FAIRCHILD

SEMICONDUCTOR

MM74HCT138 3-to-8 Line Decoder

General Description

The MM74HCT138 decoder utilizes advanced silicon-gate CMOS technology, and are well suited to memory address decoding or data routing applications. Both circuits feature high noise immunity and low power consumption usually associated with CMOS circuitry, yet have speeds comparable to low power Schottky TTL logic.

The MM74HCT138 have 3 binary select inputs (A, B, and C). If the device is enabled these inputs determine which one of the eight normally HIGH outputs will go LOW. Two active LOW and one active HIGH enables (G1, G2A and G2B) are provided to ease the cascading decoders.

The decoders' output can drive 10 low power Schottky TTL equivalent loads and are functionally and pin equivalent to

the 74LS138. All inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

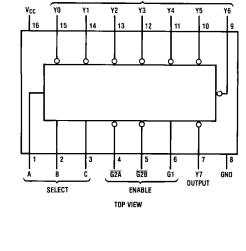
February 1984

Revised February 1999

MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

Features

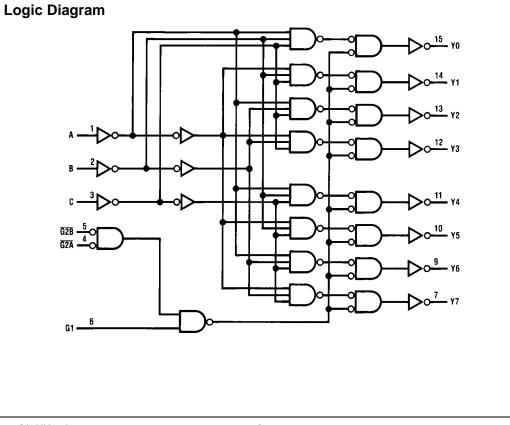
- TTL input compatible
- Typical propagation delay: 20 ns
- Low quiescent current: 80 µA maximum (74HCT Series)
- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads


Ordering Code:

Package Number	Package Description
M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
	M16A M16D MTC16

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram



Truth Table Inputs Outputs Enable Select в G1 G2 С Α Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 (Note 1) Х н Х Х Х н н н н Н Н Н н L Х Х Х Х н Н Н н Н н н Н н L L L L L Н Н н Н н Н н L Н н L L Н L Н н Н н Н Н Н L L Н L Н Н L Н н н Н Н Н L L Н Н Н Н Н Н Н L н Н L Н Н Н L L Н н Н Н L Н Н L н Н н L Н Н Н н Н Н L н Н L Н н н L Н н Н Н Н н L н L н н н н н н н н н н L

H = HIGH Level

L = LOW Level X = Don't Care

Note 1: $\overline{G2} = \overline{G2A} + \overline{G2B}$

Absolute Maximum Ratings(Note 2)

Recommended Operating Conditions

	-
(Note 3)	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC}{+}1.5V$
DC Output Voltage (V _{OUT})	–0.5 to V_{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 4)	600 mW
S.O. Package only	500 mW
Lead Temperature (TL)	
(Soldering 10 seconds)	260°C

	Min	Max	Units		
Supply Voltage (V _{CC})	4.5	5.5	V		
DC Input or Output Voltage					
(V _{IN} , V _{OUT})	0	V_{CC}	V		
Operating Temperature Range (T _A)	-40	+85	°C		
Input Rise or Fall Times					
(t _r , t _f)		500	ns		
Note 2: Absolute Maximum Ratings are those values beyond which dam- age to the device may occur.					

Note 3: Unless otherwise specified all voltages are referenced to ground. Note 4: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics

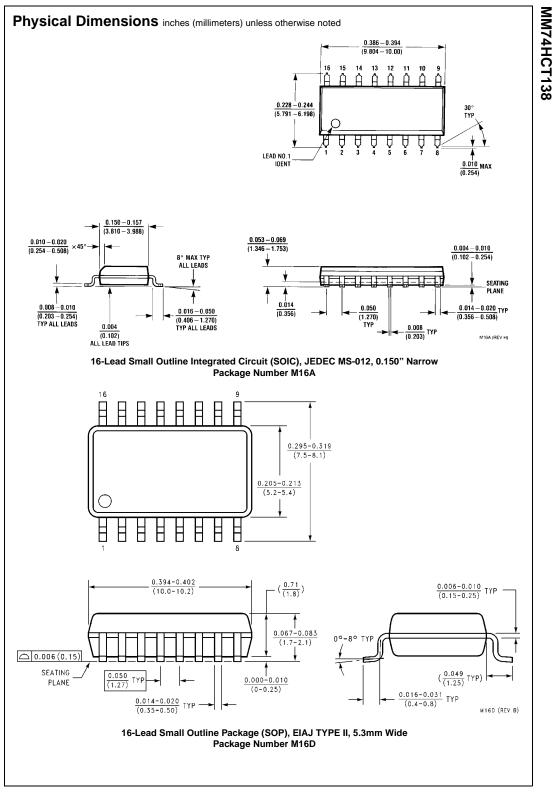
Symbol	Parameter	Conditions	T _A =	= 25°C	$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units	
		Conditions	Тур	Typ Guaranteed Limits			Units	
VIH	Minimum HIGH Level			2.0	2.0	2.0	V	
	Input Voltage							
VIL	Maximum LOW Level			0.8	0.8	0.8	V	
	Input Voltage							
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
c	Output Voltage	$ I_{OUT} = 20 \ \mu A$	V _{CC}	V _{CC} -0.1	V _{CC} - 0.1	V _{CC} - 0.1	V	
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	3.7	V	
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	5.2	4.98	4.84	4.7	V	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$						
	Voltage	$ I_{OUT} = 20 \ \mu A$	0	0.1	0.1	0.1	V	
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	0.2	0.26	0.33	0.4	V	
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	0.4	V	
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND,		±0.1	±1.0	±1.0	μA	
	Current	V _{IH} or V _{IL}						
Icc	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND		8.0	80	160	μA	
	Supply Current	$I_{OUT} = 0 \ \mu A$						
		V _{IN} = 2.4V or 0.5V (Note 5)		0.3	0.4	0.5	mA	

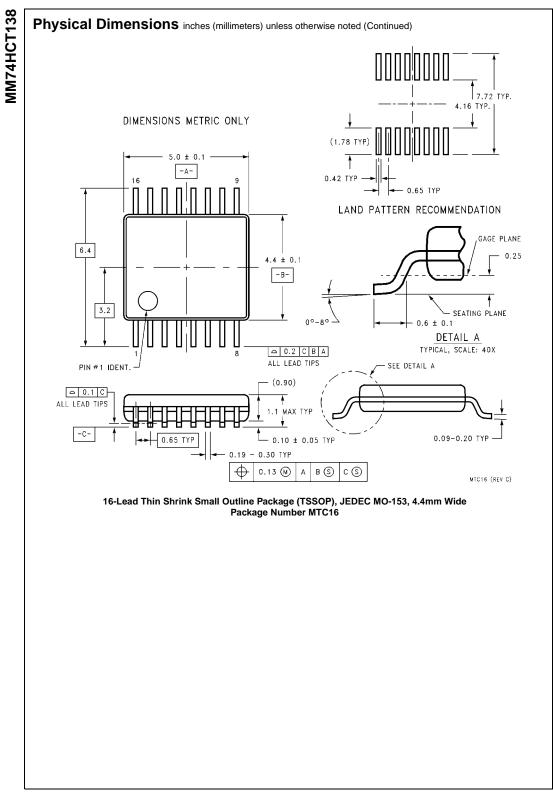
Note 5: This is measured per input pin. All other inputs are held at V_{CC} or ground.

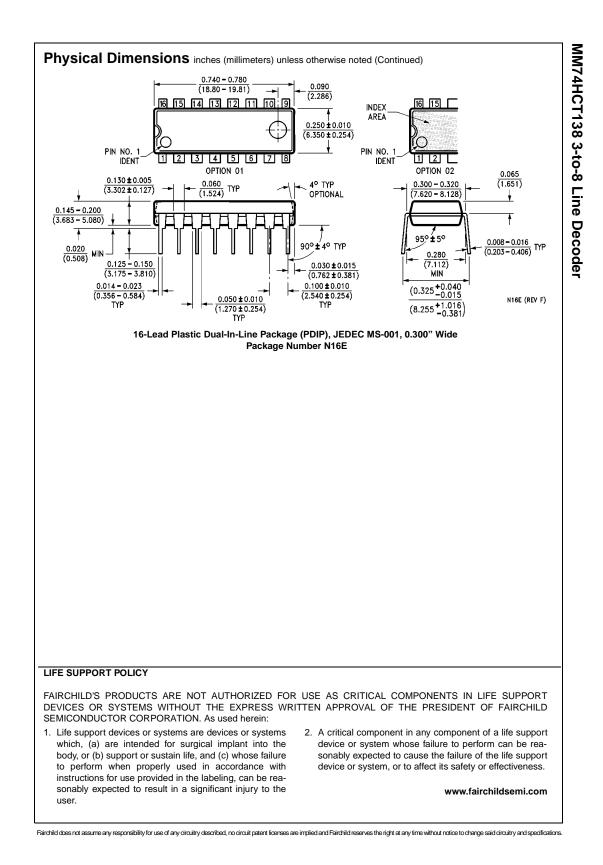
MM74HCT138

AC Electrical Characteristics

$T_{A}\,{=}\,25^{o}C,\,V_{CC}\,{=}\,5.0V,\,t_{r}\,{=}\,t_{f}\,{=}\,6$ ns, $C_{L}\,{=}\,15$ pF (unless otherwise specified)


Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL}	Maximum Propagation Delay, A, B, or C to Output		20	35	ns
t _{PLH}	Maximum Propagation Delay, A, B, or C to Output		13	25	ns
t _{PHL}	Maximum Propagation Delay, G1 to Y Output		14	25	ns
t _{PLH}	Maximum Propagation Delay, G1 to Y Output		13	25	ns
t _{PHL}	Maximum Propagation Delay, G2A or G2B to Y Output		17	30	ns
t _{PLH}	Maximum Propagation Delay, G2A or G2B to Y Output		13	25	ns


AC Electrical Characteristics


 $V_{CC} = 5V \pm 10\%$, $C_L = 50$ pF, $t_r = t_f = 6$ ns (unless otherwise specified)

Symbol	Parameter	Conditions	T _A =	25°C	$T_A = -40$ to $85^{\circ}C$	$T_A = -55 \text{ to } 125^\circ C$	Units
			Тур		Guaranteed L	imits	0.1110
t _{PHL}	Maximum Propagation Delay		24	40	50	60	ns
	A, B, or C to Output						
t _{PLH}	Maximum Propagation Delay		18	30	38	45	ns
	A, B, or C to Output						
t _{PHL}	Maximum Propagation Delay		17	30	38	45	ns
	G1 to Y Output						
t _{PLH}	Maximum Propagation Delay		20	30	38	45	ns
	G1 to Y Output						
t _{PHL}	Maximum Propagation Delay		23	35	43	52	ns
	G2A or G2B to Y Output						
t _{PLH}	Maximum Propagation Delay		18	30	38	45	ns
	G2A or G2B to Y Output						
t _{THL} , t _{TLH}	Maximum Output			15	19	22	ns
	Rise and Fall Time						
CIN	Input Capacitance			5	10	10	pF
C _{PD}	Power Dissipation		55				pF
	Capacitance	(Note 6)					

Note 6: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.