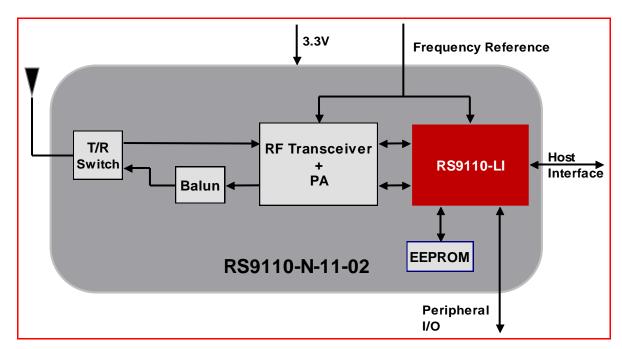


Overview

Overview

The RS9110-N-11-02 module is a complete IEEE 802.11bgn Wi-Fi client device with an integrated MAC, Baseband processor, and RF transceiver with power amplifier. Based on the Redpine Signals RS9110-LI MAC/BBP chip, the module provides a complete end-to-end solution for low-power WLAN applications. It includes a multi-threaded processor and a rich set of peripheral interfaces. It can connect to a host processor through SDIO and SPI interfaces.


Applications:

- VOIP handsets
- Interactive remote control devices
- Industrial automation and telemetry
- MP3 music and MP4 video players
- Digital cameras and camcorders

Device Features:

- Conforms to IEEE 802.11b/g/e/i standards, single-stream 802.11 n
- 802.11n MAC features for high user throughput
- 802.11n Space Time Block Code (STBC) support for extended range and higher throughput
- Host interface through SDIO and SPI
- Bluetooth coexistence
- Integrated multi-threaded processor
- TCP checksum offloading
- Rich set of peripherals UART, SPI, I2C, GPIO, and timers
- 2.4 GHz, 802.11n RF transceiver with high performance power amplifier
- Complete WLAN software along with host driver for various operating systems such as Windows XP, Linux, Windows CE
- Single supply 3.1 to 3.6 V operation

RS9110-N-11-02 System Block Diagram

Table of Contents

1: Detailed Feature List	. 7
1.1: Host Interfaces	
1.2: WLAN	
1.2.1: MAC	
1.2.2: Baseband Processing	
1.2.3: RF Transceiver	
1.3: Multi-Threaded Processor	
1.4: Peripherals	
1.5: Coexistence	
1.6: Software	
1.7: Compliance and Certification	
2: Package Description	
2.1: Top View	
2.2: Bottom View	
2.3: Package Dimensions	
2.4: Recommended Reflow Profile	
2.5: Baking Instructions	
3: Pin Description	12
3.1: Module Pinout	12
3.2: Pin Description	12
4: Electrical Characteristics	19
4.1: Absolute Maximum Ratings	
4.2: Recommended Operating Conditions	
4.3: DC Characteristics - Digital I/O Signals	
4.4: AC Characteristics - Digital I/O Signals	20
4.4.1: SDIO Interface	20
4.4.1.1: Full Speed Mode	
4.4.1.2: High Speed Mode	
4.4.2: SPI Interface	
4.4.2.1: Full Speed Mode	
4.4.2.2: High Speed Mode	
4.4.3: Reset Timing	
4.4.4: JTAG Interface	
5: Module Power Consumption	
6: Performance Specifications	
6.1: Wireless Specifications	
6.2: Receive Characteristics	
6.2.1: Sensitivity	
6.3: Standards Compliance	
7: Software Details	
7.1: Architecture	
7.2: Details	
7.2.1: 802.1x Supplicant	
7.2.2: Configuration Utility	29

7.2.3: WLAN Driver	29
7.2.4: HAL- Hardware Abstraction Layer	29
7.2.5: Upper MAC	
7.2.6: Lower MAC	30
7.3: OS Support	30
8: Ordering Information	31
8.1: Contact Information	31
8.2: Device Ordering Information	31
8.2.1: Device Packaging	
8.3: Collateral	

Table of Figures

Figure 1: Top View of the Module	9
Figure 2: Bottom View of the Module	
Figure 3: Package and Pad dimensions	
Figure 4: Reflow Profile	
Figure 5: Pinout of the Module	
Figure 6: Interface Timings - SDIO Interface Full-Speed Mode	
Figure 7: Interface Timings - SDIO Interface High-speed Mode	
Figure 8: SPI Protocol	22
Figure 9: Interface Timings - SPI Interface Full-Speed Mode	22
Figure 10: Interface Timings – SPI Interface High-Speed Mode	
Figure 11: Reset Pin Timing Diagram	
Figure 12: Interface Timings – JTAG Interface	
Figure 13: RS9110-N-11-02 Software Architecture	

List of Tables

Table 1: Absolute Maximum Ratings	19
Table 2: Recommended Operating Conditions	
Table 3: Input/Output DC Characteristics	
Table 4: AC Characteristics - SDIO Interface Full-Speed Mode	
Table 5: AC Characteristics - SDIO Interface High-Speed Mode	
Table 6: AC Characteristics - SPI Interface Full-Speed Mode	
Table 7: AC Characteristics - SPI Interface High-Speed Mode	
Table 8: AC Characteristics – JTAG Interface	
Table 9: Wireless Specificiation	
Table 10: Receive sensitivity	

1: Detailed Feature List

1.1: Host Interfaces

- SDIO
 - Version 2.0-compatible
 - Supports SD-SPI, 1-bit, and 4-bit SDIO modes
 - Operation up to a maximum clock speed of 50 MHz
- SPI Interface
 - Operation up to a maximum clock speed of 80 MHz

1.2: WLAN

1.2.1: MAC

- Conforms to IEEE 802.11b/g/n/e/i standards for MAC¹
- Dynamic selection of fragment threshold, data rate, and antenna depending on the channel statistics
- Hardware accelerators for WEP 64/128-bit and AES
- WPA, WPA2, WPA2-Enterprise, Voice Personal, WPS (PIN/PBC),
- WMM and WMM-PS support
- AMPDU and AMSDU aggregation for high performance
- Firmware downloaded from host based on application

1.2.2: Baseband Processing

- Supports DSSS (1, 2 Mbps) and CCK (5.5, 11 Mbps) modes
- Supports all OFDM data rates (6, 9, 12, 18, 24, 36, 48, and 54 Mbps)
- Supports IEEE 802.11n single-stream modes with data rates up to 65 Mbps
- Supports long, short, and HT preamble modes
- High-performance multipath compensation in OFDM, DSSS, and CCK modes

1.2.3: RF Transceiver

- Highly integrated 2.4 GHz transceiver with direct conversion architecture
- Receiver with 38 dB RF selectable gain range and 60 dB baseband variable gain range
- Power amplifier with 19 dBm maximum output power
- Integrated LNA, BPF, and T/R switch

1.3: Multi-Threaded Processor

RISC-based pipelined architecture

¹ Compliance to inter-operability specifications based on the standards

- Non-blocking thread operation
- Processing capability of up to 118 million instructions per second (MIPS) at 118 MHz

1.4: Peripherals

- I2C interface with support for multiple masters and high-speed mode
- SPI peripheral interface
- UART interface with programmable baud-rate generator
- GPIO interface

1.5: Coexistence

• Flexible BT coexistence mechanism with 3-wire hardware interface

1.6: Software

- Drivers for Windows Embedded CE, Windows XP and Linux
- Control and management GUI
- Embedded software for complete WLAN functionality including 802.11n aggregation and Block-ACK, auto rate adaptation, security, and QoS modes

1.7: Compliance and Certification

- Reference design certified for Wi-Fi 802.11n, WPA, WPA2, WPA2-Enterprise, WMM, WMM-PS, WPS, Voice-Personal
- · FCC, IC, and CE certified
- RoHS (Restriction of Hazardous Substances) compliant

2: Package Description

2.1: Top View

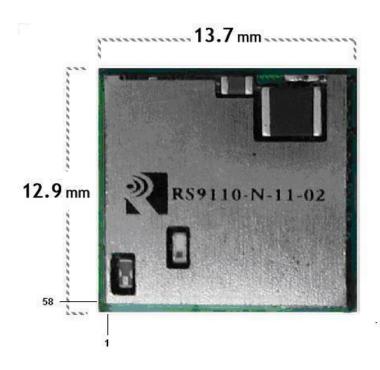


Figure 1: Top View of the Module

2.2: Bottom View

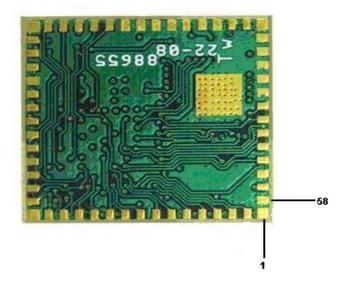


Figure 2: Bottom View of the Module

2.3: Package Dimensions

The module measures 13.7 x 12.9 x 1.7 mm.

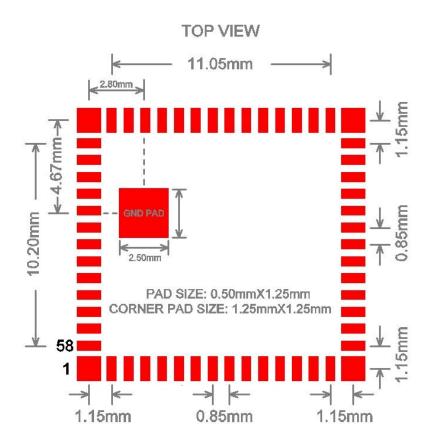


Figure 3: Package and Pad dimensions

2.4: Recommended Reflow Profile

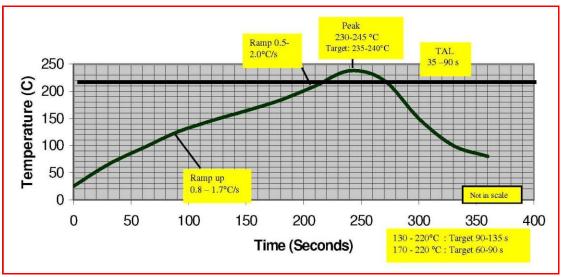


Figure 4: Reflow Profile

Note: The profile shown is based on SAC 305 solder (3% silver, 0.5% copper). We recommend the ALPHA OM-338 lead-free solder paste. This profile is provided mainly for guidance. The total dwell time depends on the thermal mass of the assembled board and the sensitivity of the components on it.

2.5: Baking Instructions

The RS9110-N-11-02 package is moisture sensitive and devices must be handled appropriately. After the devices are removed from their vacuum sealed packs, they should be taken through reflow for board assembly within 168 hours at room conditions, or stored at under 10% relative humidity. If these conditions are not met, the devices must be baked before reflow. The recommended baking time is nine hours at 125° C.

3: Pin Description

3.1: Module Pinout

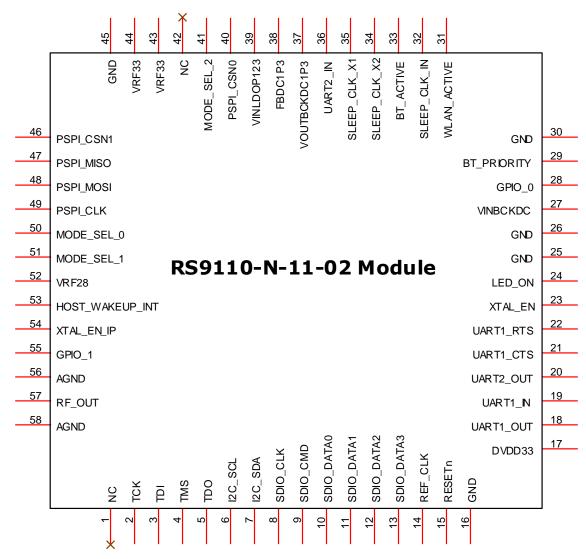


Figure 5: Pinout of the Module

3.2: Pin Description

Pin No.	Pin Name	Pin Type	Description		
1)	NC	NC	This pin is to be left unconnected		
2)	тск	Input	This is a JTAG input pin, and recommended to be connected to ground.		
3)	TDI	Input This is a JTAG input pin, and recommended to be connected			

Pin No.	Pin Name	Pin Type	Description		
			ground.		
4)	TMS	Input	This is a JTAG input pin, and recommended to be connected to ground.		
5)	TDO	Output	This is a JTAG output pin, and recommended to be left open.		
6)	I2C_SCL	Inout	I ² C Bus Clock. By default, and unless firmware is modified, this line is programmed as an output and should be left open.		
7)	I2C_SDA	Inout	I ² C Bus Data. By default, and unless firmware is modified, this line is programmed as an output and should be left open.		
8)	SDIO_CLK/SPI_CL K	Input	SDIO/SPI interface clock input		
9)	SDIO_CMD/SPI_CS	Input	SDIO 4-bit: Command/Response SDIO 1-bit: Command SDIO-SPI: SPI_CS SPI: SPI_CS		
10)	SDIO_DATA0/MOS I	Inout	SDIO 4-bit: Data [0] SDIO 1-bit: Data line SDIO-SPI: SPI_DIN (MOSI) SPI: SPI_DIN		
11)	SDIO_DATA1/MIS O	Inout	SDIO 4-bit: Data [1]/Interrupt SDIO 1-bit: Interrupt SDIO-SPI: Reserved SPI: SPI_DOUT		
12)	SDIO_DATA2/SPI_ INTR	Inout	SDIO 4-bit: Data [2]/Read wait SDIO 1-bit: Read wait SDIO-SPI: SPI_DOUT SPI: SPI_INT ²		
13)	SDIO_DATA3	Inout	SDIO 4-bit: Data [3] SDIO 1-bit: Reserved SDIO-SPI: SPI_INT SPI: Reserved		
14)	REF_CLK	Input	Reference Clock source: 40MHz.		

² SPI_INT is used to raise an interrupt, level triggered active_high, upon events in the chip pertaining to SPI host interface.

Pin No.	Pin Name Pin Type Description				
15)	RESET_n	Input	Power-on reset. Active low, and required to be active for at least 20 ms		
16)	GND	Ground	Ground		
17)	DVDD33	Power	3.3 Volts Input to the I/O Rail		
18)	UART1_OUT	Inout	UART Port1 output. This is a firmware configured GPIO pin. Where not used, it should be left open. The default firmware does not use this pin.		
19)	UART1_IN	Inout	UART Port1 input. This is a firmware configured GPIO pin. Where not used, it should be left open. The default firmware does not use this pin.		
20)	UART2_OUT	Inout	UART Port2 output. This is a firmware configured GPIO pin. Where not used, it should be left open. The default firmware does not use this pin.		
21)	UART1_CTS	Inout	UART Port1 CTS. This is a firmware configured GPIO pin. Where not used, it should be left open. The default firmware does not use this pin.		
22)	UART1_RTS	Inout	UART Port1 RTS. This is a firmware configured GPIO pin. Where not used, it should be left open. The default firmware does not use this pin.		
23)	XTAL_EN	Output	This signal controls an external reference clock oscillator for powersave purposes. 1 - Enable 0 - Disable		
24)	LED_ON	Inout	LED Control signal. Indicates activity on WLAN – the device pulls this line low when the module is activated. To be connected to the Cathode of an LED with a recommended series resistor of 820 ohms to VDD.		
25)	GND	Ground	Ground		

Pin No.	Pin Name	Pin Type	Description		
26)	GND	Ground	Ground		
27)	VINBCKDC	Power	3.3 Volts input to the PMU		
28)	GPIO_0	Inout	General purpose input/output. In the default configuration this is programmed as an output and should be left unconnected.		
29)	BT_PRIORITY	Input	Indicates through 'logic high' that BT is transmitting high priority traffic. This is a firmware configured GPIO pin. Where not used, it should be left open.		
30)	GND	Ground	Ground		
31)	WLAN_ACTIVE	Output	When configured for BT coexistence, this is an output and indicates with logic high that WLAN activity is in progress. When low, BT device has the opportunity to transmit. This is a firmware configured GPIO pin. Where not used, it should be left open.		
32)	SLEEP_CLK_IN	Input	Sleep clock input is NC for default firmware. An external 32KHz signal is fed to this pin if the external 32KHz input mode is selected. Please refer to notes on Sleep Clock Input for more details.		
33)	BT_ACTIVE	Input	This signal may be used by an external Bluetooth device to indicate its activity or impending activity. This signal is not used in the default BT coexistence firmware. This is a firmware configured GPIO pin. Where not used, it should be left open.		
34)	SLEEP_CLK_X2	Input	32KHz crystal connection The pin should be left open except as describe in mode (iii) as described in note below for Sleep Clock Input.		
35)	SLEEP_CLK_X1	Input	32KHz crystal connection		

Pin No.	Pin Name	Pin Type	Description		
			The pin should be left grounded except as describe in mode (iii) as described in note below for Sleep Clock Input.		
36)	UART2_IN	Inout	UART-2 input. This is a firmware configured GPIO pin. Where not used, it should be left open.		
37)	VOUTBCKDC1P3	Power	Internal DC-DC convertor output. A Schottky diode is to be placed on this line for protection.		
38)	FBDC1P3	Power	Feedback for the DC-DC Converter Input to the LDO's. This has to be connected to FBDC1P3.		
39)	VINLDOP123	Power	Input to the LDO's. Connect this to FBDC1P3.		
40)	NC	No-connect	This pin is to be left unconnected		
41)	NC	No-connect	This pin is to be left unconnected		
42)	NC	No-connect	This pin is to be left unconnected		
43)	VRF33	Power	3.3 Volts input to the RF transceiver		
44)	VRF33	Power	3.3 Volts input to the RF transceive		
45)	GND	Ground	Ground		
46)	PSPI_CSN1	Output	When enabled as a SPI interface pin, this is the chip-select output from SPI Master. This is a firmware configured GPIO pin. Where not used, it should be left open. Default firmware does not use this pin		
47)	PSPI_MISO	Input	When enabled as a SPI interface pin, this is the SPI Master data input. This is a firmware configured GPIO pin. Where not used, it shoul be left open. Default firmware does not use this pin.		
48)	PSPI_MOSI	Output	When enabled as a SPI interface pin, this is the SPI Master data output. This is a firmware configured GPIO pin. Where not used, it should be left open. Default firmware does not use this pin.		
49)	PSPI_CLK	Output	When enabled as a SPI interface		

Pin No.	Pin Name	Pin Type	Description		
			pin, this is the SPI Master clock output. This is a firmware configured GPIO pin. Where not used, it should be left open. Default firmware does not use this pin.		
50)	MODE_SEL_0	Input	BOOT MODE: On no-connect, boot parameters will be loaded from internal flash. Should be left unconnected so as to enable bootloading.		
51)	MODE_SEL_1	Input	SDIO MODE: No connect. SPI Mode: Connect pull down of 4.7Kohms.		
52)	VRF28	Power	2.8 Volts LDO O/P		
53)	HOST_WAKEUP_IN T	Output	This pin is a GPIO. If this is not used, it should be left open. This pin is to be used by those hosts which enter into power save mode and which are not able to detect the regular interrupt pin in that power save mode. If used as HOST_WAKEUP_INT, a pull-up or pull-down of 100K has to be connected on this pin based on the polarity indicated to the firmware. Active low requires a pull-up. Active high requires a pull-down.		
54)	XTAL_EN_IP	Input	This is a GPIO signal by default and it should be left open. If used, it can be configured through firmware to be combined, through a logical OR operation, with the internal oscillator enable and the output given on XTAL_EN pin. This can be used when a crystal oscillator is shared between the WLAN module and other functional blocks in the system.		
55)	GPIO_1	Inout	General purpose input/output. In the default configuration this is programmed as an output and should be left unconnected.		

Pin No.	Pin Name	Pin Type	Description	
56)	GND	Ground	Ground	
57)	RF_OUT	Rfin/Rfout	Antenna Port-50 ohms Impedance	
58)	GND	Ground	Ground	

Notes:

- Some interfaces are not used in the default configuration or mode of operation. These include the I2C, GPIO, and UART interfaces. These may be used in custom applications with appropriate firmware. These are all fundamentally Inout signals and may be configured either as input or output.
- JTAG functionality is not included in default firmware.
- The Bluetooth coexistence interface (BT_PRIORITY, WLAN_ACTIVE, BT_ACTIVE) are also general purpose I/O signals and may be reprogrammed to be inputs or outputs as needed. Please refer to BT coexistence application note for more details.
- Sleep clock input:

This should be a 32 kHz clock and is used in power-save modes, if chosen. During the low power sleep state, the module's wake-up timer uses the sleep clock - which can have one of three sources

i) an internal 32 kHz oscillator

This is the recommended mode of operation.

- ii) a 32 kHz clock fed into this pin,
- iii) a 32 kHz crystal connected to pins SLEEP_CLK_X2 and SLEEP_CLK_X1.

NOTE: The recommended mode of operation is i).

This is a firmware configured GPIO pin and where not used, should be left open.

By default, an internal 32KHz oscillator is used.

- Please refer to the Module Integration Guide document for reference schematics and the list of recommended part numbers.
- Please contact Redpine for application notes or for customization of a solution.

4: Electrical Characteristics

4.1: Absolute Maximum Ratings

Absolute maximum ratings in the table given below are the values beyond which the device could be damaged. Functional operation at these conditions or beyond these conditions is not guaranteed.

Parameter	Symbol	Value	Units
Input Supply voltage	Vin	3.6	V
Supply voltage for I/O Rail	DVDD33	3.6	٧
Supply Voltage for the RF	VRF33	3.6	V
RF Input Level	RFIN	10	dBm
Storage temperature	T _{store}	-65 to 150	°C
Electrostatic discharge tolerance (HBM)	ESD _{HBM}	2000	V
Electrostatic discharge tolerance (MM)	ESD _{MM}	200	V
Electrostatic discharge tolerance (CDM)	ESD _{CDM}	500	V

Table 1: Absolute Maximum Ratings

4.2: Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Units
Input Supply voltage	V_{IN}	3.1	3.3	3.6	٧
Supply voltage for I/O Rail	DVDD33	3.1	3.3	3.6	V
Supply Voltage for the RF	VRF33	3.1	3.3	3.6	V
Ambient temperature	Ta	-40	25	85	°C

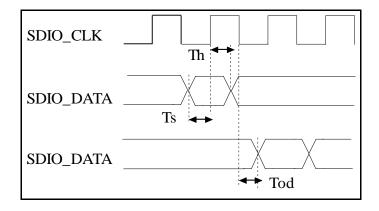
Table 2: Recommended Operating Conditions

Relative Humidity: 5 to 95%, non-condensing

4.3: DC Characteristics - Digital I/O Signals

Parameter	Min.	Тур.	Max.	Units
Input high voltage	2	1	3.6	V

Parameter	Min.	Тур.	Max.	Units
Input low voltage	-0.3	-	0.8	>
Output low voltage	-	-	0.4	٧
Output high voltage	2.4	-	-	٧
Input leakage current (at 3.3V or 0V)	-	-	±10	μА
Tristate output leakage current (at 3.3V or 0V)	-	-	±10	μΑ


Table 3: Input/Output DC Characteristics

4.4: AC Characteristics - Digital I/O Signals

4.4.1: SDIO Interface 4.4.1.1: Full Speed Mode

Parameter	Symbol	Min.	Тур.	Max.	Units
SDIO_CLK	Tsdio	0		25	MHz
SDIO_DATA, input setup time	Ts	5	-	-	ns
SDIO_DATA, input hold time	Th	2	-	-	ns
SDIO_DATA, clock to output delay	Tod	5	-	11	ns

<u>Table 4: AC Characteristics – SDIO Interface Full-Speed Mode</u>

<u>Figure 6: Interface Timings – SDIO Interface Full-Speed Mode</u>

4.4.1.2: High Speed Mode

Parameter	Symbol	Min.	Тур.	Max.	Units
SDIO_CLK	Tsdio	25	-	50	MHz
SDIO_DATA, input setup time	Ts	5	-	-	ns
SDIO_DATA, input hold time	Th	2	-	-	ns
SDIO_DATA, clock to output delay	Tod	5.5	-	12.5	ns

Table 5: AC Characteristics - SDIO Interface High-Speed Mode

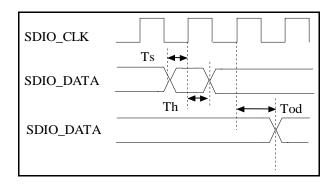


Figure 7: Interface Timings - SDIO Interface High-speed Mode

4.4.2: SPI Interface

The SPI Interface is a full duplex serial host interface, which supports 8-bit and 32-bit data granularity. It also supports gated mode of SPI clock and both the low and the high frequency modes. Incase of low frequency host, the data is driven on the falling edge and sampled on the rising edge and hence, it should be ensured that a valid data is present on the bus at the immediate rising edge after the SPI chip select is driven low. For high frequency transmission the data is driven as well as sampled on rising edge.

This interface has the interrupt pin along with the regular signals clock, chip select, data in and data out. Device interrupts the host processor regarding the packet pending event through this interrupt pin. This is an active high signal, and this will get cleared only after clearing the source of the interrupt, i.e. reading the pending packet from device. This will be generally connected to a GPIO pin of host platform and GPIO has to be configured for detecting interrupt on level high, and interrupt from this GPIO has to be mapped to driver ISR.

The SPI Slave supports mode 0 (SPI_POL=0, SPI_PHA=0) and mode 3 (SPI_POL=1, SPI_PHA=1).

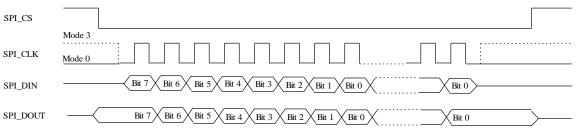
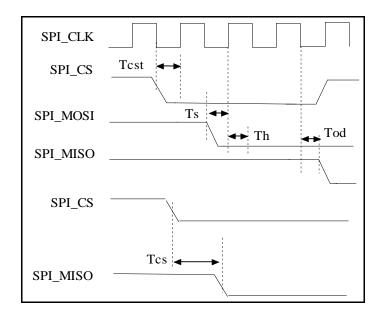



Figure 8: SPI Protocol

4.4.2.1: Full Speed Mode

Parameter	Symbol	Min.	Тур.	Max.	Units
SPI_CLK	Tspi	0		25	MHz
SPI_CS to output delay	Tcs	3.5	-	7.5	ns
SPI CS to input setup time	Tcst	5.5	-	-	
SPI_DIN (MOSI), input setup time	Ts	1	-	-	ns
SPI_DIN (MOSI), input hold time	Th	1.5	-		ns
SPI_DOUT (MISO), clock to output delay	Tod	4	-	9	ns

<u>Table 6: AC Characteristics – SPI Interface Full-Speed Mode</u>

<u>Figure 9: Interface Timings – SPI Interface Full-Speed Mode</u>

4.4.2.2: High Speed Mode

Parameter	Symbol	Min.	Тур.	Max.	Units
SPI_CLK	Tspi	25	-	75	MHz
SPI_CS to output delay	Tcs	3.5	-	7.5	ns
SPI CS to input setup time	Tcst	5.5	-	-	
SPI_MOSI, input setup time	Ts	1	-		ns
SPI_MOSI, input hold time	Th	1.5	-		ns
SPI_MISO, clock to output delay	Tod	4	-	9.5	ns

<u>Table 7: AC Characteristics - SPI Interface High-Speed Mode</u>

<u>Figure 10: Interface Timings – SPI Interface High-Speed Mode</u>

4.4.3: Reset Timing

Following diagram shows the timing requirement for reset_n input in two scenarios. If external power supply (instead of 2.8V coming out of the module) is used for reference clock crystal oscillator, it has to be taken care that oscillator output is stable before releasing reset. When using 2.8V coming out of module as power supply for reference clock crystal oscillator, maximum oscillator stabilization time after feeding power has to be 10ms.

- A. Powerup
- B. Giving hard reset without power reset

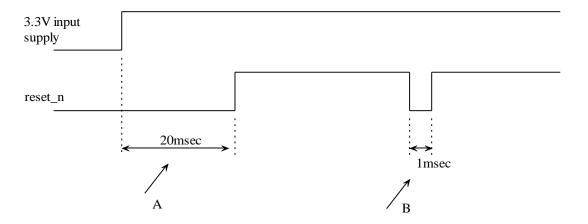


Figure 11: Reset Pin Timing Diagram

4.4.4: JTAG Interface

Parameter	Symbol	Min.	Тур.	Max.	Units
тск	Tjtag	0		5	MHz
TDI, setup time	Tstdi	5	-	-	ns
TDI, hold time	Thtdi	5	-	-	ns
TMS, setup time	Tstms	5	-	-	ns
TMS, hold time	Thtms	5	-	-	ns
TDO, clock to output valid	Totdo	0	-	14	ns

<u>Table 8: AC Characteristics – JTAG Interface</u>

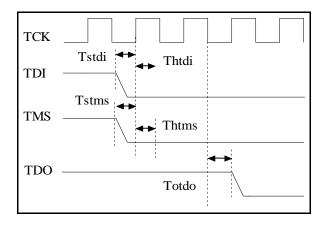


Figure 12: Interface Timings - JTAG Interface

5: Module Power Consumption

The following is the typical power consumption data for the RS9110-N-11-02 802.11b/g/n module. A single point 3.3V supply is used. Transmit power at antenna is 15dBm.

Mode	Conditions	Module Current
Standard Operat	ional Modes – 2.4 GHz	
Data Transfer – Transmit TCP	1Mbps throughput	19 mA
Data Transfer – Transmit TCP	2Mbps throughput	30 mA
Data Transfer – Transmit TCP	22 Mbps throughput	200 mA
Data Transfer – Receive TCP	1Mbps throughput	17 mA
Data Transfer – Receive TCP	2Mbps throughput	24 mA
Data Transfer – Receive TCP	22 Mbps throughput	149 mA
Listen	Receive mode, with no active packet reception in progress	110 mA
Standby	Remaining connected to the Access Point, in Power-Save mode, with DTIM=3, beacon interval of 200 ms	1.10 mA
Sleep	Not connected to an AP; ready to connect upon driver command. The module can transition to any active mode in less than 2.5 ms.	0.52 mA

Note:

- 1. The current numbers mentioned include the current drawn by the crystal oscillator.
- 2. Applications where wireless LAN module is inactive for extended periods of time an external power switch can be integrated. This may be used to obtain idle current of less than 5 uAmp which would be the leakage current of the power switch.

6: Performance Specifications

6.1: Wireless Specifications

Feature	Description
Frequency Band	2.400 - 2.500 GHz (2.4 GHz ISM band)
Frequency Reference	40 MHz
Modulation	OFDM with BPSK, QPSK, 16-QAM, and 64-QAM 802.11b with CCK and DSSS
Supported Data Rates	802.11n: 6.5, 13, 19.5, 26, 39, 52, 58.5, 65 Mbps 802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps 802.11b: 1, 2, 5.5, 11 Mbps
802.11n Features	MCS 0-7, STBC, RIFS, Greenfield Protection A-MPDU, A-MSDU Aggregation with Block-ack, PSMP, and MTBA
Typical Transmit Power (+/- 2 dBm)	17 dBm for 802.11b DSSS 17 dBm for 802.11b CCK 15 dBm for 802.11g/n OFDM

Table 9: Wireless Specificiation

6.2: Receive Characteristics

6.2.1: Sensitivity

Data Rate	Typical Sensitivity (+/- 1.5 dBm)
1 Mbps	-97.0 dBm (< 8% PER)
2 Mbps	-93.0 dBm (< 8% PER)
11 Mbps	-88.9 dBm (< 8% PER)
6 Mbps	-91.0 dBm (<10% PER)
54 Mbps	-75.0 dBm (< 10% PER)
65 Mbps	-71.9 dBm (< 10% PER)

Table 10: Receive sensitivity

6.3: Standards Compliance

RS9110-N-11-02 is compliant with the requirements of IEEE 802.11b, 802.11g, and 802.11n that include the following:

- Transmit Spectral Mask
- Transmit Center Frequency Leakage

- Transmit Center Frequency Tolerance
- Symbol Clock Frequency Tolerance
- Transmit Constellation error
- Receiver Adjacent Channel Interference Rejection
- Receiver Non-adjacent Channel Rejection
- Receiver Minimum Input Level
- Receiver Maximum Input Level

7: Software Details

The RS9110-N-11-02 provides a zero-host-load system architecture by implementing most of the 802.11 MAC functions in its internal multi-threaded ThreadArch™ processor. The driver consumes less than 5 MIPS from the host processor, giving the freedom to the host processor to run its own applications.

7.1: Architecture

The following diagram depicts the software architecture of the solution.

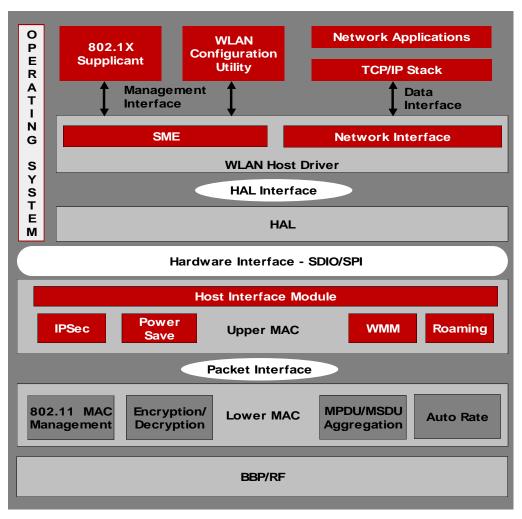


Figure 13: RS9110-N-11-02 Software Architecture

7.2: Details

This section provides an overview of the functionality of each of the key modules in the WLAN system.

7.2.1: 802.1x Supplicant

- WPA/WPA2-Personal mode functionality
- WPA/WPA2-EAP exchanges for entreprise mode
- Key negotiation and management WEP, TKIP, and CCMP
- Pre-authentication and PMKSA caching for roaming

7.2.2: Configuration Utility

- It is a user-mode application to manage the wireless network connection
- SSID selection
- Channel and rate selection
- Key management
- Configuration of 802.11 parameters

7.2.3: WLAN Driver

- Consumes < 5 MIPS from host processor
- Initialization module
- · Baseband and RF programming
- Firmware downloading
- TCP/IP Network Interface Layer
- Transmission of TCP/IP packets
- Indicating received TCP/IP packets
- 802.11 Station Management Module
- Interaction with HAL layer SDIO and SPI
- Power-save modes
 - o Sleep
 - Standby

7.2.4: HAL- Hardware Abstraction Layer

- HAL layer changes depending on the host interface used
- SPI Interface SPI host controller driver
- SDIO Interface SDIO host controller and bus drivers

7.2.5: Upper MAC

- Non-time critical 802.11 MAC functions
- Classification of the packets
- Block-Acknowledgement negotiation
- Power save features
- Transfer of packets from host to LMAC and vice versa

• RNG - Random Number Generation

7.2.6: Lower MAC

- Time-critical 802.11 MAC functionality
- 802.11 frame formatting
- 802.3 frame to 802.11 conversion and vice-versa
- Beacon processing
- Backoff algorithm
- WEP 64 and 128 bit, WPA/WPA2 encryption and decryption
- Auto rate algorithm
- A-MPDU and A-MSDU aggregation
- Re-transmission
- Fragmentation and reassembly

7.3: OS Support

The Lite-Fi[™] family devices including RS9110-N-11-02 support the device drivers and wireless configuration utilities for the following operating systems:

- Windows CE® 5.0 and 6.0
- Linux 2.6.xx kernel
- Windows XP®

8: Ordering Information

8.1: Contact Information

For additional information, please contact Sales at Redpine Signals, Inc.

Redpine Signals, Inc.

2107 North First Street, Suite 680,

San Jose, CA 95131 USA

Phone: +1 408 748 3385

E-mail: sales@redpinesignals.com

Website: http://www.redpinesignals.com/

8.2: Device Ordering Information

The following table lists the part numbers to be used for ordering modules or evaluation boards (EVB). The 'xx' in the part numbers indicate a version number – 01, 02, etc., - identifying the version of the custom firmware that is included with the module or EVB. Redpine can create and provide customized firmware based on user requirements.

Device Number	Description	Packaging	Qualification
RS9110-N-11-02	Standard Part	Tray	Industrial
RS9110-N-11-02-EVB	Evaluation board for standard part	Board	

8.2.1: Device Packaging

- 136 RS9110-N-11-02 modules per tray
- Each tray has 17 rows and 8 columns
- Tray dimensions 14cm x 32.5cm x 0.8cm (L X W X H)
- The device packaging is MSL-3 compliant

8.3: Collateral

The following documentation and software are available along with the RS9110-N-11-02 module.

Module Evaluation Board (EVB) with SDIO host interface

- Device driver and configuration software for Windows XP, Windows CE, or Linux³
- Test mode software
- EVB User Guide
- Software Installation Guide
- Wi-Fi Evaluation Procedure Manual
- Module Integration Guide

³ Please contact Redpine for details of operating systems and processor platforms supported, and for software porting and customization services