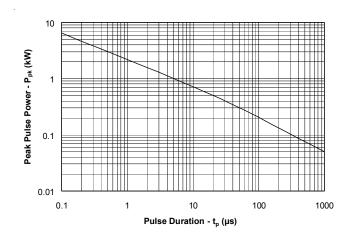


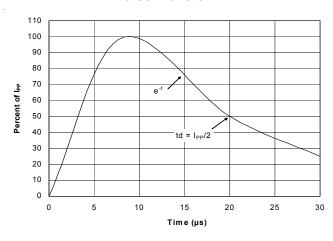
Absolute Maximum Rating

Rating	Symbol	Value	Units
Peak Pulse Power (t _p = 8/20μs)	P _{pk}	500	Watts
Lead Soldering Temperature	T _L	260 (10 sec.)	°C
Operating Temperature	T _J	-55 to +125	°C
Storage Temperature	T _{STG}	-55 to +150	°C

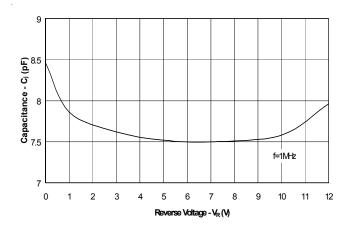
Electrical Characteristics

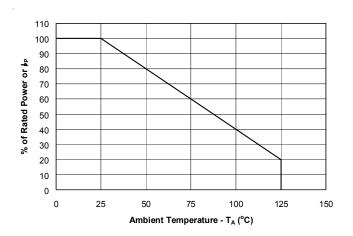
LCDA12C-1						
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Reverse Stand-Off Voltage	V _{RWM}				12	V
Reverse Breakdown Voltage	V _{BR}	I _t = 1mA	13.3			V
Reverse Leakage Current	I _R	V _{RWM} = 12V, T=25°C			5	μΑ
Clamping Voltage	V _c	$I_{pp} = 5A, t_{p} = 8/20 \mu s$			19	V
Clamping Voltage	V _c	$I_{pp} = 20A, t_p = 8/20\mu s$			26.6	V
Peak Pulse Current	I _{PP}	t _p = 8/20µs			20	А
Junction Capacitance	C _j	Between I/O pins and Ground V _R = OV, f = 1MHz		8	15	pF

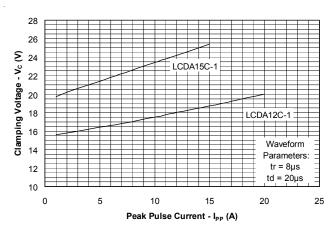

LCDA15C-1						
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Reverse Stand-Off Voltage	V _{RWM}				15	V
Reverse Breakdown Voltage	V _{BR}	I _t = 1mA	16.7			V
Reverse Leakage Current	I _R	V _{RWM} = 15V, T=25°C			5	μΑ
Clamping Voltage	V _c	$I_{pp} = 1A, t_{p} = 8/20 \mu s$			24	V
Clamping Voltage	V _c	$I_{pp} = 15A, t_p = 8/20\mu s$			33	V
Peak Pulse Current	I _{PP}	t _p = 8/20µs			15	А
Junction Capacitance	C _j	Between I/O pins and Ground V _R = OV, f = 1MHz		8	15	pF



Typical Characteristics


Non-Repetitive Peak Pulse Power vs. Pulse Time


Pulse Waveform


Capacitance vs. Reverse Voltage

Power Derating Curve

Clamping Voltage vs. Peak Pulse Current

Applications Information

Device Connection for Metallic Protection of High- Speed Data Lines

The LCDAxxC-1 is designed to protect high-speed data lines from transient over-voltages which result from lightning and ESD. The device is designed to protect one line in common mode (Line-to-Ground) or one line pair in metallic (Line-to-Line) mode. For metallic mode protection, the input of line 1 is connected at pin 1 and the output is connected at pin 4. Likewise, the input of line 2 is connected at pin 2 and the output is connected at pin 3. For common mode protection, ground either pins 1 and 4 or pins 2 and 3. The ground connection should be made directly to the ground plane for best results.

ADSL Protection

A typical ADSL protection circuit is shown in Figure 3. The LCDA12C-1 (or LCDA15C-1 for 15 volt drivers) is connected from each line to ground on the IC side of the line. They provide lightning and ESD protection for the sensitive line driver IC.

Matte Tin Lead Finish

Matte tin has become the industry standard lead-free replacement for SnPb lead finishes. A matte tin finish is composed of 100% tin solder with large grains. Since the solder volume on the leads is small compared to the solder paste volume that is placed on the land pattern of the PCB, the reflow profile will be

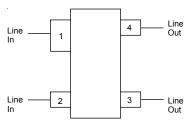
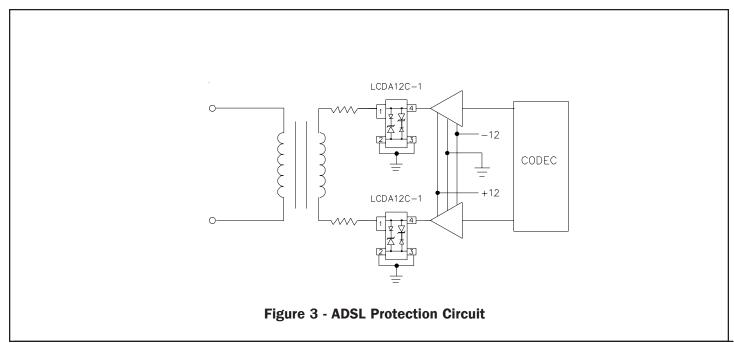
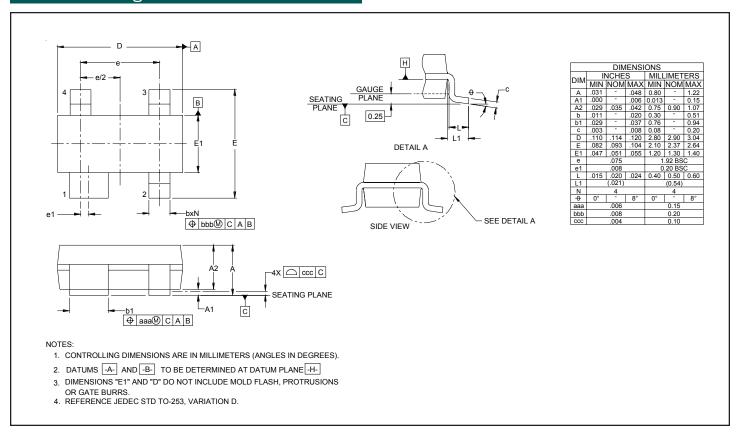
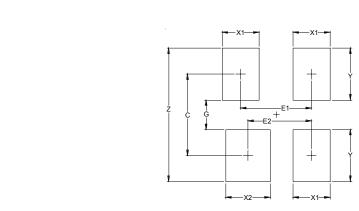


Figure 1 - Connection for Differential Protection (Line-to-Line)


Figure 2 - Connection for Common Mode Protection (Line-to-Ground)

determined by the requirements of the solder paste. Therefore, these devices are compatible with both lead-free and SnPb assembly techniques. In addition, unlike other lead-free compositions, matte tin does not have any added alloys that can cause degradation of the solder joint.



Outline Drawing - SOT-143

Land Pattern - SOT-143

	DIMENSIONS			
DIM	INCHES	MILLIMETERS		
С	(.087)	(2.20)		
E1	.076	1.92		
E2	.068	1.72		
G	.031	0.80		
X1	.039	1.00		
X2	.047	1.20		
Υ	.055	1.40		
Z	.141	3.60		

NOTES:

- THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY
 CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR
 COMPANY'S MANUFACTURING GUIDELINES ARE MET.
- 2. REFERENCE IPC-SM-782A

Marking Codes

Part Number	Marking Code
LCDA12C-1	12L
LCDA15C-1	15L

Ordering Information

Part Number	Lead Finish	Qty per Reel	Reel Size	
LCDA12C-1.TC	SnPb	3,000	7 Inch	
LCDA15C-1.TC	SnPb	3,000	7 Inch	
LCDA12C-1.TCT	Pb Free	3,000	7 Inch	
LCDA15C-1.TCT	Pb Free	3,000	7 Inch	

Contact Information

Semtech Corporation Protection Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805)498-2111 FAX (805)498-3804