omega$	().55		V/µs
dV _{OUT} /dt _(off)	Turn-off voltage slope	$R_L = 8 \Omega$	0.46		V/µs	
W _{ON}	Switching energy losses during twon	$R_L = 8 \Omega$		1		mJ
W _{OFF}	Switching energy losses during t _{woff}	$R_L = 8 \Omega$		0.65		mJ

^{2.} PowerMOS leakage included

Table 7. Logic inputs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{IL}	Input low level voltage				0.9	V
I _{IL}	Low level input current	V _{IN} = 0.9 V	1			μA
V _{IH}	Input high level voltage		2.1			V
I _{IH}	High level input current	V _{IN} = 2.1 V			10	μΑ
V _{I(hyst)}	Input hysteresis voltage		0.25			٧
V	Input clamp voltage	I _{IN} = 1 mA	5.5		7	V
V _{ICL}	input clamp voltage	I _{IN} = -1 mA		-0.7		٧
V _{FR_Stby_L}	Fault_reset_standby low level voltage				0.9	٧
I _{FR_Stby_L}	Low level fault_reset_standby current	V _{FR_Stby} = 0.9 V	1			μΑ
V _{FR_Stby_H}	Fault_reset_standby high level voltage		2.1			V
I _{FR_Stby_H}	High level fault_reset_standby current	V _{FR_Stby} = 2.1 V			10	μΑ
V _{FR_Stby} (hyst)	Fault_reset_standby hysteresis voltage		0.25			٧
V	Fault_reset_standby clamp	I _{FR_Stby} = 15 mA (10 ms)	11		15	٧
V _{FR_Stby_CL}	voltage	I _{FR_Stby} = -1 mA		-0.7		V
t _{reset}	Overload latch-off reset time	See Figure 4	2		24	μs
t _{stby}	Standby delay	See Figure 5	120		1200	μs

Figure 4. Treset definition

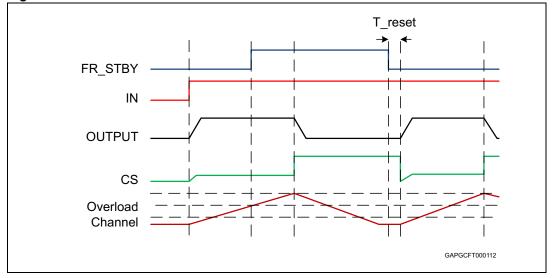


Figure 5. Tstby definition

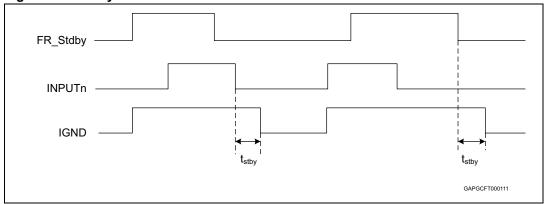


Table 8. Protections and diagnostics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	DC short circuit current	V _{CC} = 24V	30	42	55	Α
llimH	DC Short circuit current	5 V < V _{CC} < 36 V			55	Α
I _{limL}	Short circuit current during thermal cycling	$V_{CC} = 24 \text{ V}; T_R < T_j < T_{TSD}$		10.5		Α
T _{TSD}	Shutdown temperature		150	175	200	°C
T _R	Reset temperature		T _{RS} + 1	T _{RS} + 5		°C
T _{RS}	Thermal reset of status		135			°C
T _{HYST}	Thermal hysteresis (T _{TSD} -T _R)			7		°C
V _{DEMAG}	Turn-off output voltage clamp	I _{OUT} = 3 A; V _{IN} = 0; L = 6 mH	V _{CC} - 58	V _{CC} - 64	V _{CC} - 70	٧
V _{ON}	Output voltage drop limitation	I _{OUT} = 150 mA; T _j = -40°C+150°C		25		mV

Table 9. Current sense (8 V < V_{CC} < 36 V)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
K ₁	lout/Isense	$I_{OUT} = 1 \text{ A; } V_{SENSE} = 2 \text{ V;}$ $T_j = -40^{\circ}\text{C}150^{\circ}\text{C}$ $T_j = 25^{\circ}\text{C}150^{\circ}\text{C}$	1952 2080	2960	4150 3840	
dK ₁ /K ₁ ⁽¹⁾	Current sense ratio drift	I _{OUT} = 1 A; V _{SENSE} = 2 V; T _j = -40°C to 150°C	-15		15	%
K ₂	l _{OUT} /l _{SENSE}	$I_{OUT} = 3 \text{ A}; V_{SENSE} = 4 \text{ V};$ $T_j = -40^{\circ}\text{C}150^{\circ}\text{C}$ $T_j = 25^{\circ}\text{C}150^{\circ}\text{C}$	2490 2585	2930	3440 3265	
dK ₂ /K ₂ ⁽¹⁾	Current sense ratio drift	$I_{OUT} = 3 \text{ A}; V_{SENSE} = 4 \text{ V};$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-10		+10	%
K ₃	lout/lsense	$I_{OUT} = 12 \text{ A; } V_{SENSE} = 4 \text{ V;}$ $T_j = -40^{\circ}\text{C}150^{\circ}\text{C}$ $T_j = 25^{\circ}\text{C}150^{\circ}\text{C}$	2770 2755	2900	3125 3045	
$dK_3/K_3^{(1)}$	Current sense ratio drift	$I_{OUT} = 12 \text{ A}; V_{SENSE} = 4 \text{ V};$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-5		5	%
	Analog sense leakage current	$I_{OUT} = 0 \text{ A}; V_{SENSE} = 0 \text{ V};$ $V_{IN} = 0 \text{ V}; T_j = -40^{\circ}\text{C}150^{\circ}\text{C}$	0		1	μΑ
'SENSE0		$I_{OUT} = 0 \text{ A}; V_{SENSE} = 0 \text{ V};$ $V_{IN} = 5 \text{ V}; T_j = -40^{\circ}\text{C}150^{\circ}\text{C}$	0		2	μΑ
V _{SENSE}	Max analog sense output voltage	I_{OUT} = 12 A; R_{SENSE} = 3.9 K Ω	5			٧
V _{SENSEH}	Analog sense output voltage in fault condition ⁽²⁾	$V_{CC} = 24 \text{ V}; R_{SENSE} = 3.9 \text{ K}\Omega$	7.5	8.5	9.5	٧
I _{SENSEH}	Analog sense output current in fault condition (2)	V _{CC} = 24 V; V _{SENSE} = 5 V	4.9	9	12	mA
t _{DSENSE2H}	Delay response time from rising edge of INPUT pins	V _{SENSE} < 4 V; 0.2 A < I _{OUT} < 12 A; I _{SENSE} = 90 % of I _{SENSE max} ; (see <i>Figure 6</i>)		200	400	μs
$\Delta t_{\sf DSENSE2H}$	Delay response time between rising edge of output current and rising edge of current sense	V _{SENSE} < 4 V; I _{SENSE} = 90 % of I _{SENSEMAX} ; I _{OUT} = 90 % of I _{OUTMAX} ; I _{OUTMAX} = 3 A (see <i>Figure 10</i>)			250	μs
t _{DSENSE2L}	Delay response time from falling edge of INPUT pins	V _{SENSE} < 4 V; 0.2 A < I _{OUT} < 12 A; I _{SENSE} = 10 % of I _{SENSE max} ; (see <i>Figure 6</i>)		5	20	μs

^{1.} Parameter guaranteed by design; it is not tested.

^{2.} Fault condition includes: power limitation, overtemperature and open load in off-state condition.

Table 10. Openload detection (V_{FR_Stby} = 5 V)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{OL}	Openload off-state voltage detection threshold	V _{IN} = 0 V; 8 V < V _{CC} < 36 V	2		4	V
t _{DSTKON}	Output short circuit to V _{CC} detection delay at turn off	See Figure 7	180		1800	μs
I _{L(off2)}	Off-state output current at V _{OUT} = 4V	$V_{IN} = 0 \text{ V}; V_{SENSE} = 0 \text{ V};$ V_{OUT} rising from 0 V to 4 V	-120		0	μΑ
td_vol	Delay response from output rising edge to V _{SENSE} rising edge in openload	$V_{OUT} = 4 \text{ V}; V_{IN} = 0 \text{ V};$ $V_{SENSE} = 90 \% \text{ of } V_{SENSEH};$ $R_{SENSE} = 3.9 \text{ K}$			20	μs
t _{DFRSTK_ON}	Output short circuit to V _{CC} detection delay at FRSTBY activation	See Figure 9; Input _{1,2} = low			50	μs

Figure 6. Current sense delay characteristics

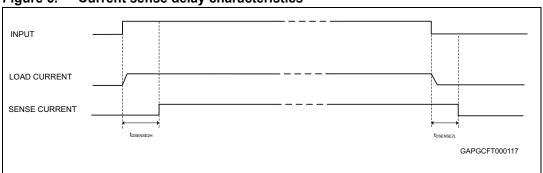
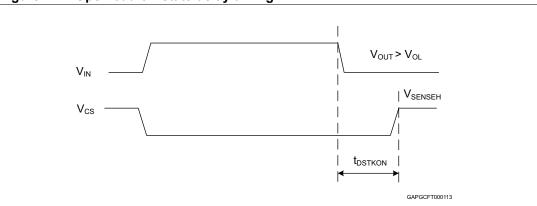



Figure 7. Openload off-state delay timing

Note: Vfr_stby = high

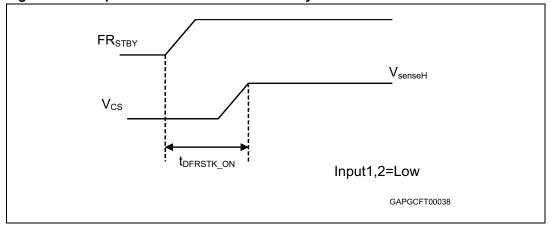
4

Doc ID 018942 Rev 5

13/31

V_{OUT}/dt_(on)

10%


T_{d(off)}

t

GAPGCFT000114

Figure 8. Switching characteristics

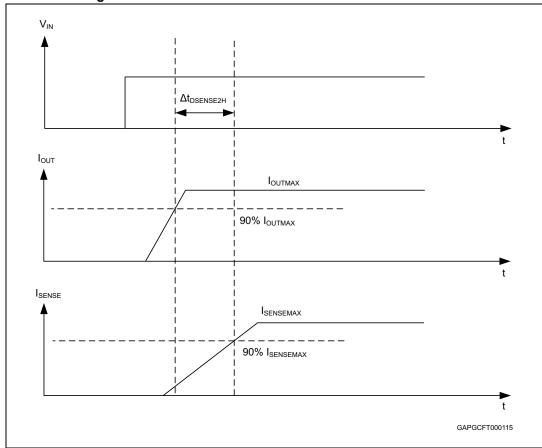
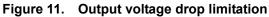
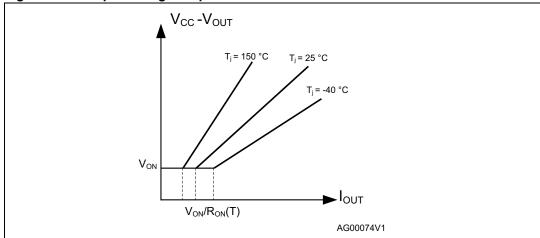




Figure 10. Delay response time between rising edge of ouput current and rising edge of current sense

5/

Loverload diag reset

FAULT_RESET

INn

OUTPUTn

Overload overload overload reset

Figure 12. Device behavior in overload condition

1: OUTPUT_n and CS_n controlled by INn

OVERLOAD(*) CHANNEL_n

- 2: FAULT_RESET from '0' to '1' \rightarrow no action on CS_n pin
- 3: overload latch-off. Inn high \rightarrow CS_n high
- 4: FAULT_RESET low AND Temp channeln < overload_reset \rightarrow overload latch reset after t_reset
- 4 to 5: FAULT_RESET low AND \mbox{IN}_n high \rightarrow thermal cycling, \mbox{CS}_n high
- 5: FAULT_RESET high \rightarrow latch-off reset disabled
- 6 to 7: overload event and FAULT_RESET high \rightarrow latch-off, no thermal cycling
- 7 to 8: overload diagnostic disabled/enabled by the input
- 8: overload latch-off reset by FAULT_RESET
- (*) OVERLOAD = thermal shutdown OR power limitation

GAPGCFT000116

Table 11. Truth table

Conditions	Fault reset standby	Input	Output	Sense
Standby	L	L	L	0
Normal operation	Х	L	L	0
Normal operation	Х	Н	Н	Nominal
Overload	Х	L	L	0
Overioad	Х	Н	Н	> Nominal
Ou court o man o mortuum o /	Х	L	L	0
Overtemperature / short to ground	L	Н	Cycling	V_{SENSEH}
onort to ground	Н	Н	Latched	V_{SENSEH}
Undervoltage	Х	Х	L	0
	L	L	Н	0
Short to V _{BAT}	Н	L	Н	V_{SENSEH}
	Х	Н	Н	< Nominal
0	L	L	Н	0
Open load off-state (with pull-up)	Н	L	Н	V_{SENSEH}
(with pair ap)	Х	Н	Н	0
Negative output voltage clamp	х	L	Negative	0

Table 12. Electrical transient requirements (part 1)

ISO 7637-2:	Test le	vels ⁽¹⁾	Number of Burst cycle/pulse		Delays and		
2004(E) Test pulse	III	IV	pulses or test times	repetition time		impedance	
1	- 450 V	- 600 V	5000 pulses	0.5 s	5 s	1 ms, 50 Ω	
2a	+ 37 V	+ 50 V	5000 pulses	0.2 s	5 s	50 μs, 2 Ω	
3a	- 150 V	- 200 V	1h	90 ms	100 ms	0.1 μs, 50 Ω	
3b	+ 150 V	+ 200 V	1h	90 ms	100 ms	0.1 μs, 50 Ω	
4	- 12 V	- 16 V	1 pulse			100 ms, 0.01 Ω	
5b ⁽¹⁾	+ 123 V	+ 174 V	1 pulse			350 ms, 1 Ω	

^{1.} Valid in case of external load dump clamp: 58 V maximum referred to ground.

Table 13. Electrical transient requirements (part 2)⁽¹⁾

ISO 7637-2:	Test level results		
2004(E) Test pulse	III	IV	
1	С	С	
2a	С	С	
3a	С	С	
3b ⁽²⁾	Е	Е	
3b ⁽³⁾	С	С	
4	С	С	
5b ⁽⁴⁾	С	С	

^{1.} In order to guarantee the ISO transient classes a minimum $10 \text{K}\Omega$ protection resistors are needed on logic pins

Table 14. Electrical transient requirements (part 3)

Class	Contents
С	All functions of the device are performed as designed after exposure to disturbance.
E	One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.

^{2.} Without capacitor between V_{CC} and GND.

^{3.} With 10 nF between $V_{\mbox{\footnotesize CC}}$ and GND.

^{4.} External load dump clamp, 58 V maximum, referred to ground.

2.4 Electrical characteristics curves

Figure 13. Off-state output current

lloff [μA] 3.00 2.50 2.00 1.50 Vcc=24V Vin=Vout=0 1.00 0.50 75 100 -25 0 25 125 150 -50 50 Tc[°C] GAPGCFT00460

Figure 14. High-level input current

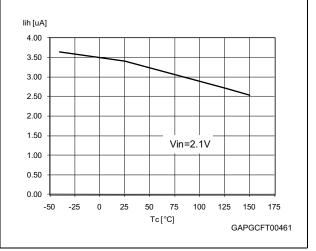


Figure 15. Input clamp voltage

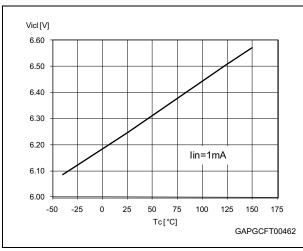


Figure 16. High-level input voltage

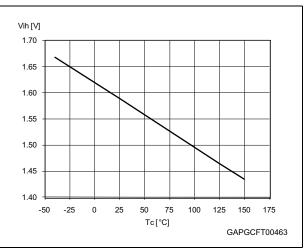
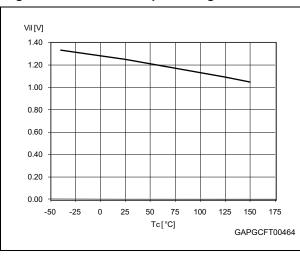
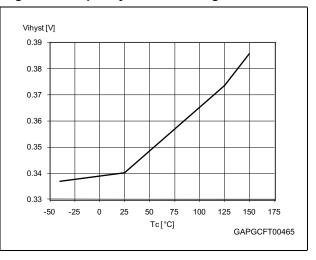
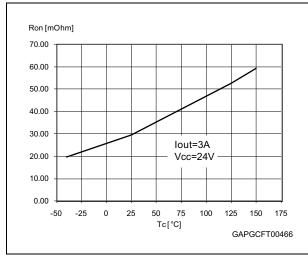


Figure 17. Low-level input voltage


Figure 18. Input hysteresis voltage

18/31 Doc ID 018942 Rev 5

Figure 19. On-state resistance vs T_{case}

Figure 20. On-state resistance vs V_{CC}

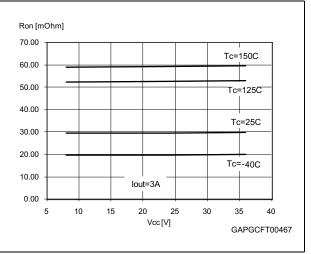
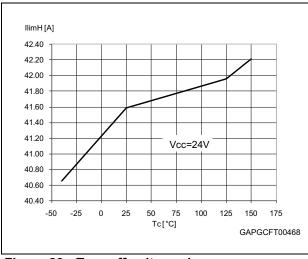



Figure 21. I_{LIMH} vs T_{case}

Figure 22. Turn-on voltage slope

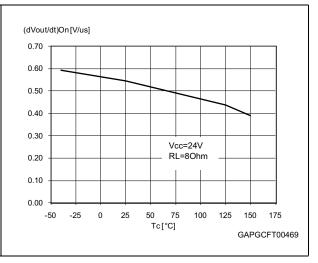
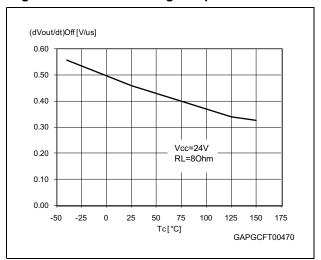
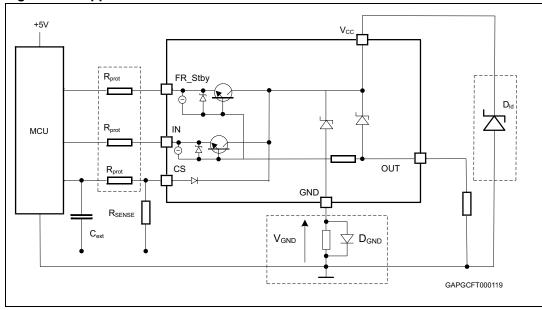



Figure 23. Turn-off voltage slope


577

Doc ID 018942 Rev 5

19/31

3 Application information

Figure 24. Application schematic

3.1 GND protection network against reverse battery

3.1.1 Solution 1: resistor in the ground line (R_{GND} only)

This solution can be used with any type of load.

The following is an indication on how to dimension the $R_{\mbox{\footnotesize GND}}$ resistor.

- 1. $R_{GND} \le 600 \text{ mV} / (I_{S(on)max})$.
- 2. $R_{GND} \ge (-V_{CC}) / (-I_{GND})$

where $-I_{\mbox{\footnotesize GND}}$ is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet.

Power dissipation in R_{GND} (when $V_{CC} < 0$: during reverse battery situations) is:

$$P_D = (-V_{CC})^2 / R_{GND}$$

This resistor can be shared amongst several different HSDs. Please note that the value of this resistor should be calculated with formula (1) where $I_{S(on)max}$ becomes the sum of the maximum on-state currents of the different devices.

Please note that if the microprocessor ground is not shared by the device ground then the R_{GND} produces a shift ($I_{S(on)max} * R_{GND}$) in the input thresholds and the status output values. This shift varies depending on how many devices are ON in case of several high side drivers sharing the same R_{GND} .

If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then ST suggests Solution 2 is used (see below).

577

20/31 Doc ID 018942 Rev 5

3.1.2 Solution 2: diode (D_{GND}) in the ground line

A resistor (R_{GND} = 4.7 k Ω) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (\approx 600 mV) in the input threshold and in the status output values, if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

3.2 Load dump protection

 D_{ld} is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds to V_{CC} maximum DC rating. The same applies if the device is subject to transients on the V_{CC} line that are greater than the ones shown in the ISO T/R 7637/2 table.

3.3 MCU I/Os protection

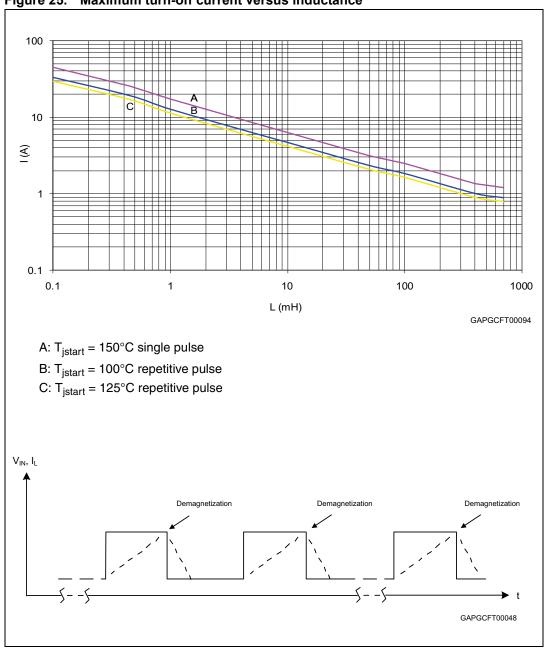
If a ground protection network is used and negative transient is present on the V_{CC} line, the control pins are pulled negative. ST suggests that a resistor (R_{prot}) have to be inserted in line to prevent the microcontroller I/Os pins to latch-up.

The value of these resistors is a compromise between the leakage current of the microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

 $-V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$

Calculation example:

For V_{CCpeak} = -600 V and $I_{latchup} \ge 20$ mA; $V_{OH\mu C} \ge 4.5$ V


30 k $\Omega \le R_{\text{prot}} \le 180 \text{ k}\Omega$.

Recommended R_{prot} value is 60 k Ω .

Maximum demagnetization energy ($V_{CC} = 24 \text{ V}$) 3.4

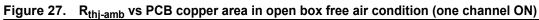
Figure 25. Maximum turn-off current versus inductance

Note:

22/31

Values are generated with R_L =0 Ω . In case of repetitive pulses, T_{jstart} (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

Doc ID 018942 Rev 5


4 Package and PCB thermal data

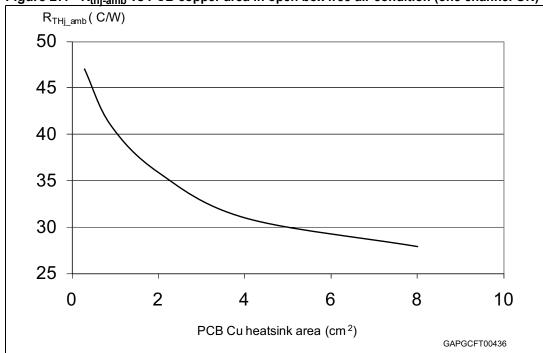

4.1 PowerSSO-24 thermal data

Figure 26. PowerSSO-24 PC board

^{1.} Layout condition of R_{th} and Z_{th} measurements (PCB: double layer, thermal vias, FR4 area = 77 mm x 86 mm, PCB thickness = 1.6 mm, Cu thickness = 70 μ m (front and back side), Copper areas: from minimum pad lay-out to 8 cm²).

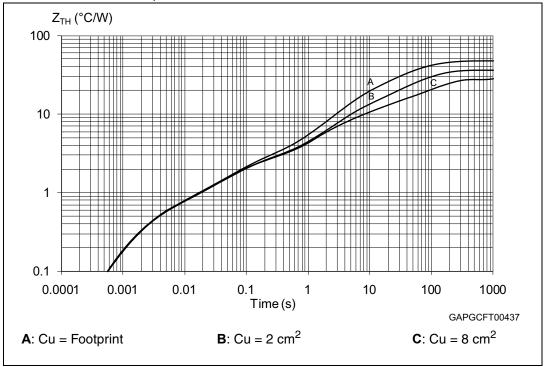
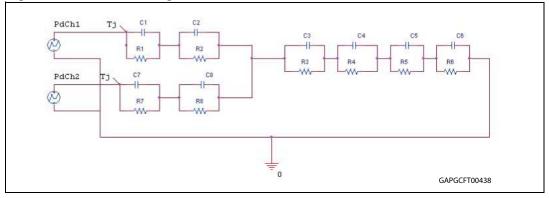



Figure 28. PowerSSO-24 thermal impedance junction ambient single pulse (one channel ON)

Figure 29. Thermal fitting model of a double channel HSD in PowerSSO-24

1. The fitting model is a semplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered

Equation 1: Pulse calculation formula

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$

where $\delta = t_P/T$

Table 15. Thermal parameters

Area/island (cm ²)	Footprint	2	8
R1 (°C/W)	0,5	_	_
R2 (°C/W)	0.75	_	_
R3 (°C/W)	1	_	_
R4 (°C/W)	7.7	_	_
R5 (°C/W)	9	9	8
R6 (°C/W)	28	17	10
R7 (°C/W)	0,5	_	_
R8 (°C/W)	0.75	_	_
C1 (W.s/°C)	0,005	_	_
C2 (W.s/°C)	0,05	_	_
C3 (W.s/°C)	0,1	_	_
C4 (W.s/°C)	0,5	_	_
C5 (W.s/°C)	1	4	9
C6 (W.s/°C)	2.2	5	17
C7 (W.s/°C)	0,005	_	_
C8 (W.s/°C)	0,05	_	_

5 Package and packing information

5.1 ECOPACK®

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

5.2 PowerSSO-24 package information

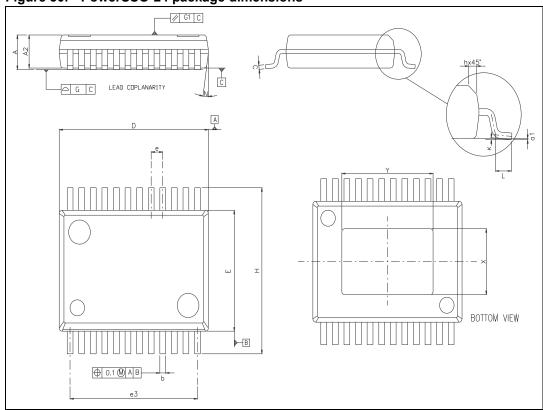


Figure 30. PowerSSO-24 package dimensions

Table 16. PowerSSO-24 mechanical data

Oh a l		Millimeters	
Symbol	Min.	Тур.	Max.
Α	2.15		2.47
A2	2.15		2.40
a1	0		0.075
b	0.33		0.51
С	0.23		0.32
D	10.10		10.50
E	7.4		7.6
е		0.8	
e3		8.8	
G			0.1
G1			0.06
Н	10.1		10.5
h			0.4
k		5º	
L	0.55		0.85
N			10º
X	4.1		4.7
Υ	6.5		7.1

5.3 PowerSSO-24 packing information

Figure 31. PowerSSO-24 tube shipment (no suffix)

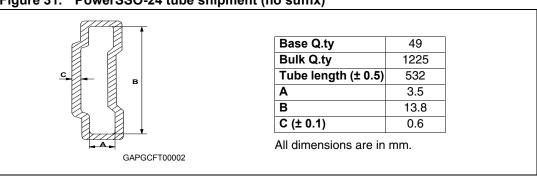
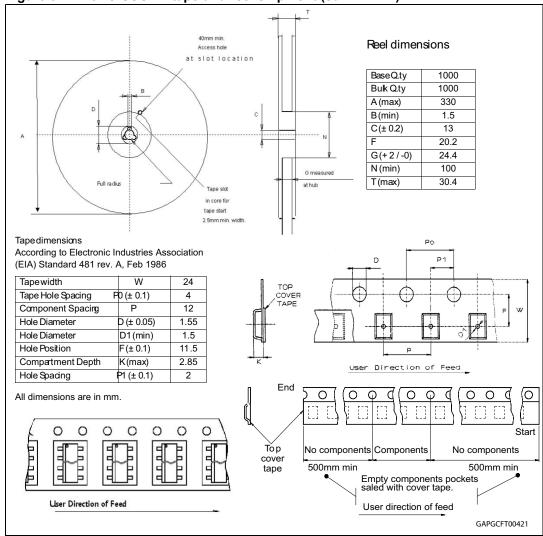



Figure 32. PowerSSO-24 tape and reel shipment (suffix "TR")

577

28/31

VND5T035AK-E Order codes

6 Order codes

Table 17. Device summary

Package	Order codes		
rackage	Tube	Tape and reel	
PowerSSO-24	VND5T035AK-E	VND5T035AKTR-E	

Revision history VND5T035AK-E

7 Revision history

Table 18. Document revision history

Date	Revision	Changes
21-Sep-2011	1	Initial release.
19-Oct-2011	2	Updated Table 2: Suggested connections for unused and not connected pins Added note on Table 13: Electrical transient requirements (part 2)
26-Oct-2011	3	Changed document status from preliminary data to definitive datasheet
13-Mar-2012	4	Updated Figure 13: Off-state output current Updated Section 3.4: Maximum demagnetization energy ($V_{CC} = 24 V$)
18-Sep-2013	5	Updated Disclaimer

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 018942 Rev 5

31/31