

CoolSiC[™] SiC Schottky Diode

Features:

- Revolutionary semiconductor material Silicon Carbide
- No reverse recovery current / No forward recovery
- Temperature independent switching behavior
- Low forward voltage even at high operating temperature
- Tight forward voltage distribution
- Excellent thermal performance
- Extended surge current capability
- Specified dv/dt ruggedness
- Qualified according to JEDEC¹⁾ for target applications
- Pb-free lead plating; RoHS compliant

Benefits

- System efficiency improvement over Si diodes
- Enabling higher frequency / increased power density solutions
- System size/cost savings due to reduced heatsink requirements and smaller magnetics
- Reduced EMI
- Highest efficiency across the entire load range
- Robust diode operation during surge events
- High reliability
- RelatedLinks: www.infineon.com/sic

Applications

- Solar inverters
- Uninterruptable power supplies
- Motor drives
- Power Factor Correction

Package pin definitions

- Pin 1 anode 1
- Pin 2 and backside cathode
- Pin 3 anode 2

Key Performance and Package Parameters (leg/device)

Туре	V _{DC}	/ F	Q _C	$T_{\rm j,max}$	Marking	Package
IDW30G120C5B	1200 V	15 / 30 A	77 / 154 nC	175°C	D3012B5	PG-TO247-3

1) J-STD20 and JESD22

5th Generation CoolSiC[™] 1200 V SiC Schottky Diode

Table of Contents

Description	2
Table of Contents	3
Maximum ratings	4
Thermal Resistances	4
Electrical Characteristics	5
Electrical Characteristics diagram	6
Package Drawings	9
Revision History	10
Disclaimer	

Maximum ratings

Parameter	Symbol	Value (leg/device)	Unit
Repetitive peak reverse voltage	V_{RRM}	1200	V
Continuous forward current for $R_{th(j-c,max)}$ $T_c = 150^{\circ}C$, D=1 $T_c = 135^{\circ}C$, D=1 $T_c = 25^{\circ}C$, D=1	I _F	15 / 30 20 / 40 44 / 87	А
Surge non-repetitive forward current, sine halfwave $T_{\rm C}$ =25°C, $t_{\rm p}$ =10ms $T_{\rm C}$ =150°C, $t_{\rm p}$ =10ms	<i>I</i> F,SM	120 / 240 115 / 230	А
Non-repetitive peak forward current $T_C = 25$ °C, $t_p=10$ µs	<i>I</i> F,max	1230 / 2460	А
i^2 t value $T_{\rm C}=25^{\circ}{\rm C},\ t_{\rm p}=10~{\rm ms}$ $T_{\rm C}=150^{\circ}{\rm C},\ t_{\rm p}=10~{\rm ms}$	∫ i²dt	72 / 288 66 / 264	A²s
Diode dv/dt ruggedness V_R =0960 V	d <i>v</i> /d <i>t</i>	150	V/ns
Power dissipation for $R_{th(j-c,max)}$ $T_C = 25$ °C	P _{tot}	166 / 332	W
Operating and storage temperature	T_{j} ; T_{stg}	-55175	°C
Soldering temperature, wavesoldering only allowed at leads 1.6mm (0.063 in.) from case for 10 s	T_{sold}	260	°C
Mounting torque M3 and M4 screws	М	0.7	Nm

Thermal Resistances

Parameter	Symbol	Conditions	Value (leg/device)			Unit
rarameter	Symbol		min.	typ.	max.	Oilit
Characteristic						
Diode thermal resistance, junction – case	R _{th(j-c)}		-	0.7/0.35	0.9/0.5	K/W
Thermal resistance, junction – ambient	R _{th(j-a)}	leaded	-	-	62	K/W

Electrical Characteristics

Static Characteristic, at Tj=25°C, unless otherwise specified

Parameter	Symbol	Conditions	Value (leg/device)			Unit
raiailletei			min.	typ.	max.	Oilit
DC blocking voltage	V _{DC}	<i>T</i> _j = 25°C	1200	-	-	V
Diode forward voltage	V _F	<i>I</i> _F = 15/30 A, <i>T</i> _j =25°C	-	1.4	1.65	V
blode forward voltage		<i>I</i> _F = 15/30 A, <i>T</i> _j =150°C	-	1.7	2.30	
Reverse current	lo	V _R =1200 V, T _j =25°C		9 / 17	124 / 248	
Keverse current	<i>I</i> R	<i>V</i> _R =1200 V, <i>T</i> _j =150°C		44 / 88	640 / 1280	μA

Dynamic Characteristics, at T_j=25°C, unless otherwise specified

Parameter	Symbol	Conditions	Value (leg/device)			Unit
raiailielei	Symbol	Conditions	min.	typ.	max.	Oilit
Total capacitive charge		$V_R = 800V$, $T_j = 150^{\circ}$ C & 25°C				
	Qc	$Q_C = \int_0^{V_R} C(V) dV$	-	77 / 154	-	nC
		<i>V</i> _R =1 V, <i>f</i> =1 MHz	-	990 /1980	-	
Total Capacitance	С	V _R =400 V, f=1 MHz	-	70 / 140	-	pF
		<i>V</i> _R =800 V, <i>f</i> =1 MHz	-	55 / 111	-	

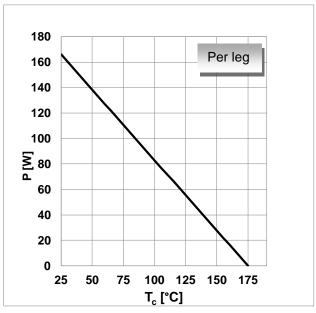


Figure 1. Power dissipation per leg as function of case temperature, $P_{\text{tot}} = f(T_{\text{C}})$, $R_{\text{th(j-c),max}}$

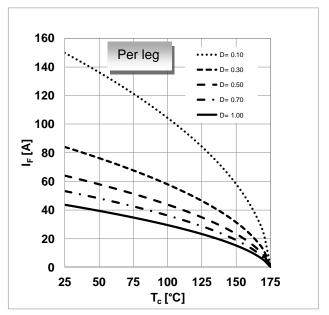


Figure 2. **Diode forward current per leg as function of temperature,** parameter: T_j ≤175°C, $R_{th(j-c),max}$, D=duty cycle, V_{th} , R_{diff} @ T_j =175°C

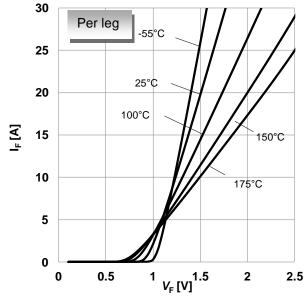


Figure 3. **Typical forward characteristics per leg,** $I_F = f(V_F)$, $t_p = 10 \mu s$, parameter: T_j

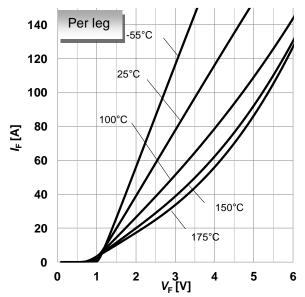


Figure 4. Typical forward characteristics in surge current per leg, $I_F=f(V_F)$, $t_p=10 \mu s$, parameter: T_j

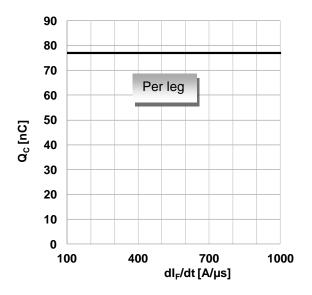


Figure 5. **Typical capacitive charge per leg as function of current slope**¹, $Q_C=f(dl_F/dt)$, $T_j=150^{\circ}C$ 1) guaranteed by design.

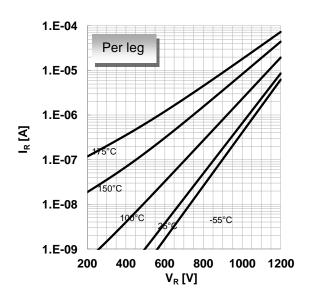


Figure 6. **Typical reverse characteristics per leg,** $I_R=f(V_R)$, parameter: T_j

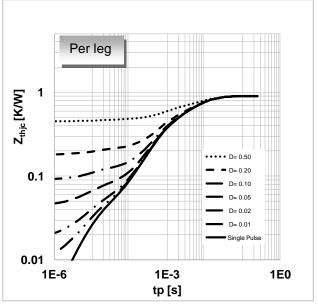


Figure 7. Max. transient thermal impedance per leg, $Z_{\text{th,j-c}} = f(t_P)$, parameter: $D = t_P/T$

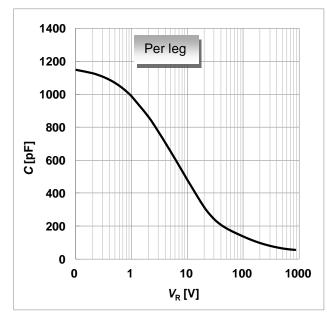


Figure 8. Typical capacitance per leg as function of reverse voltage, $C=f(V_R)$; $T_i=25$ °C; f=1 MHz

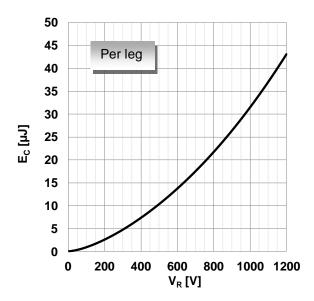
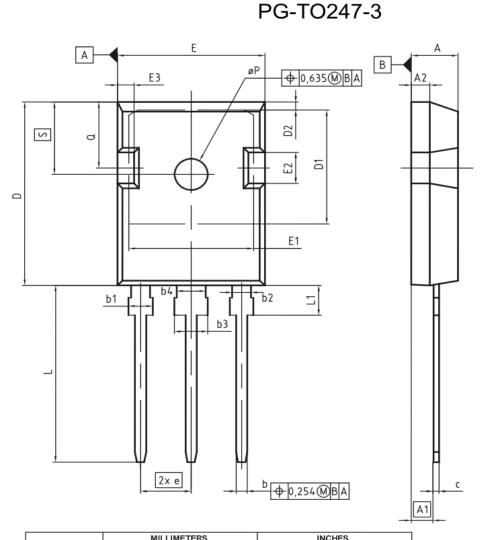



Figure 9. Typical capacitively stored energy as function of reverse voltage, per leg, $E_C=f(V_R)$

DIM	MILLIM	ETERS	INCHES		
DIW	MIN	MAX	MIN	MAX	
Α	4.83	5.21	0.190	0.205	
A1	2.27	2.54	0.089	0.100	
A2	1.85	2.16	0.073	0.085	
b	1.07	1.33	0.042	0.052	
b1	1.90	2.41	0.075	0.095	
b2	1.90	2.16	0.075	0.085	
b3	2.87	3.38	0.113	0.133	
b4	2.87	3.13	0.113	0.123	
С	0.55	0.68	0.022	0.027	
D	20.80	21.10	0.819	0.831	
D1	16.25	17.65	0.640	0.695	
D2	0.95	1.35	0.037	0.053	
E	15.70	16.13	0.618	0.635	
E1	13.10	14.15	0.516	0.557	
E2	3.68	5.10	0.145	0.201	
E3	1.00	2.60	0.039	0.102	
е	5.44 (BSC)		0.2	214 (BSC)	
N	3		;	3	
L	19.80	20.32	0.780	0.800	
L1	4.10	4.47	0.161	0.176	
øΡ	3.50	3.70	0.138	0.146	
Q	5.49	6.00	0.216	0.236	
S	6.04	6.30	0.238	0.248	

DOCUMENT NO.
Z8B00003327
SCALE 0
0 5 5 7.5mm
EUROPEAN PROJECTION
ISSUE DATE 09-07-2010
REVISION 05

5th Generation CoolSiC™ 1200 V SiC Schottky Diode

Revision History

IDW30G120C5B

Revision: 2021-03-01, Rev. 2.2

Previous Revision:

1 TO VIOLOTIC TO VIOLOTIC					
Revision	Date Subjects (major changes since last version)				
2.0	2014-06-10	Final data sheet			
2.1	2017-07-21	Editorial Changes			
2.2	2021-03-01	Increased dv/dt ruggedness			

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Final Data Sheet 10 Rev. 2.2, 2021-03-01

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2021. All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is <u>not</u> qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.