

Parameter	Symbol	Conditions	Values			Unit
			min.	typ.	max.	
Thermal characteristics						
Thermal resistance, junction - case	R_{thJC}		-	-	2	K/W
Thermal resistance, junction - ambient	R_{thJA}	Thermal resistance, junction- ambient, leaded	-	-	62	
Electrical characteristics , at T_j =25	°C, unless	otherwise specified				
Static characteristics						
DC blocking voltage	V _{DC}	I _R =0.05 mA, T _j =25 °C	1200	-	-	V
Diode forward voltage	V _F	I _F =5 A, T _j =25 °C	-	1,65	1,8	
		I _F =5 A, T _j =150 °C	-	2,55	-	
Reverse current	I _R	V _R =1200 V, T _j =25 °C	-	5	120	μA
		V _R =1200 V, T _j =150 °C	-	20	1000	
AC characteristics						
Total capacitive charge	Q _c	V_R =400 V, $I_F \le I_{F,max}$, d I_F /d t =200 A/ μ s, T_j =150 °C	-	18	-	nC
Switching time ²⁾	t_c		-	-	<10	ns
Total capacitance	С	V _R =1 V, <i>f</i> =1 MHz	-	250	-	pF
		V _R =300 V, f=1 MHz	-	20	-	
				1		┪

V_R=600 V, *f*=1 MHz

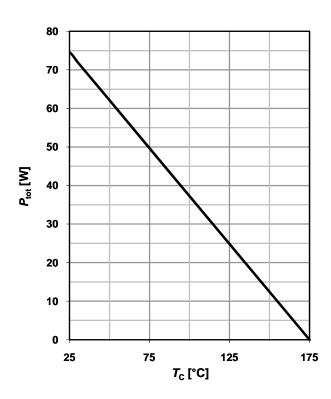
18

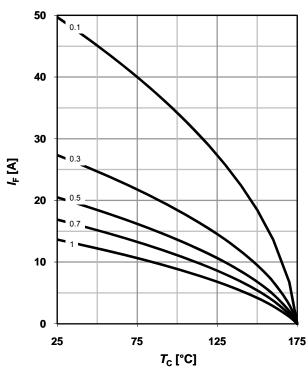
¹⁾ J-STD20 and JESD22

 $^{^{2)}}$ $t_{\rm c}$ is the time constant for the capacitive displacement current waveform (independent from $T_{\rm j}$, I_{LOAD} and di/dt), different from $t_{\rm rr}$ which is dependent on $T_{\rm j}$, I_{LOAD} and di/dt. No reverse recovery time constant $t_{\rm rr}$ due to absence of minority carrier injection

 $^{^{3)}}$ Under worst case Z_{th} conditions.

⁴⁾ Only capacitive charge occuring, guaranteed by design

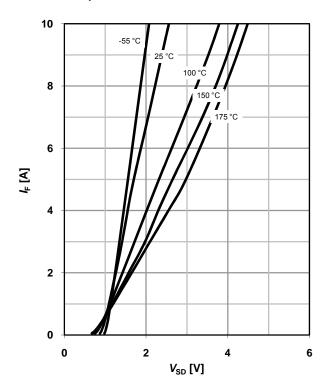



1 Power dissipation

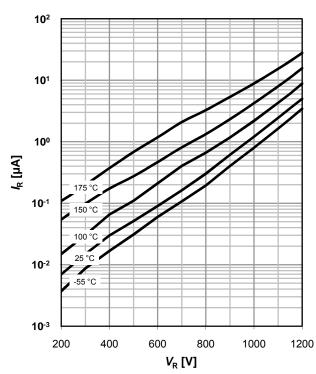
P_{tot} =f(T_{C})

2 Diode forward current

$$I_F = f(T_C)^{3}$$
; $T_i \le 175$ °C; parameter: $D = t_p/T$



3 Typ. forward characteristic

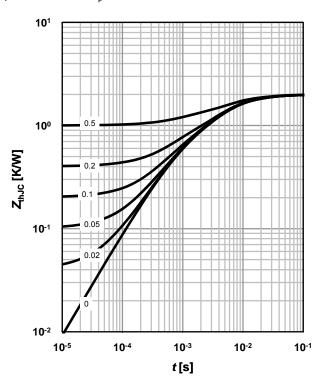

 I_F =f(V_F); t_p =400 µs

parameter: T_j

4 Typ. Reverse current vs. reverse voltage

$$E_C = f(V_R)$$

5 Typ. capacitance charge vs. current slope

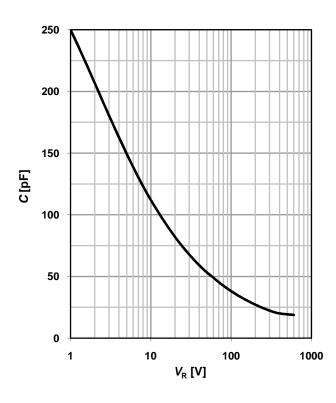

$Q_{C} = f(di_{F}/dt)^{4}$; $T_{j} = 150 \text{ °C}$; $I_{F} \le I_{F,max}$

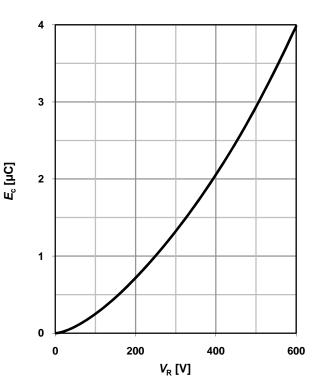
15 10 100 400 700 1000 di_F/dt [A/µs]

6 Transient thermal impedance

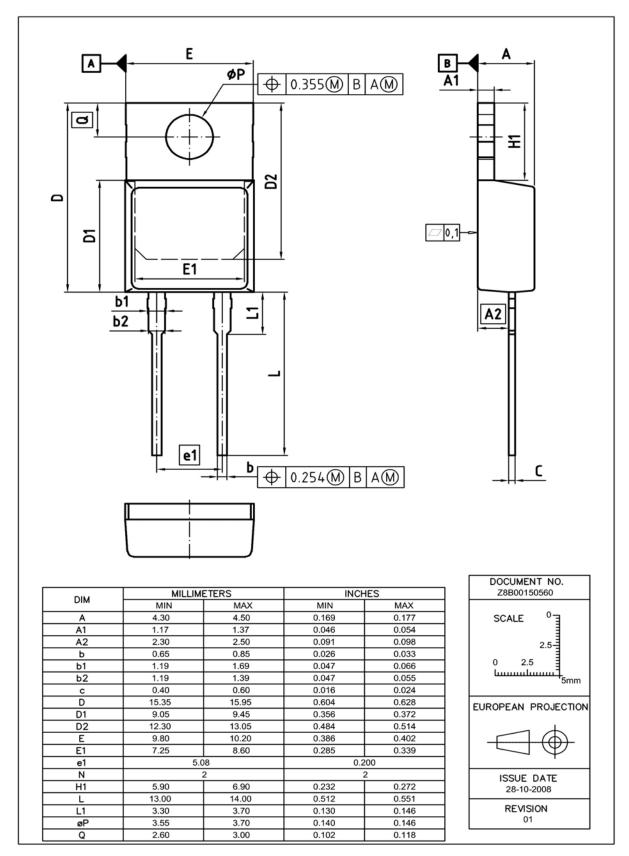
$$Z_{thJC}$$
=f(t_p)

parameter: $D=t_p/T$




7 Typ. capacitance vs. reverse voltage

$$C=f(V_R)$$
; $T_C=25$ °C, $f=1$ MHz


$$E_{\rm C}$$
=f($V_{\rm R}$)

PG-TO220-2: Outline

Dimensions in mm/inches

Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights thinQ!TM 2G Diode designed for fast switching applications like:

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.