2. Pinning information

Table 2. Pinning information

Pin Symbol Description 1 G gate 2 D drain 3 S source mb D mounting base; connected to drain		
2 D drain 3 S source mb D mounting base; connected to drain	Graphic symbol	
3 S source mb D mounting base; connected to drain	_	
mb D mounting base; connected to drain	D	
drain		
	mbb076 S	
SOT78 (TO-220AB)		

3. Ordering information

Table 3. Ordering information

Type number	Package					
	Name	Description	Version			
PSMN015-100P	TO-220AB	plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220AB	SOT78			

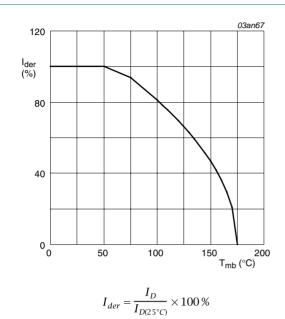
4. Limiting values

Table 4. Limiting values

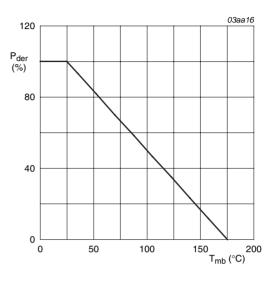
In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage	$T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}$	-	100	V
V_{DGR}	drain-gate voltage	$T_j \le 175 \text{ °C}; T_j \ge 25 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$	-	100	V
V_{GS}	gate-source voltage		-20	20	V
I_D	drain current	$V_{GS} = 10 \text{ V}; T_{mb} = 100 \text{ °C}; \text{ see } \frac{\text{Figure 1}}{\text{Model}}$	-	60.8	Α
		$V_{GS} = 10 \text{ V}; T_{mb} = 25 \text{ °C}; \text{ see } \frac{\text{Figure 1}}{\text{Mode 1}} \text{ and } \frac{3}{\text{Mode 2}}$	-	75	А
I_{DM}	peak drain current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$; see Figure 3	-	240	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>	-	300	W
T _{stg}	storage temperature		-55	175	°C
Tj	junction temperature		-55	175	°C
Source-dr	ain diode				
I _S	source current	$T_{mb} = 25 ^{\circ}C$	-	75	Α
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$	-	240	Α
Avalanche	ruggedness				
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 36 A; V_{sup} ≤ 50 V; unclamped; t_p = 0.11 ms; R_{GS} = 50 Ω	-	320	mJ

PSMN015-100P_6 © Nexperia B.V. 2017. All rights reserved

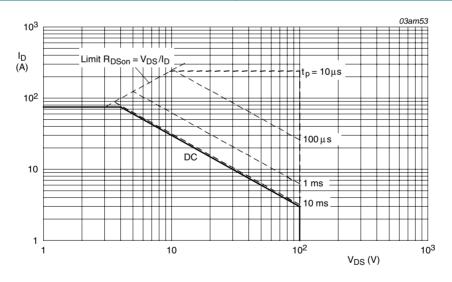

Product data sheet

2 of 12


Product data sheet

Downloaded from Arrow.com.

N-channel TrenchMOS SiliconMAX standard level FET


Normalized continuous drain current as a function of mounting base temperature

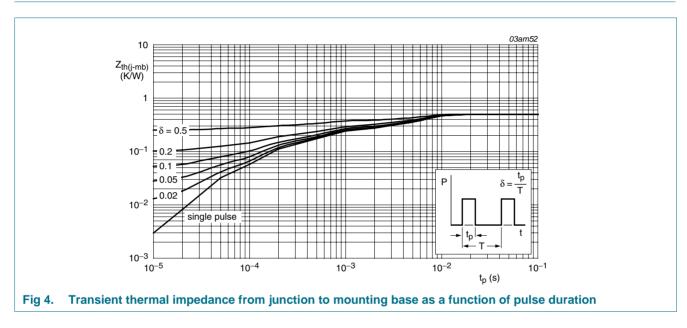
$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100\%$$

3 of 12

Normalized total power dissipation as a Fig 2. function of mounting base temperature

 $T_{mb} = 25$ °C; I_{DM} is single pulse; $V_{GS} = 10V$

Safe operating area; continuous and peak drain currents as a function of drain-source voltage Fig 3.


4 of 12

N-channel TrenchMOS SiliconMAX standard level FET

Thermal characteristics

Table 5. **Thermal characteristics**

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j\text{-}mb)}$	thermal resistance from junction to mounting base	see Figure 4	-	-	0.5	K/W
$R_{th(j-a)}$	thermal resistance from junction to ambient	vertical in still air	-	60	-	K/W

Characteristics

Table 6. Characteristics

Table 6.	Characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	racteristics					
V _{(BR)DSS} drain-source		$I_D = 250 \mu A; V_{GS} = 0 V; T_j = -55 °C$	89	-	-	V
	breakdown voltage	$I_D = 250 \mu A; V_{GS} = 0 V; T_j = 25 °C$	100	-	-	V
V _{GS(th)}	gate-source threshold	$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; $T_j = 175 \text{ °C}$; see Figure 8	1	-	-	V
	voltage	$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; $T_j = -55 \text{ °C}$; see Figure 8	-	-	4.4	V
		$I_D = 1 \text{ mA}$; $V_{DS} = V_{GS}$; $T_j = 25 \text{ °C}$; see Figure 8	2	3	4	V
I _{DSS}	drain leakage current	$V_{DS} = 100 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$	-	0.05	10	μA
		V _{DS} = 100 V; V _{GS} = 0 V; T _j = 175 °C	-	-	500	μA
I _{GSS}	gate leakage current	$V_{GS} = 20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}; \text{ see } \frac{\text{Figure 9}}{\text{Model}}$	-	2	100	nA
		$V_{GS} = -20 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure 9}}{\text{ of } T_j}$	-	2	100	nA
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 175 ^{\circ}\text{C};$ see Figure 9 and 10	-	32.4	40.5	mΩ
		$V_{GS} = 10 \text{ V}; I_D = 25 \text{ A}; T_j = 25 ^{\circ}\text{C};$ see Figure 9 and 10	-	12	15	mΩ
Dynamic	characteristics					
Q _{G(tot)}	total gate charge	I_D = 75 A; V_{DS} = 80 V; V_{GS} = 10 V; T_j = 25 °C; see <u>Figure 11</u>	-	90	-	nC
Q_{GS}	gate-source charge	$I_D = 75 \text{ A}; V_{DS} = 80 \text{ V}; V_{GS} = 10 \text{ V};$ see <u>Figure 11</u>	-	20	-	nC
Q_{GD}	gate-drain charge	$I_D = 75 \text{ A}; V_{DS} = 80 \text{ V}; V_{GS} = 10 \text{ V}; T_j = 25 ^{\circ}\text{C};$ see <u>Figure 11</u>	-	35	-	nC
C _{iss}	input capacitance	$V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V}; f = 1 \text{ MHz}; T_j = 25 °C;$	-	4900	-	pF
C _{oss}	output capacitance	see Figure 12		390	-	pF
C _{rss}	reverse transfer capacitance		-	220	-	pF
t _{d(on)}	turn-on delay time	$V_{DS} = 50 \text{ V}; R_L = 1.8 \Omega; V_{GS} = 10 \text{ V};$	-	25	-	ns
t _r	rise time	$R_{G(ext)} = 5.6 \Omega; T_j = 25 °C$	-	65	-	ns
t _{d(off)}	turn-off delay time			95	-	ns
t _f	fall time			50	-	ns
Source-di	rain diode					
V_{SD}	source-drain voltage	$I_S = 25 \text{ A}$; $V_{GS} = 0 \text{ V}$; $T_j = 25 \text{ °C}$; see Figure 13	-	8.0	1.1	V
t _{rr}	reverse recovery time	$I_S = 20 \text{ A}$; $dI_S/dt = -100 \text{ A/}\mu\text{s}$; $V_{GS} = 0 \text{ V}$;	-	80	-	ns
Qr	recovered charge	$V_{DS} = 25 \text{ V}; T_j = 25 \text{ °C}$		115	-	nC

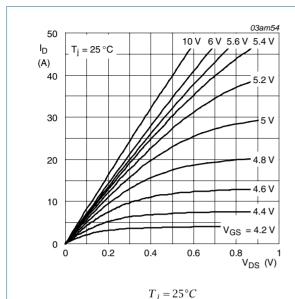


Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values

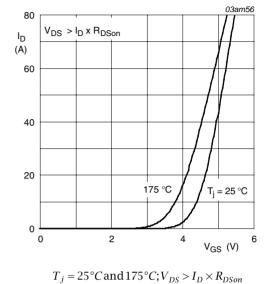
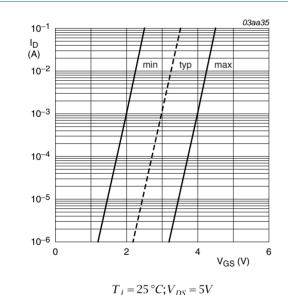



Fig 6. Transfer characteristics: drain current as a

function of gate-source voltage; typical values

Sub-threshold drain current as a function of gate-source voltage

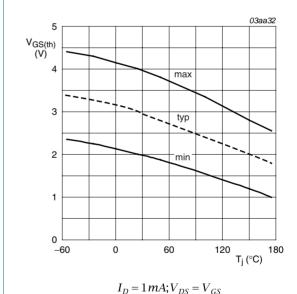


Fig 8. Gate-source threshold voltage as a function of junction temperature

6 of 12

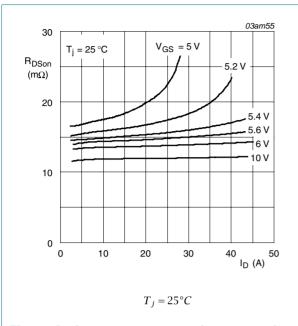


Fig 9. Drain-source on-state resistance as a function of drain current; typical values

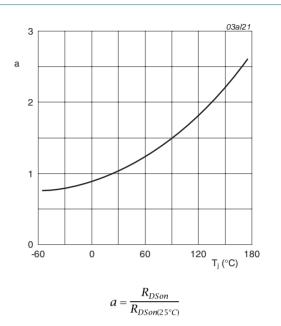


Fig 10. Normalized drain-source on-state resistance factor as a function of junction temperature

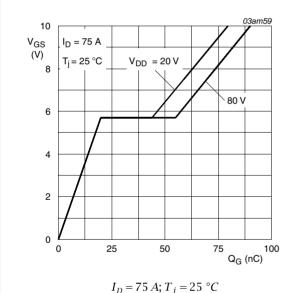
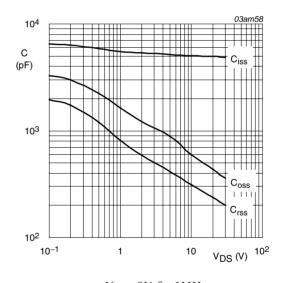



Fig 11. Gate-source voltage as a function of gate charge; typical values

 $V_{GS} = 0V; f = 1MHz$

Fig 12. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

Product data sheet

7 of 12

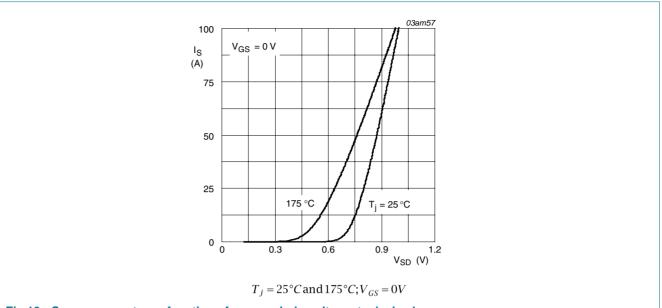


Fig 13. Source current as a function of source-drain voltage; typical values

7. Package outline

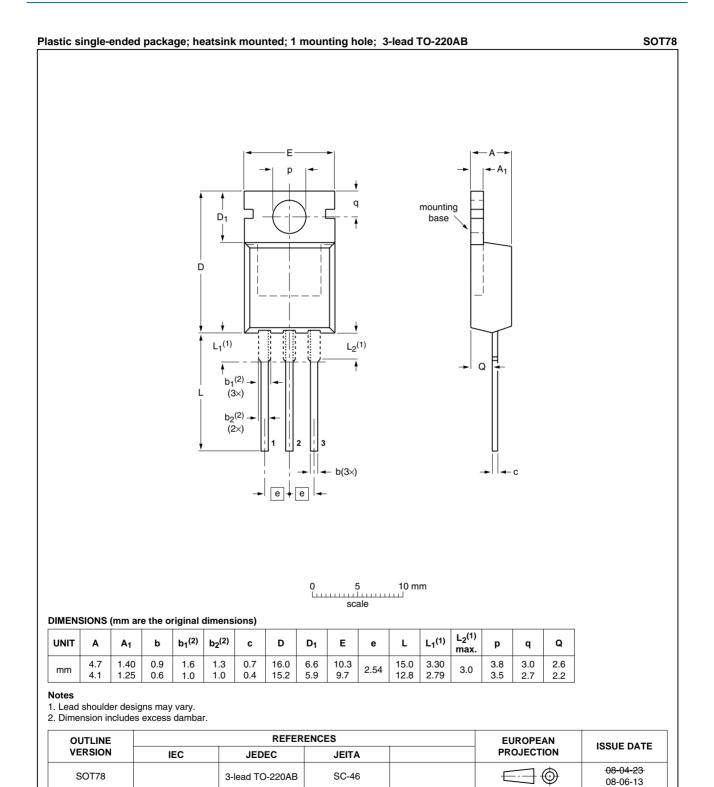


Fig 14. Package outline SOT78 (TO-220AB)

PSMN015-100P_6 © Nexperia B.V. 2017. All rights reserved

10 of 12

N-channel TrenchMOS SiliconMAX standard level FET

Revision history

Table 7. **Revision history**

Document ID	Release date	Data sheet status	Change notice	Supersedes
PSMN015-100P_6	20091217	Product data sheet	-	PSMN015_100P_100B-05
Modifications:		at of this data sheet ha s of NXP Semiconduct	•	d to comply with the new identity
	 Legal text 	ts have been adapted	to the new compa	ny name where appropriate.
	 Type num 	ber PSMN015-100P s	eparated from dat	a sheet PSMN015_100P_100B-05
PSMN015_100P_100B-05	20040114	Product data	-	PSMN015-100_SERIES_4
PSMN015-100_SERIES_4	20030601	Product specification	-	PSMN015-100_SERIES_HG_3
PSMN015-100_SERIES_HG_3	20000328	Product specification	-	PSMN015-100_SERIES_2
PSMN015-100_SERIES_2	19990801	Product specification	-	PSMN015-100_SERIES_1
PSMN015-100_SERIES_1	19990201	Product specification	-	-

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

9.2 Definitions

Draft— The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet— A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General— Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes— Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use— Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications— Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data— The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values— Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale— Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license— Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control— This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

10. Contact information

For more information, please visit:http://www.nexperia.com

For sales office addresses, please send an email to:salesaddresses@nexperia.com

PSMN015-100P 6 © Nexperia B.V. 2017. All rights reserved

11. Contents

1	Product profile
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information
3	Ordering information
4	Limiting values
5	Thermal characteristics4
6	Characteristics5
7	Package outline
8	Revision history10
9	Legal information11
9.1	Data sheet status
9.2	Definitions
9.3	Disclaimers
9.4	Trademarks11
10	Contact information 11