Contents LFxxAB, LFxxC #### **Contents** | 1 | Diagram 5 | |---|-------------------------------------| | 2 | Pin configuration 6 | | 3 | Maximum ratings | | 4 | Electrical characteristics 8 | | 5 | Typical performance characteristics | | 6 | Package mechanical data 39 | | 7 | Order codes 48 | | В | Revision history | LFxxAB, LFxxC List of tables ### **List of tables** | Table 1. | Device summary | . 1 | |-----------|---|-----| | Table 2. | Absolute maximum ratings | . 7 | | Table 3. | Thermal data | | | Table 4. | Electrical characteristics for LF15AB | . 8 | | Table 5. | Electrical characteristics for LF18AB | | | Table 6. | Electrical characteristics for LF18C | 10 | | Table 7. | Electrical characteristics for LF18CDT-TRY (Automotive Grade) | 11 | | Table 8. | Electrical characteristics for LF25AB | 12 | | Table 9. | Electrical characteristics for LF25ABDT-TRY (Automotive Grade) | 13 | | Table 10. | Electrical characteristics for LF25C | 14 | | Table 11. | Electrical characteristics for LF25CDT-TRY (Automotive Grade) | 15 | | Table 12. | Electrical characteristics for LF33AB | | | Table 13. | Electrical characteristics for LF33C | | | Table 14. | Electrical characteristics for LF33CDT-TRY and LF33CPT-TRY (Automotive Grade) | | | Table 15. | Electrical characteristics for LF50AB | 19 | | Table 16. | Electrical characteristics for LF50ABDT-TRY (Automotive Grade) | 20 | | Table 17. | Electrical characteristics for LF50C | | | Table 18. | Electrical characteristics for LF50CDT-TRY and LF50CPT-TRY (Automotive Grade) | 22 | | Table 19. | Electrical characteristics for LF60AB | 23 | | Table 20. | Electrical characteristics for LF60C | | | Table 21. | Electrical characteristics for LF80AB | | | Table 22. | Electrical characteristics for LF80C | 26 | | Table 23. | Electrical characteristics for LF80CDT-TRY (Automotive Grade) | 27 | | Table 24. | Electrical characteristics for LF85AB | | | Table 25. | Electrical characteristics for LF85C | | | Table 26. | Electrical characteristics for LF85CDT-TRY and LF85CPT-TRY (Automotive Grade) | | | Table 27. | Electrical characteristics for LF90AB | | | Table 28. | Electrical characteristics for LF90C | | | Table 29. | Electrical characteristics for LF120AB | | | Table 30. | Electrical characteristics for LF120C | | | Table 31. | TO-220 mechanical data | | | Table 32. | Order codes | 48 | | Table 33. | Document revision history | 49 | List of figures LFxxAB, LFxxC # **List of figures** | Figure 1. | Block diagram | . 5 | |------------|--|-----| | Figure 2. | Pin connections (top view) | . 6 | | Figure 3. | Test circuit | . 7 | | Figure 4. | Dropout voltage vs. output current | 35 | | Figure 5. | Dropout voltage vs. temperature | 35 | | Figure 6. | Supply current vs. input voltage | 35 | | Figure 7. | Supply current vs. input voltage | 35 | | Figure 8. | Short circuit current vs. input voltage | 35 | | Figure 9. | Supply current vs. temperature | 35 | | Figure 10. | Logic controlled precision 3.3 / 5.0 V selectable output | 36 | | Figure 11. | Sequential multi-output supply | 36 | | Figure 12. | Multiple supply with ON / OFF toggle switch | 37 | | Figure 13. | Basic inhibit functions | 37 | | Figure 14. | Delayed turn-on | 38 | | Figure 15. | Low voltage bulb blinker | 38 | | Figure 16. | Drawing dimension TO-220 (type STD-ST Dual Gauge) | 40 | | Figure 17. | Drawing dimension TO-220 (type STD-ST Single Gauge) | 41 | | Figure 18. | Drawing dimension tube for TO-220 Dual Gauge (mm.) | 42 | | Figure 19. | Drawing dimension tube for TO-220 Single Gauge (mm.) | 42 | | | | | LFxxAB, LFxxC Diagram # 1 Diagram Figure 1. Block diagram Pin configuration LFxxAB, LFxxC # 2 Pin configuration Figure 2. Pin connections (top view) **577** LFxxAB, LFxxC Maximum ratings # 3 Maximum ratings Table 2. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |------------------|--------------------------------------|---------------------------|------| | V _I | DC input voltage | -0.5 to 40 ⁽¹⁾ | V | | I _O | Output current | Internally limited | | | P _{TOT} | Power dissipation | Internally limited | | | T _{STG} | Storage temperature range | -40 to 150 | °C | | T _{OP} | Operating junction temperature range | -40 to 125 | °C | ^{1.} For $18 < V_1 < 40$ the regulator is in shut-down Table 3. Thermal data | Symbol | Parameter | PENTAWATT | TO-220 | TO-220FP | DPAK/PPAK | Unit | |-------------------|-------------------------------------|-----------|--------|----------|-----------|------| | R _{thJC} | Thermal resistance junction-case | 3 | 5 | 5 | 8 | °C/W | | R_{thJA} | Thermal resistance junction-ambient | 50 | 50 | 60 | 100 | °C/W | Figure 3. Test circuit Electrical characteristics LFxxAB, LFxxC ### 4 Electrical characteristics Table 4. Electrical characteristics for LF15AB | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|--|--|------|------|-------|------| | V. | Output voltage | $I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}$ | $I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}$ | | 1.5 | 1.515 | V | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}, T_a =$ | $I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}, T_a = -25 \text{ to } 85^{\circ}\text{C}$ | | | 1.530 | V | | VI | Operating input voltage | I _O = 500 mA | | 2.5 | | 16 | V | | Io | Output current limit | | | | 1 | | Α | | ΔV _O | Line regulation | $V_{I} = 2.5 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$ | | | 2 | 10 | mV | | ΔV _O | Load regulation | $V_I = 2.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | , | | 2 | 10 | mV | | | | $V_{I} = 2.5 \text{ to } 16V, I_{O} = 0\text{mA}$ | ON MODE | | 0.5 | 1 | m A | | I _d | Quiescent current | T _I = 2.8 to 16V, I _O =500mA | | | 12 | mA | | | | | V _I = 6 V OFF 1 | OFF MODE | | 50 | 100 | μΑ | | | | | f = 120 Hz | | 82 | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 3.5 \pm 1 \text{ V}$ | f = 1 kHz | | 77 | | dB | | | | | f = 10 kHz | | 65 | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | V _d | Dropout voltage | I _O = 200 mA | | | 1 | | V | | V _{IL} | Control input logic low | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | | | 0.8 | V | | V _{IH} | Control input logic high | T _a = -40 to 125°C | | 2 | | | V | | I _I | Control input current | $V_1 = 6 \text{ V}, V_C = 6 \text{ V}$ | | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω , $I_O = 0$ to | 500 mA | 2 | 10 | | μF | Table 5. Electrical characteristics for LF18AB | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|---|--|-------|------|-------|------| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 3.3 \text{ V}$ | | 1.782 | 1.8 | 1.818 | V | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 3.3 \text{ V}, T_a =$ | $I_O = 50 \text{ mA}, V_I = 3.3 \text{ V}, T_a = -25 \text{ to } 85^{\circ}\text{C}$ | | | 1.836 | V | | VI | Operating input voltage | I _O = 500 mA | | 3 | | 16 | V | | I _O | Output current limit | | | | 1 | | Α | | ΔV _O | Line regulation | $V_1 = 2.8 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$ | | | 2 | 12 | mV | | ΔV_{O} | Load regulation | $V_1 = 3.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$ | ı | | 2 | 10 | mV | | | | $V_1 = 2.5 \text{ to } 16V, I_0 = 0mA$ | ON MODE | | 0.5 | 1 | A | | I _d | Quiescent current | | | | 12 | mA | | | | | | OFF MODE | | 50 | 100 | μΑ | | | | | f = 120 Hz | | 82 | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 3.5 \pm 1 \text{ V}$ | f = 1 kHz | | 77 | | dB | | | | | f = 10 kHz | | 60 | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | V _d | Dropout voltage | I _O = 200 mA | | | 0.7 | | V | | V _{IL} | Control input logic low | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | | | 0.8 | V | | V _{IH} | Control input logic high | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | 2 | | | V | | I ₁ | Control input current | $V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$ | | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω , $I_O = 0$ to | 500 mA | 2 | 10 | | μF | Table 6. Electrical characteristics for LF18C | Symbol | Parameter | Test condition | s | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|---|--|-------|------|-------|------| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}$ | | 1.764 | 1.8 | 1.836 | V | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}, T_a =$ | -25 to 85°C | 1.728 | | 1.872 | V | | VI | Operating input voltage | I _O = 500 mA | | 3 | | 16 | V | | Io | Output current limit | | | | 1 | | Α | | ΔV _O | Line regulation | $V_I = 2.8 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$ | | | 2 | 12 | mV | | ΔV _O | Load regulation | $V_I = 3.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | | | 2 | 10 | mV | | | | $V_1 = 2.5 \text{ to } 16V, I_0 = 0\text{mA}$ | ON MODE | | 0.5 | 1 | mA | | I _d | Quiescent current | V _I = 3.1 to 16V, I _O =500mA | ON MODE | | | 12 | IIIA | | | | V _I = 6 V | OFF MODE | | 50 | 100 | μΑ | | | | | f = 120 Hz | | 82 | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 3.5 \pm 1 \text{ V}$ | f = 1 kHz | | 77 | | dB | | | | | f = 10 kHz | | 60 | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | V _d | Dropout voltage | I _O = 200 mA | | | 0.7 | | V | | V _{IL} | Control input logic low | T _a = -40 to 125°C | | | | 0.8 | V | | V
_{IH} | Control input logic high | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | 2 | | | V | | I _I | Control input current | $V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$ | $V_1 = 6 \text{ V}, V_C = 6 \text{ V}$ | | 10 | | μΑ | | СО | Output bypass capacitance | ESR = 0.1 to 10 Ω, I_0 = 0 to | 500 mA | 2 | 10 | | μF | Refer to the test circuits, T_A = -40 to 125°C, C_I = 0.1 μ F, C_O = 2.2 μ F unless otherwise specified. Table 7. Electrical characteristics for LF18CDT-TRY (Automotive Grade) | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|---|------------|-------|------|-------|------| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}, T_a =$ | : 25°C | 1.764 | 1.8 | 1.836 | V | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}$ | | 1.713 | | 1.887 | V | | VI | Operating input voltage | I _O = 500 mA | | 3 | | 16 | V | | Io | Output current limit | T _a = 25°C | | | 1 | | Α | | ΔV_{O} | Line regulation | $V_1 = 2.8 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$ | | | 2 | 15 | mV | | ΔV _O | Load regulation | $V_I = 3.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | 1 | | 2 | 15 | mV | | | | $V_{I} = 2.5 \text{ to } 16V, I_{O} = 0\text{mA}$ | ON MODE | | 0.5 | 2 | mA | | I _d | Quiescent current | V _I = 3.1 to 16V, I _O =500mA | ON MODE | | | 12 | IIIA | | | | V _I = 6 V OF | OFF MODE | | 50 | 120 | μΑ | | | | | f = 120 Hz | | 82 | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 3.5 \pm 1 \text{ V}$
$T_a = 25^{\circ}\text{C}$ | f = 1 kHz | | 77 | | dB | | | | - a | f = 10 kHz | | 60 | | | | eN | Output noise voltage | $B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$ | 25°C | | 50 | | μV | | V | Dropout voltage | I _O = 200 mA | | | 0.2 | 1.3 | V | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 1.3 | V | | V _{IL} | Control input logic low | | | | | 0.8 | V | | V _{IH} | Control input logic high | | | 2 | | | V | | II | Control input current | $V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}, T_{a} = 25^{\circ}\text{C}$ | | | 10 | | μA | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω , $I_O = 0$ to | 500 mA | 2 | 10 | | μF | Table 8. Electrical characteristics for LF25AB | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|---|--|-------|------|-------|------| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}$ | | 2.475 | 2.5 | 2.525 | V | | V _O | Output voltage | $I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a =$ | $_{\rm O}$ = 50 mA, $V_{\rm I}$ = 4.5 V, $T_{\rm a}$ = -25 to 85°C | | | 2.550 | V | | VI | Operating input voltage | I _O = 500 mA | | | | 16 | V | | Io | Output current limit | | | | 1 | | Α | | ΔV_{O} | Line regulation | $V_1 = 3.5 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$ | | | 2 | 12 | mV | | ΔV_{O} | Load regulation | $V_1 = 3.8 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$ | | | 2 | 12 | mV | | | | $V_1 = 3.5 \text{ to } 16V, I_0 = 0\text{mA}$ | ON MODE | | 0.5 | 1 | m A | | I _d | Quiescent current | V _I = 3.8 to 16V, I _O =500mA | ON MODE | | | 12 | mA | | | | V _I = 6 V OFF MODE | | 50 | 100 | μΑ | | | | | f = 120 Hz | | 82 | | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 4.5 \pm 1 \text{ V}$ | f = 1 kHz | | 77 | | dB | | | | | f = 10 kHz | | 65 | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | V | Drangut valtage | I _O = 200 mA | | | 0.2 | 0.35 | V | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 0.7 | V | | V _{IL} | Control input logic low | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | | | 0.8 | V | | V _{IH} | Control input logic high | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | T _a = -40 to 125°C | | | | ٧ | | I _I | Control input current | $V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$ | | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω, I_0 = 0 to | 500 mA | 2 | 10 | | μF | Refer to the test circuits, T_A = -40 to 125°C, C_I = 0.1 $\mu F,\, C_O$ = 2.2 μF unless otherwise specified. Table 9. Electrical characteristics for LF25ABDT-TRY (Automotive Grade) | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|---|------------|-------|------|-------|------| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a =$ | : 25°C | 2.475 | 2.5 | 2.525 | V | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}$ | | 2.435 | | 2.565 | V | | V _I | Operating input voltage | I _O = 500 mA | | | | 16 | V | | Io | Output current limit | T _a = 25°C | | | 1 | | Α | | ΔV _O | Line regulation | $V_{I} = 3.5 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$ | | | 2 | 15 | mV | | ΔV_{O} | Load regulation | $V_I = 3.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | 1 | | 2 | 15 | mV | | | | $V_{I} = 3.5 \text{ to } 16V, I_{O} = 0\text{mA}$ | ON MODE | | 0.5 | 2 | m A | | I _d | Quiescent current | $V_{I} = 3.8 \text{ to } 16V, I_{O} = 500 \text{mA}$ | ON MODE | | | 12 | mA | | | | | OFF MODE | | 50 | 120 | μΑ | | | | | f = 120 Hz | | 82 | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 4.5 \pm 1 \text{ V}$
$T_a = 25^{\circ}\text{C}$ | f = 1 kHz | | 77 | | dB | | | | 1a - 25 5 | f = 10 kHz | | 65 | | | | eN | Output noise voltage | $B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$ | 25°C | | 50 | | μV | | | Duanautualtaaa | I _O = 200 mA | | | 0.2 | 1.3 | V | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 1.3 | V | | V _{IL} | Control input logic low | | | | | 0.8 | V | | V _{IH} | Control input logic high | | | 2 | | | V | | I _I | Control input current | $V_I = 6 \text{ V}, V_C = 6 \text{ V}, T_a = 25^{\circ}$ | С | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω, I_0 = 0 to | 500 mA | 2 | 10 | | μF | Table 10. Electrical characteristics for LF25C | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|---|--|------|------|------|------| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}$ | | 2.45 | 2.5 | 2.55 | V | | Vo | Calput Voltago | $I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a =$ | $I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a = -25 \text{ to } 85^{\circ}\text{C}$ | | | 2.6 | V | | V _I | Operating input voltage | I _O = 500 mA | | | | 16 | V | | I _O | Output current limit | | | | 1 | | Α | | ΔV_{O} | Line regulation | $V_I = 3.5 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$ | | | 2 | 12 | mV | | ΔV_{O} | Load regulation | $V_I = 3.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | i | | 2 | 12 | mV | | | | $V_{I} = 3.5 \text{ to } 16V, I_{O} = 0\text{mA}$ | ONLMODE | | 0.5 | 1 | A | | I _d | Quiescent current | V _I = 3.8 to 16V, I _O =500mA | | | | 12 | mA | | | | V _I = 6 V | | | 50 | 100 | μΑ | | | | f = 120 Hz | | 82 | | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 4.5 \pm 1 \text{ V}$ | f = 1 kHz | | 77 | | dB | | | | | f = 10 kHz | | 65 | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | | Duanautualtaaa | I _O = 200 mA | | | 0.2 | 0.35 | | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 0.7 | V | | V _{IL} | Control input logic low | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | | | 0.8 | V | | V _{IH} | Control input logic high | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | 2 | | | V | | I _I | Control input current | $V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$ | | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω, I_0 = 0 to | 500 mA | 2 | 10 | | μF | Refer to the test circuits, T_A = -40 to 125°C, C_I = 0.1 $\mu F,\,C_O$ = 2.2 μF unless otherwise specified. Table 11. Electrical characteristics for LF25CDT-TRY (Automotive Grade) | Symbol | Parameter | Test condition | ns | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|---|---|-------|------|-------|------| | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a =$ | : 25°C | 2.45 | 2.5 | 2.55 | V | | V ₀ | Output voltage | $I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}$ | | 2.385 | | 2.615 | V | | VI | Operating input voltage | I _O = 500 mA | O = 500 mA | | | 16 | V | | Io | Output current limit | T _a = 25°C | | | 1 | | Α | | ΔV _O | Line regulation | $V_I = 3.5 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$ | | | 2 | 15 | mV | | ΔV _O | Load regulation | $V_I = 3.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | 1 | | 2 | 15 | mV | | | | $V_1 = 3.5 \text{ to } 16V, I_0 = 0\text{mA}$ | ON MODE | | 0.5 | 2 | m A | | I _d | Quiescent current | $V_I = 3.8 \text{ to } 16V, I_O = 500 \text{mA}$ | | | | 12 | mA | | | | V _I = 6 V OFF | OFF MODE | | 50 | 120 | μΑ | | | | | f = 120 Hz | | 82 | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 4.5 \pm 1 \text{ V}$
$T_a = 25^{\circ}\text{C}$ | f = 1 kHz | | 77 | | dB | | | | 1a - 20 0 | f = 10 kHz | | 65 | | | | eN | Output noise voltage | $B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$ | 25°C | | 50 | | μV | | | Duanautualtaaa | I _O = 200 mA | | | 0.2 | 1.3 | V | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 1.3 | V | | V _{IL} | Control input logic low | | | | | 0.8 | V | | V _{IH} | Control input logic high | | | | | | V | | I _I | Control input current | $V_I = 6 \text{ V}, V_C = 6 \text{ V}, T_a = 25^{\circ}$ |
V _I = 6 V, V _C = 6 V, T _a = 25°C | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω, I_0 = 0 to | 500 mA | 2 | 10 | | μF | Table 12. Electrical characteristics for LF33AB | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|--|---------------|-------|------|-------|------| | V | Output valtage | $I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}$ | | 3.267 | 3.3 | 3.333 | V | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}, T_a =$ | : -25 to 85°C | 3.234 | | 3.366 | V | | V _I | Operating input voltage | I _O = 500 mA | | | | 16 | V | | Io | Output current limit | | | | 1 | | Α | | ΔV_{O} | Line regulation | $V_1 = 4.3 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$ | | | 3 | 16 | mV | | ΔV_{O} | Load regulation | V _I = 4.6 V, I _O = 5 to 500 mA | | | 3 | 16 | mV | | | | $V_1 = 4.3 \text{ to } 16V, I_O = 0\text{mA}$ | ON MODE | | 0.5 | 1 | A | | I _d | Quiescent current | V _I = 4.6 to 16V, I _O =500mA | ON MODE | | | 12 | mA | | | | V _I = 6 V OFF MODE | | 50 | 100 | μΑ | | | | | | f = 120 Hz | | 80 | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 5.3 \pm 1 \text{ V}$ | f = 1 kHz | | 75 | | dB | | | | | f = 10 kHz | | 65 | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | ., | Duranturalla | I _O = 200 mA | | | 0.2 | 0.35 | V | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 0.7 | V | | V _{IL} | Control input logic low | T _a = -40 to 125°C | | | | 0.8 | V | | V _{IH} | Control input logic high | T _a = -40 to 125°C | | | | | V | | I _I | Control input current | $V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$ | | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω , $I_O = 0$ to | 500 mA | 2 | 10 | | μF | Table 13. Electrical characteristics for LF33C | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|--|-------------|-------|------|-------|------| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}$ | | 3.234 | 3.3 | 3.366 | V | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}, T_a =$ | -25 to 85°C | 3.168 | | 3.432 | V | | VI | Operating input voltage | I _O = 500 mA | | | | 16 | V | | Io | Output current limit | | | | 1 | | Α | | ΔV _O | Line regulation | $V_{I} = 4.3 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$ | | | 3 | 16 | mV | | ΔV _O | Load regulation | $V_I = 4.6 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | 1 | | 3 | 16 | mV | | | | $V_{I} = 4.3 \text{ to } 16V, I_{O} = 0\text{mA}$ | ON MODE | | 0.5 | 1 | m A | | I _d | Quiescent current | $V_I = 4.6 \text{ to } 16V, I_O = 500 \text{mA}$ | ON MODE | | | 12 | mA | | | | V _I = 6 V | OFF MODE | | 50 | 100 | μΑ | | | | f: | f = 120 Hz | | 80 | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 5.3 \pm 1 \text{ V}$ | f = 1 kHz | | 75 | | dB | | | | | f = 10 kHz | | 65 | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | V | Duanautualtaaa | I _O = 200 mA | | | 0.2 | 0.35 | V | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 0.7 | V | | V _{IL} | Control input logic low | T _a = -40 to 125°C | | | | 0.8 | V | | V _{IH} | Control input logic high | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | 2 | | | V | | II | Control input current | $V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$ | | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω, I_0 = 0 to | 500 mA | 2 | 10 | | μF | Refer to the test circuits, T_A = -40 to 125°C, C_I = 0.1 μF , C_O = 2.2 μF unless otherwise specified. Table 14. Electrical characteristics for LF33CDT-TRY and LF33CPT-TRY (Automotive Grade) | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | | |-----------------|---------------------------|---|------------|-----------|------|-------|------|----| | V | Output valtage | $I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}, T_a =$ | : 25°C | 3.234 | 3.3 | 3.366 | V | | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 5.3 \text{ V},$ | | 3.153 | | 3.447 | V | | | VI | Operating input voltage | I _O = 500 mA | | | | 16 | V | | | Io | Output current limit | T _a = 25°C | | | 1 | | Α | | | ΔV_{O} | Line regulation | $V_1 = 4.3 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$ | | | 3 | 19 | mV | | | ΔV_{O} | Load regulation | $V_I = 4.6 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | 1 | | 3 | 19 | mV | | | | | $V_1 = 4.3 \text{ to } 16V, I_0 = 0\text{mA}$ | ON MODE | | 0.5 | 2 | Л | | | I _d | Quiescent current | V _I = 4.6 to 16V, I _O =500mA | ON MODE | - ON MODE | | | 12 | mA | | | | V _I = 6 V OFF MODE | | 50 | 120 | μA | | | | | | | f = 120 Hz | | 80 | | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 5.3 \pm 1 \text{ V}$
$T_a = 25^{\circ}\text{C}$ | f = 1 kHz | | 75 | | dB | | | | | 1 a - 25 5 | f = 10 kHz | | 65 | | | | | eN | Output noise voltage | $B = 10 \text{ Hz to } 100 \text{ KHz}, T_a =$ | 25°C | | 50 | | μV | | | ., | Duranturaltana | I _O = 200 mA | | | 0.2 | 1.3 | V | | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 1.3 | V | | | V _{IL} | Control input logic low | | | | | 0.8 | ٧ | | | V _{IH} | Control input logic high | | | 2 | | | V | | | I _I | Control input current | $V_I = 6 \text{ V}, V_C = 6 \text{ V}, T_a = 25^{\circ}$ | С | | 10 | | μΑ | | | Co | Output bypass capacitance | ESR = 0.1 to 10 Ω , I_{O} = 0 to | 500 mA | 2 | 10 | | μF | | Table 15. Electrical characteristics for LF50AB | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | | |-----------------|---------------------------|---|--|---------|------|------|------|----| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 7 \text{ V}$ | | 4.95 | 5 | 5.05 | V | | | Vo | Output voltage | $I_0 = 50 \text{ mA}, V_1 = 7 \text{ V}, T_a = -6$ | 25 to 85°C | 4.9 | | 5.1 | v | | | V _I | Operating input voltage | I _O = 500 mA | | | | 16 | V | | | Io | Output current limit | | | | 1 | | Α | | | ΔV _O | Line regulation | V _I = 6 to 16 V, I _O = 5 mA | | | 5 | 25 | mV | | | ΔV_{O} | Load regulation | $V_{I} = 6.3 \text{ V}, I_{O} = 5 \text{ to } 500 \text{ mA}$ | 1 | | 5 | 25 | mV | | | | | $V_{I} = 6 \text{ to } 16V, I_{O} = 0\text{mA}$ | ON MODE | | 0.5 | 1 | ^ | | | I _d | Quiescent current | $V_I = 6.3 \text{ to } 16V, I_O = 500 \text{mA}$ | V _I = 6.3 to 16V, I _O =500mA | ON MODE | | | 12 | mA | | | | V _I = 6 V | | | 50 | 100 | μΑ | | | | | | f = 120 Hz | | 76 | | | | | SVR | Supply voltage rejection | $I_0 = 5 \text{ mA}, V_1 = 7 \pm 1 \text{ V}$ | f = 1 kHz | | 71 | | dB | | | | | | f = 10 kHz | | 60 | | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | | | Dranguituslings | I _O = 200 mA | | | 0.2 | 0.35 | V | | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 0.7 | V | | | V _{IL} | Control input logic low | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | | | 0.8 | V | | | V _{IH} | Control input logic high | T _a = -40 to 125°C | | 2 | | | V | | | I _I | Control input current | $V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$ | | | 10 | | μΑ | | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω, I_0 = 0 to | 500 mA | 2 | 10 | | μF | | Refer to the test circuits, T_A = -40 to 125°C, C_I = 0.1 μF , C_O = 2.2 μF unless otherwise specified. Table 16. Electrical characteristics for LF50ABDT-TRY (Automotive Grade) | Symbol | Parameter | Test condition | s | Min. | Тур. | Max. | Unit | |---------------------------------------|---------------------------|---|------------|-------|------|-------|------| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 7 \text{ V}, T_a = 2$ | 5°C | 4.95 | 5 | 5.05 | V | | V _O | Output voltage | I _O = 50 mA, V _I = 7 V | | 4.885 | | 5.115 | V | | VI | Operating input voltage | I _O = 500 mA | | | | 16 | V | | Io | Output current limit | $T_a = 25^{\circ}C$ | | | 1 | | Α | | ΔV _O | Line regulation | $V_I = 6 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$ | | | 5 | 28 | mV | | ΔV _O | Load regulation | $V_I = 6.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | | | 5 | 28 | mV | | | | $V_{I} = 6 \text{ to } 16V, I_{O} = 0\text{mA}$ | ON MODE | | 0.5 | 2 | mΛ | | I _d | Quiescent current | $V_{I} = 6.3 \text{ to } 16V, I_{O} = 500 \text{mA}$ | ON MODE | | | 12 | mA | | | | V _I = 6 V OFF MC | OFF MODE | | 50 | 120 | μΑ | | | | | f = 120 Hz | | 76 | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 7 \pm 1 \text{ V}$
$T_a = 25^{\circ}\text{C}$ | f = 1 kHz | | 71 | | dB | | | | | f = 10 kHz | | 60 | | | | eN | Output noise voltage | $B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$ | 25°C | | 50 | | μV | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Dropout voltage | I _O = 200 mA | | | 0.2 | 1.3 | V | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 1.3 | V | | V _{IL} | Control input logic low | | | | | 0.8 | V | | V _{IH} | Control input logic high | | | 2 | | | V | | I _I | Control input current | $V_1 = 6 \text{ V}, V_C = 6 \text{ V}, T_a = 25^{\circ}\text{C}$ | | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω, I_0 = 0 to | 500 mA | 2 | 10 | | μF | Table 17. Electrical characteristics for LF50C | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | | |-----------------|---------------------------|--|------------------|---------|------|------|------|----| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 7 \text{ V}$ | | 4.9 | 5 | 5.1 | V | | | Vo | Output voltage | $I_0 = 50 \text{ mA}, V_1 = 7
\text{ V}, T_a = -20 \text{ mA}$ | 25 to 85°C | 4.8 | | 5.2 | V | | | V _I | Operating input voltage | I _O = 500 mA | | | | 16 | V | | | Io | Output current limit | | | | 1 | | Α | | | ΔV_{O} | Line regulation | $V_{I} = 6 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$ | | | 5 | 25 | mV | | | ΔV_{O} | Load regulation | $V_I = 6.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | i | | 5 | 25 | mV | | | | | $V_{I} = 6 \text{ to } 16V, I_{O} = 0\text{mA}$ | ONLMODE | | 0.5 | 1 | Л | | | I _d | Quiescent current | $V_I = 6.3 \text{ to } 16V, I_O = 500 \text{mA}$ | ON MODE OFF MODE | ON MODE | | | 12 | mA | | | | V _I = 6 V | | | 50 | 100 | μΑ | | | | | | f = 120 Hz | | 76 | | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 7 \pm 1 \text{ V}$ | f = 1 kHz | | 71 | | dB | | | | | | f = 10 kHz | | 60 | | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | | | Duanautualtaaa | I _O = 200 mA | | | 0.2 | 0.35 | ., | | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 0.7 | V | | | V _{IL} | Control input logic low | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | | | 0.8 | V | | | V _{IH} | Control input logic high | T _a = -40 to 125°C | | 2 | | | V | | | I _I | Control input current | $V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$ | | | 10 | | μΑ | | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω , I_0 = 0 to | 500 mA | 2 | 10 | | μF | | Refer to the test circuits, T_A = -40 to 125°C, C_I = 0.1 μF , C_O = 2.2 μF unless otherwise specified. Table 18. Electrical characteristics for LF50CDT-TRY and LF50CPT-TRY (Automotive Grade) | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|---|-----------------------|-------|------|-------|------| | V | Output valtage | $I_O = 50 \text{ mA}, V_I = 7 \text{ V}, T_a = 2$ | :5°C | 4.9 | 5 | 5.1 | V | | Vo | Output voltage | I _O = 50 mA, V _I = 7 V | | 4.785 | | 5.215 | V | | VI | Operating input voltage | I _O = 500 mA | | | | 16 | V | | Io | Output current limit | $T_a = 25^{\circ}C$ | - _a = 25°C | | 1 | | Α | | ΔV_{O} | Line regulation | $V_{I} = 6 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$ | | | 5 | 28 | mV | | ΔV_{O} | Load regulation | $V_I = 6.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | 1 | | 5 | 28 | mV | | | | $V_{I} = 6 \text{ to } 16V, I_{O} = 0\text{mA}$ | ON MODE | | 0.5 | 2 | А | | I _d | Quiescent current | $V_I = 6.3 \text{ to } 16V, I_O = 500 \text{mA}$ | ON MODE | | | 12 | mA | | | | V _I = 6 V OFF MODE | | 50 | 120 | μA | | | | | | f = 120 Hz | | 76 | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 7 \pm 1 \text{ V}$
$T_a = 25^{\circ}\text{C}$ | f = 1 kHz | | 71 | | dB | | | | 1a - 20 0 | f = 10 kHz | | 60 | | | | eN | Output noise voltage | $B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$ | 25°C | | 50 | | μV | | ., | D | I _O = 200 mA | | | 0.2 | 1.3 | | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 1.3 | V | | V _{IL} | Control input logic low | | | | | 0.8 | V | | V _{IH} | Control input logic high | | | 2 | | | V | | I | Control input current | $V_I = 6 \text{ V}, V_C = 6 \text{ V}, T_a = 25^{\circ}$ | С | | 10 | | μA | | Co | Output bypass capacitance | ESR = 0.1 to 10 Ω , I_0 = 0 to | 500 mA | 2 | 10 | | μF | Table 19. Electrical characteristics for LF60AB | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|--|------------|------|------|------|------| | V. | Output voltage | $I_O = 50 \text{ mA}, V_I = 8 \text{ V}$ | | 5.94 | 6 | 6.06 | V | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 8 \text{ V}, T_a = -6$ | 25 to 85°C | 5.88 | | 6.12 | v | | VI | Operating input voltage | I _O = 500 mA | | | | 16 | V | | Io | Output current limit | | | | 1 | | Α | | ΔV _O | Line regulation | $V_{I} = 7 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$ | | | 6 | 30 | mV | | ΔV _O | Load regulation | $V_I = 7.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | ı | | 6 | 30 | mV | | | | $V_{I} = 7 \text{ to } 16V, I_{O} = 0\text{mA}$ | ON MODE | | 0.7 | 1.5 | A | | I _d | Quiescent current | $V_I = 7.3 \text{ to } 16V, I_O = 500 \text{mA}$ | ON MODE | | | 12 | mA | | | | V _I = 9 V OFF MODE | | 70 | 140 | μΑ | | | | | f = 12 | f = 120 Hz | | 75 | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 8 \pm 1 \text{ V}$ | f = 1 kHz | | 70 | | dB | | | | | f = 10 kHz | | 60 | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | | Dranautualtaria | I _O = 200 mA | | | 0.2 | 0.35 | V | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 0.7 | V | | V _{IL} | Control input logic low | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | | | 0.8 | V | | V _{IH} | Control input logic high | T _a = -40 to 125°C | | 2 | | | V | | I _I | Control input current | $V_{I} = 9 \text{ V}, V_{C} = 6 \text{ V}$ | | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω , $I_O = 0$ to | 500 mA | 2 | 10 | | μF | Table 20. Electrical characteristics for LF60C | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | | |-----------------|---------------------------|--|------------|---------|------|------|------|----| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 8 \text{ V}$ | | 5.88 | 6 | 6.12 | V | | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 8 \text{ V}, T_a = -20 \text{ mA}$ | 25 to 85°C | 5.76 | | 6.24 | V | | | V _I | Operating input voltage | I _O = 500 mA | | | | 16 | V | | | I _O | Output current limit | | | | 1 | | Α | | | ΔV_{O} | Line regulation | $V_{I} = 7 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$ | | | 6 | 30 | mV | | | ΔV_{O} | Load regulation | $V_I = 7.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | i | | 6 | 30 | mV | | | | | $V_{I} = 7 \text{ to } 16V, I_{O} = 0mA$ | ONLMODE | | 0.7 | 1.5 | A | | | I _d | Quiescent current | $V_I = 7.3 \text{ to } 16V, I_O = 500 \text{mA}$ | OFF MODE | ON MODE | | | 12 | mA | | | | V _I = 9 V | | | 70 | 140 | μΑ | | | | | | f = 120 Hz | | 75 | | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 8 \pm 1 \text{ V}$ | f = 1 kHz | | 70 | | dB | | | | | | f = 10 kHz | | 60 | | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | | ., | Durantinalitana | I _O = 200 mA | | | 0.2 | 0.35 | | | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 0.7 | V | | | V _{IL} | Control input logic low | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | | | 0.8 | V | | | V _{IH} | Control input logic high | T _a = -40 to 125°C | | 2 | | | V | | | I _I | Control input current | $V_{I} = 9 \text{ V}, V_{C} = 6 \text{ V}$ | | | 10 | | μΑ | | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω, I_0 = 0 to | 500 mA | 2 | 10 | | μF | | Table 21. Electrical characteristics for LF80AB | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|---|-------------|------|------|------|------| | V. | Output voltage | I _O = 50 mA, V _I = 10 V | | 7.92 | 8 | 8.08 | V | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 10 \text{ V}, T_a =$ | -25 to 85°C | 7.84 | | 8.16 | V | | VI | Operating input voltage | I _O = 500 mA | O = 500 mA | | | 16 | V | | Io | Output current limit | | | | 1 | | Α | | ΔV _O | Line regulation | $V_1 = 9 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$ | | | 8 | 40 | mV | | ΔV _O | Load regulation | $V_I = 9.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | ı | | 8 | 40 | mV | | | | $V_1 = 9 \text{ to } 16V, I_O = 0mA$ | ON MODE | | 0.7 | 1.5 | A | | I _d | Quiescent current | $V_{I} = 9.3 \text{ to } 16V, I_{O} = 500 \text{mA}$ | ON MODE | | | 12 | mA | | | | V _I = 9 V OFF MODE | | 70 | 140 | μΑ | | | | | f = 120 Hz | | 72 | | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 10 \pm 1 \text{ V}$ | f = 1 kHz | | 67 | | dB | | | | | f = 10 kHz | | 57 | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | • | | 50 | | μV | | ., | Duranturaltana | I _O = 200 mA | | | 0.2 | 0.35 | V | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 0.7 | V | | V _{IL} | Control input logic low | T _a = -40 to 125°C | | | | 0.8 | V | | V _{IH} | Control input logic high | T _a = -40 to 125°C | - | | | | V | | I _I | Control input current | $V_{I} = 9 \text{ V}, V_{C} = 6 \text{ V}$ | | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω, I_0 = 0 to | 500 mA | 2 | 10 | | μF | Table 22. Electrical characteristics for LF80C | Symbol | Parameter | Test condition | ıs | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|--|----------------|------|------|------|------| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 10 \text{ V}$ | | 7.84 | 8 | 8.16 | V | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 10 \text{ V}, T_a =$ | -25 to 85°C | 7.68 | | 8.32 | V | | V _I | Operating input voltage | I _O = 500 mA | O = 500 mA | | | 16 | V | | Io | Output current limit | | | | 1 | | Α | | ΔV_{O} | Line regulation | $V_{I} = 9 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$ | | | 8 | 40 | mV | | ΔV_{O} | Load regulation | $V_I = 9.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | , | | 8 | 40 | mV | | | | $V_{I} = 9 \text{ to } 16V, I_{O} = 0mA$ | ON MODE | | 0.7 | 1.5 | m 1 | | I _d | Quiescent current | $V_I = 9.3 \text{ to } 16V, I_O = 500 \text{mA}$ | ON MODE | | | 12 | mA | | | | V _I = 9 V | = 9 V OFF MODE | | 70 | 140 | μΑ | | | | f = 120 H | f = 120 Hz | | 72 | | | | SVR | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 10 \pm 1 \text{ V}$ | f = 1 kHz | | 67 | | dB | | | | | f = 10 kHz | |
57 | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | | Drangut valtage | I _O = 200 mA | | | 0.2 | 0.35 | V | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 0.7 | V | | V _{IL} | Control input logic low | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | | | 0.8 | V | | V _{IH} | Control input logic high | T _a = -40 to 125°C | | 2 | | | V | | I _I | Control input current | $V_{I} = 9 \text{ V}, V_{C} = 6 \text{ V}$ | | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω, I_0 = 0 to | 500 mA | 2 | 10 | | μF | Refer to the test circuits, T_A = -40 to 125°C, C_I = 0.1 $\mu F,\,C_O$ = 2.2 μF unless otherwise specified. Table 23. Electrical characteristics for LF80CDT-TRY (Automotive Grade) | Symbol | Parameter | Test conditions | | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|--|------------|-------|------|-------|------| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 10 \text{ V}, T_a =$ | 25°C | 7.84 | 8 | 8.16 | V | | V _O | Output voltage | I _O = 50 mA, V _I = 10 V | | 7.665 | | 8.335 | V | | VI | Operating input voltage | I _O = 500 mA | | | | 16 | V | | Io | Output current limit | T _a = 25°C | | | 1 | | Α | | ΔV _O | Line regulation | $V_{I} = 9 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$ | | | 8 | 44 | mV | | ΔV_{O} | Load regulation | $V_I = 9.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | | | 8 | 44 | mV | | | | $V_{I} = 9 \text{ to } 16V, I_{O} = 0\text{mA}$ | ONIMODE | | 0.7 | 2.5 | - mA | | I _d | Quiescent current | $V_I = 9.3 \text{ to } 16V, I_O = 500 \text{mA}$ | ON MODE | | | 12 | | | | | V _I = 9 V | OFF MODE | | 70 | 160 | μΑ | | | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 10 \pm 1 \text{ V}$
$T_a = 25^{\circ}\text{C}$ | f = 120 Hz | | 72 | | | | SVR | | | f = 1 kHz | | 67 | | dB | | | | | f = 10 kHz | | 57 | | | | eN | Output noise voltage | $B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$ | 25°C | | 50 | | μV | | \/ | Duanautualtaaa | I _O = 200 mA | | | 0.2 | 1.3 | V | | V_d | Dropout voltage | I _O = 500 mA | | | 0.4 | 1.3 | V | | V _{IL} | Control input logic low | | | | | 0.8 | V | | V _{IH} | Control input logic high | | | 2 | | | V | | I _I | Control input current | $V_1 = 9 \text{ V}, V_C = 6 \text{ V}, T_a = 25^{\circ}\text{C}$ | | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω, I_0 = 0 to | 500 mA | 2 | 10 | | μF | Table 24. Electrical characteristics for LF85AB | Symbol | Parameter | Test conditions | | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|--|---|-------|------|-------|------| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}$ | | 8.415 | 8.5 | 8.585 | V | | Vo | Output voitage | $I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}, T_a$ | $I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}, T_a = -25 \text{ to } 85^{\circ}\text{C}$ | | | 8.67 | V | | V _I | Operating input voltage | I _O = 500 mA | | | | 16 | V | | Io | Output current limit | | | | 1 | | Α | | ΔV_{O} | Line regulation | $V_{I} = 9.5 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$ | | | 8 | 42 | mV | | ΔV_{O} | Load regulation | $V_{I} = 9.8 \text{ V}, I_{O} = 5 \text{ to } 500 \text{ mA}$ | | | 8 | 42 | mV | | | Quiescent current | | 0.7 | 1.5 | A | | | | I _d | | $V_I = 9.8 \text{ to } 16V, I_O = 500 \text{mA}$ | ON MODE | | | 12 | mA | | | | V _I = 9 V | OFF MODE | | 70 | 140 | μΑ | | | Supply voltage rejection | $I_{O} = 5 \text{ mA}, V_{I} = 10.5 \pm 1 \text{ V}$ f = 120 Hz
f = 1 kHz
f = 10 kHz | f = 120 Hz | | 72 | | | | SVR | | | f = 1 kHz | | 67 | | dB | | | | | f = 10 kHz | | 57 | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | | Duranturalla | I _O = 200 mA | | | 0.2 | 0.35 | | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 0.7 | V | | V _{IL} | Control input logic low | T _a = -40 to 125°C | | | | 0.8 | V | | V _{IH} | Control input logic high | T _a = -40 to 125°C | | 2 | | | V | | I _I | Control input current | V _I = 9 V, V _C = 6 V | | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω , $I_O = 0$ to | 500 mA | 2 | 10 | | μF | Table 25. Electrical characteristics for LF85C | Symbol | Parameter | Test conditions | | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|---|---|------|------|------|------| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}$ | | 8.33 | 8.5 | 8.67 | V | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}, T_a$ | $I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}, T_a = -25 \text{ to } 85^{\circ}\text{C}$ | | | 8.84 | V | | V _I | Operating input voltage | I _O = 500 mA | | | | 16 | V | | Io | Output current limit | | | | 1 | | Α | | ΔV_{O} | Line regulation | $V_I = 9.5 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$ | | | 8 | 42 | mV | | ΔV_{O} | Load regulation | $V_I = 9.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | 1 | | 8 | 42 | mV | | | Quiescent current | ONLMODE | | 0.7 | 1.5 | A | | | I _d | | $V_I = 9.8 \text{ to } 16V, I_O = 500 \text{mA}$ | ON MODE | | | 12 | - mA | | | | V _I = 9 V | OFF MODE | | 70 | 140 | μΑ | | | Supply voltage rejection | $I_{O} = 5 \text{ mA}, V_{I} = 10.5 \pm 1 \text{ V}$ | f = 120 Hz | | 72 | | | | SVR | | | f = 1 kHz | | 67 | | dB | | | | | f = 10 kHz | | 57 | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | • | | 50 | | μV | | ., | Duranturaltana | I _O = 200 mA | | | 0.2 | 0.35 | | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 0.7 | V | | V _{IL} | Control input logic low | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | | | 0.8 | V | | V _{IH} | Control input logic high | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | 2 | | | V | | I _I | Control input current | V _I = 9 V, V _C = 6 V | | | 10 | | μΑ | | Co | Output bypass capacitance | ESR = 0.1 to 10 Ω, $I_0 = 0$ to | 500 mA | 2 | 10 | | μF | 29/50 Refer to the test circuits, T_A = -40 to 25°C, C_I = 0.1 $\mu F,\, C_O$ = 2.2 μF unless otherwise specified. Table 26. Electrical characteristics for LF85CDT-TRY and LF85CPT-TRY (Automotive Grade) | Symbol | Parameter | Test conditions | | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|--|------------|-------|------|-------|------| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}, T_a$ | = 25°C | 8.33 | 8.5 | 8.67 | V | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}$ | | 8.145 | | 8.855 | V | | V _I | Operating input voltage | I _O = 500 mA | | | | 16 | ٧ | | Io | Output current limit | $T_a = 25^{\circ}C$ | | | 1 | | Α | | ΔV _O | Line regulation | $V_1 = 9.5 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$ | | | 8 | 44 | mV | | ΔV_{O} | Load regulation | $V_I = 9.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$ | 1 | | 8 | 44 | mV | | | | $V_{I} = 9.5 \text{ to } 16V, I_{O} = 0\text{mA}$ | ON MODE | | 0.7 | 2.5 | - mA | | I _d | Quiescent current | $V_I = 9.8 \text{ to } 16V, I_O = 500 \text{mA}$ | ON MODE | | | 12 | | | | | V _I = 9 V | OFF MODE | | 70 | 160 | μΑ | | | Supply voltage rejection | $I_O = 5 \text{ mA}, V_I = 10.5 \pm 1 \text{ V}$
$T_a = 25^{\circ}\text{C}$ | f = 120 Hz | | 72 | | | | SVR | | | f = 1 kHz | | 67 | | dB | | | | | f = 10 kHz | | 57 | | | | eN | Output noise voltage | $B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$ | 25°C | | 50 | | μV | | | Dranguitualtaga | I _O = 200 mA | | | 0.2 | 1.3 | V | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 1.3 | V | | V _{IL} | Control input logic low | | | | | 0.8 | V | | V _{IH} | Control input logic high | | | 2 | | | V | | I _I | Control input current | $V_1 = 9 \text{ V}, V_C = 6 \text{ V}, T_a = 25^{\circ}\text{C}$ | | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω, I_0 = 0 to | 500 mA | 2 | 10 | | μF | Table 27. Electrical characteristics for LF90AB | Symbol | Parameter | Test conditions | | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|---|-------------|------|------|------|------| | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 11 \text{ V}$ | | 8.91 | 9 | 9.09 | V | | v _O | Output voltage | $I_0 = 50 \text{ mA}, V_1 = 11 \text{ V}, T_a =$ | -25 to 85°C | 8.82 | | 9.18 | V | | VI | Operating input voltage | I _O = 500 mA | | | | 16 | V | | Io | Output current limit | | | | 1 | | Α | | ΔV_{O} | Line regulation | $V_I = 10 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$ | | | 9 | 45 | mV | | ΔV _O | Load regulation | $V_I = 10.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ m}$ | nA | | 9 | 45 | mV | | | | $V_{I} = 10 \text{ to } 16V, I_{O} = 0\text{mA}$ | | | 0.7 | 1.5 | | | I _d | Quiescent current | V _I = 10.3 to 16V,
I _O = 500mA | ON MODE | | | 12 | mA | | | | V _I = 10 V | OFF MODE | | 70 | 140 | μΑ | | | Supply voltage rejection | $I_{O} = 5 \text{ mA}, V_{I} = 11 \pm 1 \text{ V}$ | f = 120 Hz | | 71 | | | | SVR | | | f = 1 kHz | | 66 | | dB | | | | | f = 10 kHz | | 56 | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | \/ | Dropout voltage | I _O = 200 mA | | | 0.2 | 0.35 | V | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 0.7 | V | | V _{IL} | Control input logic low | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | | | 0.8 | V | | V _{IH} | Control input logic high | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | 2 | | | V | | I _I | Control input current | V _I = 10 V, V _C = 6 V | | | 10 | | μA | | C _O | Output bypass
capacitance | ESR = 0.1 to 10 Ω , I_0 = 0 to | o 500 mA | 2 | 10 | | μF | 31/50 Table 28. Electrical characteristics for LF90C | Symbol | Parameter | Test conditions | | Min. | Тур. | Max. | Unit | |-----------------|---|---|-------------|------|------|------|------| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 11 \text{ V}$ | | 8.82 | 9 | 9.18 | V | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 11 \text{ V}, T_a =$ | -25 to 85°C | 8.64 | | 9.36 | | | VI | Operating input voltage | I _O = 500 mA | | | | 16 | V | | Io | Output current limit | | | | 1 | | Α | | ΔV_{O} | Line regulation | $V_I = 10 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$ | | | 9 | 45 | mV | | ΔV _O | Load regulation | $V_I = 10.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ m}$ | ıA | | 9 | 45 | mV | | | | $V_{I} = 10 \text{ to } 16V, I_{O} = 0\text{mA}$ | | | 0.7 | 1.5 | | | I _d | Quiescent current | $V_I = 10.3 \text{ to } 16V,$
$I_O = 500\text{mA}$ | ON MODE | | | 12 | mA | | | | V _I = 10 V | OFF MODE | | 70 | 140 | μΑ | | | Supply voltage rejection $I_O = 5$ mA, $V_I = 11 \pm 1$ V $f = 120$ Hz $f = 1$ kHz $f = 10$ kHz | I _O = 5 mA, V _I = 11 ± 1 V | f = 120 Hz | | 71 | | | | SVR | | | f = 1 kHz | | 66 | | dB | | | | f = 10 kHz | | 56 | | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | | Dropout voltage | I _O = 200 mA | | | 0.2 | 0.35 | V | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 0.7 | , v | | V _{IL} | Control input logic low | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | | | 0.8 | V | | V _{IH} | Control input logic high | T _a = -40 to 125°C | | 2 | | | V | | I _I | Control input current | V _I = 10 V, V _C = 6 V | | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω, $I_0 = 0$ to | 500 mA | 2 | 10 | | μF | Table 29. Electrical characteristics for LF120AB | Symbol | Parameter | Test conditions | | Min. | Тур. | Max. | Unit | |-----------------|--|---|-------------|-------|----------|-------|------| | Vo | Output voltage $I_O = 50 \text{ mA}, V_I = 10$ | | | 11.88 | 11.88 12 | 12.12 | V | | VO. | Output voltage | $I_0 = 50 \text{ mA}, V_1 = 15 \text{ V}, T_a =$ | -25 to 85°C | 11.76 | | 12.24 | V | | VI | Operating input voltage | I _O = 500 mA | | | | 16 | V | | Io | Output current limit | | | | 1 | | Α | | ΔV_{O} | Line regulation | $V_I = 13 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$ | | | 12 | 60 | mV | | ΔV _O | Load regulation | $V_I = 13.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ m}$ | nA | | 12 | 60 | mV | | | | $V_{I} = 13 \text{ to } 16V, I_{O} = 0\text{mA}$ | | | 0.7 | 1.5 | | | I _d | Quiescent current | V _I = 13.3 to 16V,
I _O = 500mA | ON MODE | | | 12 | mA | | | | V _I = 13 V | OFF MODE | | 70 | 140 | μΑ | | | Supply voltage rejection | $I_{O} = 5 \text{ mA}, V_{I} = 14 \pm 1 \text{ V}$ | f = 120 Hz | | 69 | | | | SVR | | | f = 1 kHz | | 64 | | dB | | | | | f = 10 kHz | | 54 | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | | Dropout voltage | I _O = 200 mA | | | 0.2 | 0.35 | V | | V _d | Dropout voltage | I _O = 500 mA | | | 0.4 | 0.7 | v | | V _{IL} | Control input logic low | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | | | 0.8 | V | | V _{IH} | Control input logic high | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | 2 | | | V | | I _I | Control input current | V _I = 13 V, V _C = 6 V | | | 10 | | μΑ | | Co | Output bypass capacitance | ESR = 0.1 to 10 Ω, I_0 = 0 to | o 500 mA | 2 | 10 | | μF | Table 30. Electrical characteristics for LF120C | Symbol | Parameter | Test conditions | | Min. | Тур. | Max. | Unit | |-----------------|---------------------------|---|-------------|-------|------|-------|------| | V | Output voltage | $I_O = 50 \text{ mA}, V_I = 14 \text{ V}$ | | 11.76 | 12 | 12.24 | V | | Vo | Output voltage | $I_O = 50 \text{ mA}, V_I = 14 \text{ V}, T_a =$ | -25 to 85°C | 11.52 | | 12.48 | V | | V _I | Operating input voltage | I _O = 500 mA | | | | 16 | V | | Io | Output current limit | | | | 1 | | Α | | ΔV_{O} | Line regulation | $V_{I} = 13 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$ | | | 12 | 60 | mV | | ΔV _O | Load regulation | $V_I = 13.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ m}$ | nA | | 12 | 60 | mV | | | | $V_{I} = 13 \text{ to } 16V, I_{O} = 0\text{mA}$ | | | 0.7 | 1.5 | | | I _d | Quiescent current | $V_I = 13.3 \text{ to } 16V,$
$I_O = 500\text{mA}$ | ON MODE | | | 12 | mA | | | | V _I = 13 V | OFF MODE | | 70 | 140 | μΑ | | | Supply voltage rejection | $I_{O} = 5 \text{ mA}, V_{I} = 14 \pm 1 \text{ V}$ | f = 120 Hz | | 69 | | | | SVR | | | f = 1 kHz | | 64 | | dB | | | | | | 54 | | | | | eN | Output noise voltage | B = 10 Hz to 100 kHz | | | 50 | | μV | | V _d | Dropout voltage | I _O = 200 mA | | | 0.2 | 0.35 | ٧ | | V d | Diopout voltage | I _O = 500 mA | | | 0.4 | 0.7 | v | | V _{IL} | Control input logic low | $T_a = -40 \text{ to } 125^{\circ}\text{C}$ | | | | 0.8 | ٧ | | V _{IH} | Control input logic high | T _a = -40 to 125°C | | 2 | | | V | | I _I | Control input current | V _I = 13 V, V _C = 6 V | | | 10 | | μΑ | | C _O | Output bypass capacitance | ESR = 0.1 to 10 Ω , I_0 = 0 t | o 500 mA | 2 | 10 | | μF | #### 5 Typical performance characteristics Unless otherwise specified $V_{O(NOM)} = 3.3 \text{ V}$. Figure 4. Dropout voltage vs. output current Figure 5. Dropout voltage vs. temperature Figure 6. Supply current vs. input voltage Figure 7. Supply current vs. input voltage Figure 8. Short circuit current vs. input voltage 12 $V_1(V)$ 0 Figure 9. Supply current vs. temperature 577 Doc ID 2574 Rev 26 35/50 Figure 10. Logic controlled precision 3.3 / 5.0 V selectable output Figure 11. Sequential multi-output supply 57 Figure 12. Multiple supply with ON / OFF toggle switch Figure 13. Basic inhibit functions 577 Figure 14. Delayed turn-on Figure 15. Low voltage bulb blinker # 6 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark. Table 31. TO-220 mechanical data | | Type STD - ST Dual Gauge mm. | | | Type STD - ST Single Gauge mm. | | | |------|------------------------------|-------|-------|--------------------------------|-------|-------| | Dim. | | | | | | | | | Min. | Тур. | Max. | Min. | Тур. | Max. | | А | 4.40 | | 4.60 | 4.40 | | 4.60 | | b | 0.61 | | 0.88 | 0.61 | | 0.88 | | b1 | 1.14 | | 1.70 | 1.14 | | 1.70 | | С | 0.48 | | 0.70 | 0.48 | | 0.70 | | D | 15.25 | | 15.75 | 15.25 | | 15.75 | | D1 | | 1.27 | | | | | | Е | 10.00 | | 10.40 | 10.00 | | 10.40 | | е | 2.40 | | 2.70 | 2.40 | | 2.70 | | e1 | 4.95 | | 5.15 | 4.95 | | 5.15 | | F | 1.23 | | 1.32 | 0.51 | | 0.60 | | H1 | 6.20 | | 6.60 | 6.20 | | 6.60 | | J1 | 2.40 | | 2.72 | 2.40 | | 2.72 | | L | 13.00 | | 14.00 | 13.00 | | 14.00 | | L1 | 3.50 | | 3.93 | 3.50 | | 3.93 | | L20 | | 16.40 | | | 16.40 | | | L30 | | 28.90 | | | 28.90 | | | ØP | 3.75 | | 3.85 | 3.75 | | 3.85 | | Q | 2.65 | | 2.95 | 2.65 | | 2.95 | In spite of some difference in tolerances, the packages are compatible. Figure 16. Drawing dimension TO-220 (type STD-ST Dual Gauge) Note: 1 Maximum resin gate protrusion: 0.5 mm. > 2 Resin gate position is accepted in each of the two positions shown on the drawing, or their symmetrical. Figure 17. Drawing dimension TO-220 (type STD-ST Single Gauge) 57 Figure 18. Drawing dimension tube for TO-220 Dual Gauge (mm.) ## PENTAWATT (Vertical) mechanical data | Dim. | | mm. | | inch. | | | |--------|-------|-------|------|-------|-------|-------| | Dilli. | Min. | Тур. | Max. | Min. | Тур. | Max. | | А | | | 4.8 | | | 0.189 | | С | | | 1.37 | | | 0.054 | | D | 2.4 | | 2.8 | 0.094 | | 0.110 | | D1 | 1.2 | | 1.35 | 0.047 | | 0.053 | | E | 0.35 | | 0.55 | 0.014 | | 0.022 | | F | 0.8 | | 1.05 | 0.031 | | 0.041 | | F1 | 1 | | 1.4 | 0.039 | | 0.055 | | G | 3.2 | 3.4 | 3.6 | 0.126 | 0.134 | 0.142 | | G1 | 6.6 | 6.8 | 7 | 0.260 | 0.268 | 0.276 | | H2 | | | 10.4 | | | 0.409 | | H3 | 10.05 | | 10.4 | 0.396 | | 0.409 | | L | | 17.85 | | | 0.703 | | | L1 | | 15.75 | | | 0.620 | | | L2 | | 21.4 | | | 0.843 | | | L3 | | 22.5 | | | 0.886 | | | L5 | 2.6 | | 3 | 0.102 | | 0.118 | | L6 | 15.1 | | 15.8 | 0.594 | | 0.622 | | L7 | 6 | | 6.6 | 0.236 | | 0.260 | | М | | 4.5 | | | 0.177 | | | M1 | | 4 | | | 0.157 | | | Dia1 | 3.65 | | 3.85 | 0.144 | | 0.152 | **47/** Doc ID 2574 Rev 26 43/50 #### **TO-220FP mechanical data** | Dim. | mm. | | | inch. | | | |------|------|-----|-------|-------|-------|-------| | DIM. | Min. | Тур | Max. | Min. | Тур. | Max. | | А | 4.40 | | 4.60 | 0.173 | | 0.181 | | В | 2.5 | | 2.7 | 0.098 | | 0.106 | | D | 2.5 | | 2.75 | 0.098 | | 0.108 | | Е | 0.45 | | 0.70 | 0.017 | | 0.027 | | F | 0.75 | | 1 | 0.030 | | 0.039 | | F1 | 1.15 | | 1.50 | 0.045 | | 0.059 | | F2 | 1.15 | | 1.50 | 0.045 | | 0.059 | | G | 4.95 | | 5.2 | 0.194 | | 0.204 | | G1 | 2.4 | | 2.7 | 0.094 | | 0.106 | | Н | 10.0 | | 10.40 | 0.393 | | 0.409 | | L2 | | 16 | | | 0.630 | | | L3 | 28.6 | | 30.6 | 1.126 | | 1.204 | | L4 | 9.8 | | 10.6 | 0.385 | | 0.417 | | L5 | 2.9 | | 3.6 | 0.114 | | 0.142 | | L6 | 15.9 | | 16.4 | 0.626 | | 0.645 | | L7 | 9 | | 9.3 | 0.354 | | 0.366 | | DIA. | 3 | | 3.2 | 0.118 | | 0.126 | #### **DPAK** mechanical data | Dim. | mm. | | | inch. | | | |------|------|------|------|-------|-------|-------| | DIM. | Min. | Тур. | Max. | Min. | Тур. | Max. | | Α | 2.2 | | 2.4 | 0.086 | | 0.094 | | A1 | 0.9 | | 1.1 | 0.035 | | 0.043 | | A2 | 0.03 | | 0.23 | 0.001 | | 0.009 | | В | 0.64 | | 0.9 | 0.025
| | 0.035 | | b4 | 5.2 | | 5.4 | 0.204 | | 0.212 | | С | 0.45 | | 0.6 | 0.017 | | 0.023 | | C2 | 0.48 | | 0.6 | 0.019 | | 0.023 | | D | 6 | | 6.2 | 0.236 | | 0.244 | | D1 | | 5.1 | | | 0.200 | | | E | 6.4 | | 6.6 | 0.252 | | 0.260 | | E1 | | 4.7 | | | 0.185 | | | е | | 2.28 | | | 0.090 | | | e1 | 4.4 | | 4.6 | 0.173 | | 0.181 | | Н | 9.35 | | 10.1 | 0.368 | | 0.397 | | L | 1 | | | 0.039 | | | | (L1) | | 2.8 | | | 0.110 | | | L2 | | 0.8 | | | 0.031 | | | L4 | 0.6 | | 1 | 0.023 | | 0.039 | | R | | 0.2 | | | 0.008 | | | V2 | 0° | | 8° | 0° | | 8° | **577** Doc ID 2574 Rev 26 45/50 ## **PPAK** mechanical data | Dim. | mm. | | | inch. | | | |------|------|------|------|-------|-------|-------| | Dim. | Min. | Тур. | Max. | Min. | Тур. | Max. | | А | 2.2 | | 2.4 | 0.086 | | 0.094 | | A1 | 0.9 | | 1.1 | 0.035 | | 0.043 | | A2 | 0.03 | | 0.23 | 0.001 | | 0.009 | | В | 0.4 | | 0.6 | 0.015 | | 0.023 | | B2 | 5.2 | | 5.4 | 0.204 | | 0.212 | | С | 0.45 | | 0.6 | 0.017 | | 0.023 | | C2 | 0.48 | | 0.6 | 0.019 | | 0.023 | | D | 6 | | 6.2 | 0.236 | | 0.244 | | D1 | | 5.1 | | | 0.201 | | | E | 6.4 | | 6.6 | 0.252 | | 0.260 | | E1 | | 4.7 | | | 0.185 | | | е | | 1.27 | | | 0.050 | | | G | 4.9 | | 5.25 | 0.193 | | 0.206 | | G1 | 2.38 | | 2.7 | 0.093 | | 0.106 | | Н | 9.35 | | 10.1 | 0.368 | | 0.397 | | L2 | | 0.8 | 1 | | 0.031 | 0.039 | | L4 | 0.6 | | 1 | 0.023 | | 0.039 | | L5 | 1 | | | 0.039 | | | | L6 | | 2.8 | | | 0.110 | | | Dim. | mm. | | | inch. | | | |--------|-------|-------|-------|-------|-------|--------| | Dilli. | Min. | Тур. | Max. | Min. | Тур. | Max. | | А | | | 330 | | | 12.992 | | С | 12.8 | 13.0 | 13.2 | 0.504 | 0.512 | 0.519 | | D | 20.2 | | | 0.795 | | | | N | 60 | | | 2.362 | | | | Т | | | 22.4 | | | 0.882 | | Ao | 6.80 | 6.90 | 7.00 | 0.268 | 0.272 | 0.2.76 | | Во | 10.40 | 10.50 | 10.60 | 0.409 | 0.413 | 0.417 | | Ko | 2.55 | 2.65 | 2.75 | 0.100 | 0.104 | 0.105 | | Ро | 3.9 | 4.0 | 4.1 | 0.153 | 0.157 | 0.161 | | Р | 7.9 | 8.0 | 8.1 | 0.311 | 0.315 | 0.319 | Doc ID 2574 Rev 26 47/50 Order codes LFxxAB, LFxxC ## 7 Order codes Table 32. Order codes | Packages | | | | | | |------------------------|------------------------------------|------------------|--------------------------|--------------------|-------| | TO-220 | TO-220FP DPAK (tape and reel) PPAK | | PPAK (tape and reel) | Output
voltages | | | LF15ABV ⁽¹⁾ | LF15ABP ⁽¹⁾ | LF15ABDT-TR | LF15ABPT ⁽¹⁾ | | 1.5 V | | | LF18CP ⁽¹⁾ | LF18CDT-TR | | LF18CPT-TR | 1.8 V | | | | LF18CDT-TRY (2) | | | 1.8 V | | | LF18ABP ⁽¹⁾ | LF18ABDT-TR | | LF18ABPT-TR | 1.8 V | | | LF25CP (1) | LF25CDT-TR | | LF25CPT-TR | 2.5 V | | | | LF25CDT-TRY (2) | | | 2.5 V | | | LF25ABP (1) | LF25ABDT-TR | LF25ABPT ⁽¹⁾ | | 2.5 V | | | | LF25ABDT-TRY (2) | | | 2.5 V | | LF33CV | | LF33CDT-TR | | LF33CPT-TR | 3.3 V | | LF33CV-DG (3) | | LF33CDT-TRY (2) | | LF33CPT-TRY (2) | 3.3 V | | LF33ABV | | LF33ABDT-TR | | | 3.3 V | | LF33ABV-DG (3) | | | | | 3.3 V | | LF50CV | | LF50CDT-TR | | LF50CPT-TR | 5 V | | | | LF50CDT-TRY (2) | | LF50CPT-TRY (2) | 5 V | | LF50ABV | LF50ABP | LF50ABDT-TR | | LF50ABPT-TR | 5 V | | LF50ABV-DG (3) | | | | | 5 V | | | | LF50ABDT-TRY (2) | | | 5 V | | LF60CV | LF60CP (1) | LF60CDT-TR | | LF60CPT-TR (1) | 6 V | | LF60ABV | LF60ABP (1) | LF60ABDT-TR | LF60ABPT ⁽¹⁾ | LF60ABPT-TR (1) | 6 V | | LF80CV | LF80CP (1) | LF80CDT-TR | | | 8 V | | | | LF80CDT-TRY (2) | | | 8 V | | LF80ABV | LF80ABP (1) | LF80ABDT-TR | | | 8 V | | | | LF85CDT-TR | | LF85CPT-TR | 8.5 V | | | | LF85CDT-TRY (2) | | LF85CPT-TRY (2) | 8.5 V | | LF90CV | LF90CP ⁽¹⁾ | | | LF90CPT-TR | 9 V | | | LF120CP ⁽¹⁾ | LF120CDT-TR | | | 12 V | | LF120ABV | | LF120ABDT-TR | LF120ABPT ⁽¹⁾ | | 12 V | ^{1.} Available on request. 48/50 ^{2.} Automotive Grade products. ^{3.} TO-220 Dual Gauge frame. LFxxAB, LFxxC Revision history # 8 Revision history Table 33. Document revision history | Date | Revision | Changes | |-------------|----------|---| | 21-Jun-2004 | 14 | Document updating. | | 24-May-2006 | 15 | Order codes updated. | | 02-Apr-2007 | 16 | Order codes updated. | | 14-May-2007 | 17 | Order codes updated. | | 26-Jul-2007 | 18 | Add <i>Table 1</i> in cover page. | | 26-Nov-2007 | 19 | Modified: Table 32. | | 16-Jan-2008 | 20 | Added new order codes for Automotive grade products see <i>Table 32 on</i> page 48. | | 12-Feb-2008 | 21 | Modified: Table 32 on page 48. | | 10-Jul-2008 | 22 | Modified: Table 32 on page 48. | | 05-May-2010 | 23 | Added: Table 31 on page 39, Figure 16 on page 40, Figure 17 on page 41, Figure 18 and Figure 19 on page 42. | | 16-Nov-2010 | 24 | Modified: R _{thJC} value for TO-220 <i>Table 3 on page 7</i> . | | 10-Feb-2012 | 25 | Added: order code LF33CV-DG and LF33ABV-DG Table 32 on page 48. | | 09-Mar-2012 | 26 | Added: order code LF50ABV-DG Table 32 on page 48. | #### **Please Read Carefully:** Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com