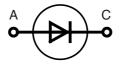


Avalanche Diode


$V_{RRM} = 1200-1800 V$ $I_{F(RMS)} = 7 A$ $I_{FAVM} = 2.3 A$

Preliminary data

Symbol

V _{RSM}	$V_{(BR)min}$	V _{RRM}	Туре
V	V	V	
1300	1300	1200	DSA 1-12D
1700	1750	1600	DSA 1-16D
1900	1950	1800	DSA 1-18D

Conditions

A = Anode, C = Cathode

Maximum Ratings	Features
-----------------	----------

• Plastic standard	package
--------------------	---------

• Planar passivated chips

Applications

- Low power rectifiers
- Field supply for DC motors
- Power supplies
- High voltage rectifiers

Advantages

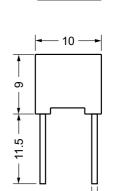
- Space and weight savings
- Simple PCB mounting
- Improved temperature & power cycling
- Reduced protection circuits

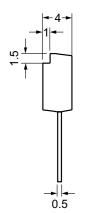
Cyllibol	Oonanions	Maximaniiiia	Maximam Hatings		
I _{FRMS}	$T_{VJ} = T_{VJM}$ $T_{amb} = 45$ °C; $R_{thJA} = 38$ K/W; 180 $T_{amb} = 45$ °C; $R_{thJA} = 80$ K/W; 180		A A A		
P _{RSM}	T_{VJM} , $t_p = 10 \mu s$	1.6	kW		
I _{FSM}	$T_{VJ} = 45^{\circ}\text{C};$ $t = 10 \text{ ms}$ (50 F) t = 8.3 ms (60 F)	,,	А		
	$T_{VJ} = 150$ °C; $t = 10$ ms (50 F) t = 8.3 ms (60 F)	tz), sine 100 tz), sine 104	А		
l²t	$T_{VJ} = 45^{\circ}\text{C};$ $t = 10 \text{ ms}$ (50 F) t = 8.3 ms (60 F)	tz), sine 60 tz), sine 58	A ² s		
	$T_{VJ} = 150^{\circ}\text{C}$; $t = 10 \text{ ms}$ (50 F) t = 8.3 ms (60 F)	tz), sine 50 tz), sine 45	A ² s		
T _{VJ} T _{VJM} T _{stg}		-40+150 150 -40+150	°C °C °C		
Weight	typical	0.8	g		

Symbol Conditions

Characteristic Values

		typ.	max.	
I _R	$V_R = V_{RRM}$ $T_{VJ} = T_{VJM}$		0.7	mA
V_{F}	$I_F = 7 \text{ A}$ $T_{VJ} = 25^{\circ}\text{C}$		1.34	V
V_{T0}	For power-loss calculations only		0.8	V
r _T	$T_{VJ} = T_{VJM}$		67	mΩ
R_{thJA}	Forced air cooling with 1.5 m/s, T _{amb} = 45°C		38	K/W
	Soldered on to PC board, $T_{amb} = 45^{\circ}C$		80	K/W
d_s	Creepage distance on surface		8.5	mm
d _s d _A	Strike distance through air		6.7	mm
а	Max. allowable acceleration		100	m/s ²


Data according to IEC 60747


Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, test conditions and dimensions.

Dimensions in mm (1 mm = 0.0394")

20191128c