Absolute Maximum Ratings

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Thermal Shutdown	Internally limited
Lead Temperature (Soldering, 5 seconds)	260°C
Input Supply Voltage	20V to +20V
Enable Input Voltage	20V to +20V

Recommended Operating Conditions

Input Supply Voltage +2.5V to +16V
Operating Junction Temperature Range40°C to +125°C
Enable Input Voltage0V to $V_{\mbox{IN}}$
SOT-23-5 (eJA) See Note 1

Electrical Characteristics

 $T_J = 25^{\circ}C$, $V_{IN} = V_{OUT} + 1V$, $I_L = 100\mu A$, $C_L = 1\mu F$, and $V_{ENABLE} \ge 2.4V$. The "•" denotes the specifications which apply over full junction temperature range -40°C to +125°C, unless otherwise specified.

PARAMETER	MIN.	TYP.	MAX.	UNITS	•	CONDITIONS	
	-1		+1	0(1)(
Output voltage tolerance (V _{OUT})	-2		+2	%V _{NOM}	•		
Output voltage temperature coefficient		57		ppm/°C	•		
		0.03	0.1			$V_{IN} = V_{OUT} + 1$ to 16V and $V_{EN} \le 6V$	
Line regulation			0.2	%/V	•	$V_{IN} = V_{EN} = V_{OUT} + 1 \le 8V$	
			0.2			$V_{IN} = V_{EN} = V_{OUT} + 1$ to 16V T _A = 25°C to 85°C	
		0.1	0.2			$V_{IN} = V_{OUT} + 1 \ge 2.5V$	
Load regulation			0.5	%	•	I _L = 1mA to 150mA	
			1.0		•	I _L = 100μA to 1mA	
		30	50			1 - 100.0	
			70	mV	•	I _L = 100μΑ	
		140	190			1 = 50m A	
Dropout voltage ⁽²⁾			230	mV	•	I _L = 50mA	
(V _{IN} - V _O)		180	250			1 = 100mA	
			300	mV	•	I _L = 100mA	
		210	275			1 = 150mA	
			350	mV	•	I _L = 150mA	
Quiescent current (I _{GND})		0.05	1			$V_{\text{ENABLE}} \le 0.4 V$	
Quescent current (IGND)			5	μΑ	•	$V_{\text{ENABLE}} \le 0.25 V$	
		70	125			IL= 100μΑ	
			150	μΑ	•	η_ τουμΑ	
		350	600	μA		L = 50mA	
Cround pin ourront (Lawa)			800	μΑ	•	- I _L = 50mA	
Ground pin current (I _{GND})		750	1000			IL= 100mA	
			1500	μA	•		
		1300	1900			I _L = 150mA	
			2500	μΑ	•		

Electrical Characteristics (Continued)

 $T_J = 25^{\circ}C$, $V_{IN} = V_{OUT} + 1V$, $I_L = 100\mu A$, $C_L = 1\mu F$, and $V_{ENABLE} \ge 2.4V$. The "•" denotes the specifications which apply over full junction temperature range -40°C to +125°C, unless otherwise specified.

PARAMETER	MIN.	TYP.	MAX.	UNITS	•	CONDITIONS
Ripple rejection		70		dB		
Current limit (I _{LIMIT})		360	500	mA		V _{OUT} = 0V
Output noise (e _{NO})		300				I _L = 10mA, C _L = 1μF, C _{IN} = 1μF (10Hz - 100kHz)
		40		— μV _{RMS} -		$\begin{split} I_L &= 10 \text{mA}, \ C_L &= 10 \mu \text{F}, \ C_{\text{BYP}} = 1 \mu \text{F}, \\ C_{\text{IN}} &= 1 \mu \text{F} \ (10 \text{Hz} - 100 \text{kHz}) \end{split}$
Input voltage level logic low (V _{IL})			0.4	V		OFF
Input voltage level logic high (V _{IL})	2.0			V		ON
Enable insuit current		0.01	2			$V_{IL} \le 0.4V$
Enable input current		3	20	μA		$V_{IH} \ge 2.0V$

NOTE:

1. The maximum allowable power dissipation is a function of maximum operating junction temperature, $T_{J(max)}$, the junction to ambient thermal resistance, and the ambient e_{JA} , and the ambient temperature T_A . The maximum allowable power dissipation at any ambient temperature is given: $P_{D(max)} = (T_{J(max)} - T_A) / e_{JA}$, exceeding the maximum allowable power limit will result in excessive die temperature; thus, the regulator will go into thermal shutdown. The e_{JA} of the SPX5205 is 220°C/W mounted on a PC board.

2. Not applicable to output voltages of less than 2V.

Typical Performance Characteristics

Figure 1. Ground Current vs. Load Current

Figure 3. Ground Current vs. Load Current in Dropout

Figure 5. Dropout Voltage vs. Load Current

Figure 2. Ground Current vs. Input Voltage

Figure 4. Output Voltage vs. Input Voltage

Figure 6. Output Voltage vs. Load Current

Typical Performance Characteristics (Continued)

Figure 9. Ground Current in Dropout vs. Temperature

ON Threshold vs. Input Voltage

Figure 8. Ground Current vs. Temperature at $I_{LOAD} = 100 \text{mA}$

Figure 10. Output Voltage vs. Temperature

Figure 12. Output Noise vs. Bypass Capacitor Value

Application Information

The SPX5205 requires an output capacitor for device stability. Its value depends upon the application circuit. In general, linear regulator stability decreases with higher output currents. In applications where the SPX5205 is putting out less current, a lower output capacitance may be sufficient. For example, a regulator sourcing only 10mA, requires approximately half the capacitance as the same regulator sourcing 150mA.

Bench testing is the best method for determining the proper type and value of the capacitor since the high frequency characteristics of electrolytic capacitors vary widely, depending on type and manufacturer. A high quality 2.2μ F aluminum electrolytic capacitor works in most application circuits, but the same stability often can be obtained with a 1μ F tantalum electrolytic.

With the SPX5205 adjustable version, the minimum value of output capacitance is a function of the output voltage. The value decreases with higher output voltages, since closed loop gain is increased.

Typical Applications Circuits

A 10nF capacitor on the BYP pin will significantly reduce output noise but it may be left unconnected if the output noise is not a major concern. The SPX5205 start-up speed is inversely proportional to the size of the BYP capacitor. Applications requiring a slow ramp-up of the output voltage should use a larger C_{BYP} . However, if a rapid turn-on is necessary, the BYP capacitor can be omitted.

The SPX5205's internal reference is available through the BYP pin.

The Typical Application Circuit shown on page 1 represents a SPX5205 standard application circuit. The EN (enable) pin is pulled high (>2.0V) to enable the regulator. To disable the regulator, EN < 0.4V.

The SPX5205 in Figure 13 illustrates a typical adjustable output voltage configuration. Two resistors (R1 and R2) set the output voltage. The output voltage is calculated using the formula:

$$V_{OUT} = 1.235V \times (1 + R1/R2)$$

R2 must be >10 k Ω , and for best results, R2 should be between 22 k Ω and 47k Ω .

Figure 13. Typical Adjustable Output Voltage

Mechanical Dimensions

SOT-23-5

LAND PATTERN RECOMMENDATION

FOR REFERENCE ONLY

Z	q <u>1</u>	۵	R1	R	12	7	-	e1	e	Ē	т	D	c	Ь	A2	A1	A		SYMBOLS	5 Pin S	
	ດຳ	o,	0.10	0.10			0.30	_		_	N	N	0.08	0.30	0.90	0.00		MIN	DIMENSIONS (Control	S0T-23	
U	10°	4.			0.25 BSC	0.60 REF	0.45	1.90 BSC	0.95 BSC	1.60 BSC	2.80 BSC	2.90 BSC			1.15			NON	_	3 JEDEC	
	 ບໍ	œ	0.25		ő		0.60	0.60			õ	ĉ	õ	0.22	0.50	1.30	0.15	1.45	MAX	Unit)	
	က့	o	0.004	0.004	0	0	0.012		0	0	0	0.	0.003	0.012	0.036	0.000		MIN	DIMENSIONS (Reference	MO-178 V	
U	10°	4.			0.010 BSC	0.024 REF	0.018	0.075 B	0.038 B	0.063 B	0.111 B	115			0.045			NON	Ξ	Variation	
		œ	0.010			 	0.024	BSC	BSC	BSC	BSC	BSC	0.009	0.020	0.051	0.006	0.057	MAX	N INCH Unit)	n AA	

Drawing No: POD-00000025

Revision: B

Ordering Information⁽¹⁾

Part Number	Operating Temperature Range	Lead-Free	Package	Packaging Method	Accuracy	Output Voltage
SPX5205M5-L/TR	-40°C ≤ T _J ≤ 125°C	Yes ⁽²⁾	5-pin SOT-23			Adjustable
SPX5205M5-L-1-8/TR					1%	1.8V
SPX5205M5-L-3-0/TR				Tape and Reel		3.0V
SPX5205M5-L-3-3/TR						3.3V
SPX5205M5-L-5-0/TR						5.0V

NOTE:

1. Refer to www.exar.com/SPX5205 for most up-to-date Ordering Information.

2. Visit <u>www.exar.com</u> for additional information on Environmental Rating.

Revision History

Revision	Date	Description
К		Sipex / Exar legacy datasheet
L	8/31/18	Update to MaxLinear logo. Update format and Ordering Information. Added Figure numbers. Corrected C_L unit in Figure 11. Updated Typical Application Circuit on page 1 and Figure 13 to differentiate between fixed and adjustable versions. Updated last paragraph of Typical Applications Circuits section. Updated temperature at top of Electrical Characteristics.

Corporate Headquarters: 5966 La Place Court Suite 100 Carlsbad, CA 92008 Tel.:+1 (760) 692-0711 Fax: +1 (760) 444-8598 www.maxlinear.com High Performance Analog: 1060 Rincon Circle San Jose, CA 95131 Tel.: +1 (669) 265-6100 Fax: +1 (669) 265-6101 www.exar.com

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc.. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of MaxLinear, Inc.

Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of MaxLinear, Inc. is adequately protected under the circumstances.

MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Company and product names may be registered trademarks or trademarks of the respective owners with which they are associated.

© 2001 - 2018 MaxLinear, Inc. All rights reserved

SPX5205_DS_083118

Downloaded from Arrow.com.