General-Purpose, Low-Voltage, Tiny Pack Comparators

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{DD} to V _{SS})	0.3V to +6V
All Other Pins Except OUT (V _{SS} - 0	0.3V) to (V _{DD} + 0.3V)
Differential Input Voltage (IN+ to IN-)	±3.6V
OUT	(V _{SS} - 03V) to +6V
Continuous Power Dissipation ($T_A = +70^{\circ}C$	C)
SC70 (derate 3.1mW/°C above +70°C).	247mW

SOT23 (derate 3.9mW/°C above +70°C)	312.6mW
Operating Temperature Range	-40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

SC70

 SOT23

Junction-to-Ambient Thermal Resistance (θ_{JA})......255.9°C/W Junction-to-Case Thermal Resistance (θ_{JC}).......81°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

DC ELECTRICAL CHARACTERISTICS—2.7V OPERATION

 $(V_{DD} = 2.7V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25^{\circ}C$, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Offset Voltage	V _{OS}			0.4	7	mV
Input Voltage Hysteresis	V _{HYST}	MAX9648 only		2		mV
Input Offset Voltage Average Temperature Drift	TCV _{OS}			1.5		µV/°C
		$T_A = +25^{\circ}C$		±0.0003	±250	
Input Bias Current	Ι _Β	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			±400	nA
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			±400	1
Input Offset Current		$T_A = +25^{\circ}C$		±0.0003	±50	nA
	I _{OS}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			±150	
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			±150	
Input Voltage Range				-0.1		V
Input voltage hange	V _{CM}			2.0		V
Voltage Gain	A _V	MAX9647 only		500		V/mV
Output Saturation Voltage	V _{SAT}	$I_{SINK} \le 1 mA$		25		mV
Output Sink Current	Ι _Ο	$V_{O} \le 1.5V$	5	16		mA
Supply Current	IS	(Note 3)		52	100	μA
Output Leakage Current		$T_A = +25^{\circ}C$		0.005		
		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$			1	μΑ
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$			2	1

General-Purpose, Low-Voltage, Tiny Pack Comparators

AC ELECTRICAL CHARACTERISTICS—2.7V OPERATION

 $(V_{DD} = 2.7V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25^{\circ}C$, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Propagation Delay Output	t	Input overdrive = 10mV		70			
High to Low (Note 4)	^T PHL	Input overdrive = 100mV		50		ns	
Propagation Delay Output	+	Input overdrive = 10mV		115			
Low to High (Note 4)	^T PLH	Input overdrive = 100mV		100	•	ns	

DC ELECTRICAL CHARACTERISTICS-5.0V OPERATION

 $(V_{DD} = 5V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25^{\circ}C$, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CC	ONDITIONS	MIN	ТҮР	МАХ	UNITS
		$T_A = +25^{\circ}C$			0.4	7	
Input Offset Voltage	V _{OS}	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$	5°C			9	mV
		$T_{A} = -40^{\circ}C \text{ to } +12$	25°C			9	1
Input Voltage Hysteresis		MAX9648 only			2		mV
Input Offset Voltage Average Temperature Drift	TCV _{OS}				1.5		µV/°C
		$T_A = +25^{\circ}C$			±0.007	±250	
Input Bias Current	Ι _Β	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$	5°C			±400	nA
		$T_A = -40^{\circ}C \text{ to } +12$	25°C			±400	1
		$T_A = +25^{\circ}C$			±0.007	±50	
Input Offset Current	I _{OS}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$				±150	nA
		$T_{A} = -40^{\circ}C \text{ to } +125^{\circ}C$				±150	
Input Voltage Range	Maria				-0.1		v
	V _{CM}				4.2		v
Voltage Gain	Av	MAX9647 only		20	500		V/mV
			$T_A = +25^{\circ}C$		120	400	
Output Saturation Voltage	V _{SAT}	I _{SINK} ≤ 4mA	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			700	mV
			$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$			700]
Output Sink Current	IO	$V_{O} \le 1.5V$		10	35		mA
		$T_A = +25^{\circ}C$			60	120	
Supply Current (Note 3)	IS	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$	5°C			150	μA
		$T_{A} = -40^{\circ}C \text{ to } +12$	25°C			170	1
		T _A = +25°C			0.005		
Output Leakage Current		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$	5°C			1	μA
		$T_{A} = -40^{\circ}C \text{ to } +12$				2	1

General-Purpose, Low-Voltage, Tiny Pack Comparators

AC ELECTRICAL CHARACTERISTICS-5.0V OPERATION

 $(V_{DD} = 5V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25^{\circ}C$, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
Propagation Delay Output	+	Input overdrive = 10mV		70			
High to Low (Note 4)	^t PHL	Input overdrive = 100mV		50		ns	
Propagation Delay Output	+	Input overdrive = 10mV		110			
Low to High (Note 4)	^T PLH	Input overdrive = 100mV		100		ns	

DC ELECTRICAL CHARACTERISTICS—1.8V OPERATION

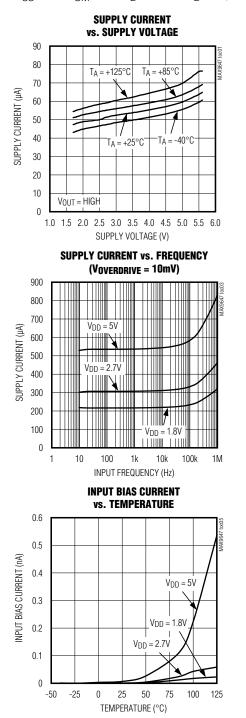
 $(V_{DD} = 1.8V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25^{\circ}C$, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS	
Input Offset Voltage	V _{OS}			0.4	5	mV	
Input Voltage Hysteresis		MAX9648 only		2		mV	
Input Offset Voltage Average Temperature Drift	TCV _{OS}			1.5		µV/°C	
Input Bias Current	Ι _Β			0.0003		nA	
Input Offset Current	I _{OS}			0.0003		nA	
Input Voltage Range	Vou			-0.1		V	
	V _{CM}			1		V	
Output Saturation Voltage	V _{SAT}	$I_{SINK} \le 1mA$		56		mV	
Power-Supply Rejection Ratio	PSRR	$V_{DD} = 1.8V$ to 5.5V	60	90		dB	
Output Sink Current	Ι _Ο	$V_{O} \le 1.5V$		6.4		mA	
Supply Current	IS	(Note 3)		50	100	μA	
Output Leakage Current				0.001		μA	

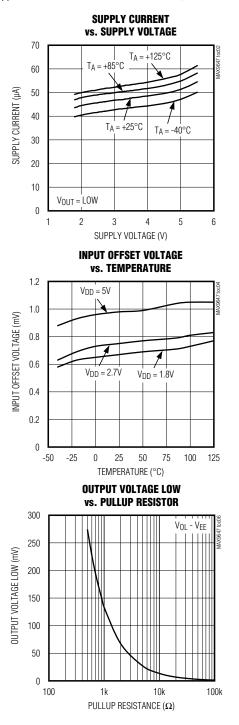
AC ELECTRICAL CHARACTERISTICS—1.8V OPERATION

 $(V_{DD} = 1.8V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega$ connected to V_{DD} , typical values are at $T_A = +25^{\circ}C$, unless otherwise noted. **Boldface** limits apply at the defined temperature extremes.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	МАХ	UNITS	
Propagation Delay Output	+	Input overdrive = 10mV		70			
High to Low (Note 4)	^t PHL	Input overdrive = 100mV		60		ns	
Propagation Delay Output		Input overdrive = 10mV		120			
Low to High (Note 4)	^t PLH	Input overdrive = 100mV		110		ns	

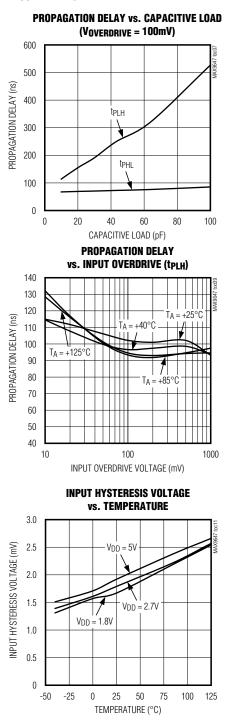

Note 2: All devices are production tested at $T_A = +25^{\circ}C$. All temperature limits are guaranteed by design.

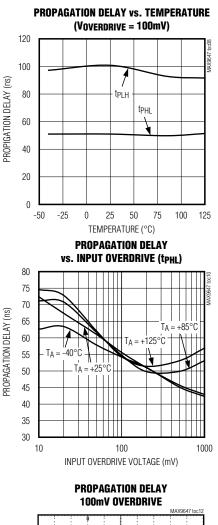
Note 3: Supply current when output is high.

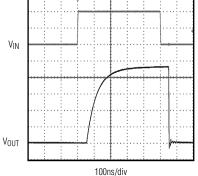

Note 4: Input overdrive is the overdrive voltage beyond the offset and hysteresis-determined trip points.

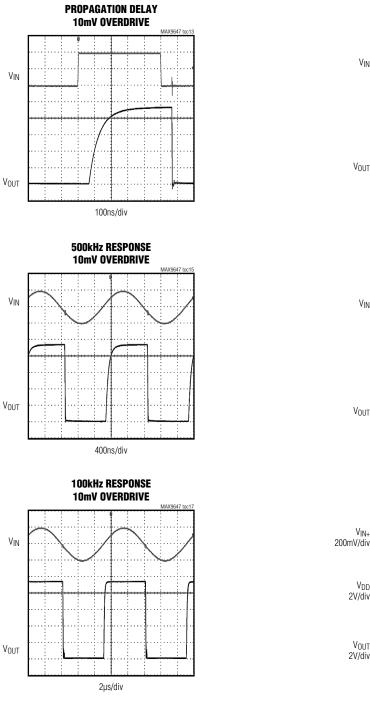
Typical Operating Characteristics

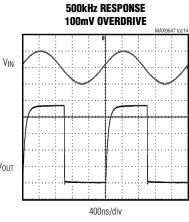
 $(V_{DD} = 5V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega, C_L = 10pF$, overdrive = 100mV, $T_A = +25^{\circ}C$, unless otherwise noted.)

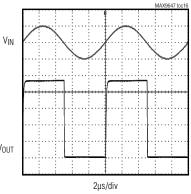




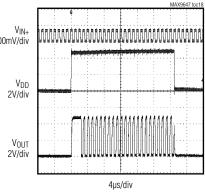

Typical Operating Characteristics (continued)

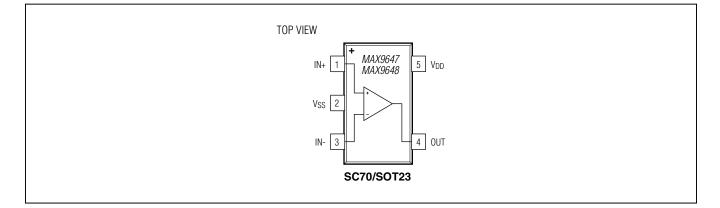





Typical Operating Characteristics (continued)

 $(V_{DD} = 5V, V_{SS} = 0V, V_{CM} = 0V, R_L = 5.1k\Omega, C_L = 10pF$, overdrive = 100mV, $T_A = +25^{\circ}C$, unless otherwise noted.)




100kHz RESPONSE 100mV OVERDRIVE

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	IN+	Noninverting Input
2	V _{SS}	Negative Supply (Connect to GND)
3	IN-	Inverting Input
4	OUT	Comparator Output (Open Drain)
5	V _{DD}	Positive Supply

Detailed Description

The MAX9647/MAX9648 are low-cost, general-purpose comparators that have a single-supply +1.8V to +5V operating voltage range. The common-mode input range extends from -0.1V below the negative supply to within +0.7V of the positive supply. They require approximately 60µA per comparator with a 5V supply and 52µA with a 2.7V supply.

The MAX9648 has 2mV of hysteresis for noise immunity. This significantly reduces the chance of output oscillations even with slow-moving input signals. See the *Typical Operating Characteristics*.

Applications Information

Hysteresis

Many comparators oscillate in the linear region of operation because of noise or undesired parasitic feedback. This tends to occur when the voltage on one input is equal or very close to the voltage on the other input. The MAX9648 has internal hysteresis to counter parasitic effects and noise.

The hysteresis in a comparator creates two trip points: one for the rising input voltage and one for the falling input voltage (Figure 1). The difference between the trip points is the hysteresis. When the comparator's input voltages are equal, the hysteresis effectively causes one comparator input to move quickly past the other, thus taking the input out of the region where oscillation occurs. This provides clean output transitions for noisy, slow-moving input signals.

General-Purpose, Low-Voltage, Tiny Pack Comparators

Additional hysteresis can be generated with two resistors using positive feedback (Figure 2). Use the following procedure to calculate resistor values:

1) Find output voltage when output is high:

2) Find the trip points of the comparator using these formulas:

$$V_{TH} = V_{REF} + ((V_{OUT}(HIGH) - V_{REF})R2)/(R1 + R2)$$

 $V_{TL} = V_{REF} (1 - (R2/(R1 + R2)))$

where V_{TH} is the threshold voltage at which the comparator switches its output from high to low as V_{IN} rises above the trip point, and V_{TL} is the threshold voltage at which the comparator switches its output from low to high as V_{IN} drops below the trip point.

3) The hysteresis band is:

$$V_{HYST} = V_{TH} - V_{TL} = V_{DD}(R2/(R1 + R2))$$

In this example, let V_DD = 5V, V_REF = 2.5V, I_LOAD = 50nA, and R_L = 5.1k $\Omega.$

$$\begin{split} V_{OUT(HIGH)} &= 5.0V - (50 \times 10^{-9} \times 5.1 \times 10^{3} \Omega) \approx 5.0V \\ V_{TH} &= 2.5 + 2.5(R2/(R1 + R2)) \\ V_{TI} &= 2.5(1 - (R2/(R1 + R2))) \end{split}$$

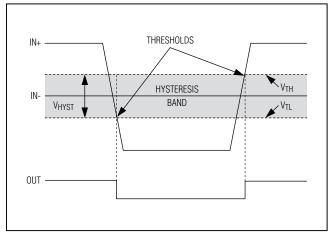


Figure 1. Threshold Hysteresis Band (Not to Scale)

Select R2. In this example, choose 1k $\Omega.$ Select V_{HYST}. In this example, choose 50mV. Solve for R1.

 $V_{HYST} = V_{OUT(HIGH)}(R2/(R1 + R2))V$ 0.050V = 5(1000/(R1 + 1000))V

where R1 \approx 100k $\Omega,$ V_{TH} = 2.525V, and V_{TL} = 2.475V

Choose R1 and R2 to be large enough as not to exceed the amount of current the reference can supply.

The source current required is $V_{REF}/(R1 + R2)$.

The sink current is $(V_{OUT(HIGH)} - V_{REF}) \times (R1 + R2)$.

Choose R_L to be large enough to avoid drawing excess current, yet small enough to supply the necessary current to drive the load. R_L should be between 1k Ω and 10k Ω . Choose R1 to be much larger than R_L to avoid lowering V_{OUT}(HIGH) ir raising V_{OUT}(LOW).

Board Layout and Bypassing

Use 0.1 μ F bypass capacitors from V_{DD} to V_{SS}. To maximize performance, minimize stray inductance by putting this capacitor close to the V_{DD} pin and reducing trace lengths. For slow moving input signals (rise time > 1ms), use a 1nF capacitor between IN+ and IN- to reduce high-frequency noise.

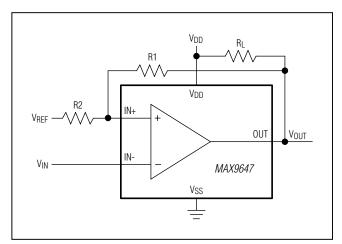


Figure 2. Adding Hysteresis with External Resistors

Chip Information

PROCESS: BICMOS

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
MAX9647AXK+T	-40°C to +125°C	5 SC70	+AUS
MAX9647AUK+T	-40°C to +125°C	5 SOT23	+AFLM
Max9648 AXK+T	-40°C to +125°C	5 SC70	+AUT
MAX9648AUK+T	-40°C to +125°C	5 SOT23	+AFLN

Ordering Information

+Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel.

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SC70	X5+1	<u>21-0076</u>	<u>90-0188</u>
5 SOT23	U5+1	<u>21-0057</u>	<u>90-0174</u>

10

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/11	Initial release	—
1	1/12	Revised the Typical Operating Characteristics.	6
2	1/13	Updated the Absolute Maximum Ratings, added the Package Thermal Characteristics, and revised the Electrical Characteristics.	2–4
3	4/15	No /V OPNs; deleted "Automotive Applications" from <i>Applications</i> section and automotive reference from <i>Detailed Description</i> section	1, 8

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

© 2015 Maxim Integrated

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

11