Edition 2010-10-28

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2010. All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

0	ct.	20	1	0

Revision History: GPS Front-End Module, Rev.3.2

Previous Version: 2009-10-30, Rev.3.1

Page	Subjects (major changes since last revision)					
10	Package pin tolerances changed from 35µm to 50µm					

GPS Front-End Module

BGM781N11

1 GPS Front-End Module

Features

Operating frequency: 1575.42 MHz

· High Gain: 18.6 dB

• Low Noise Figure: 1.7 dB

· Low current consumption: 3.3 mA

• Out-of-band rejection in cellular bands: 80 dBc

• Input compression point in cellular bands: 20 dBm

Supply voltage: 1.5 V to 3.6 V

Tiny TSNP-11-2 leadless package

• RF input internally pre-matched to 50 Ω

• RF output internally matched to 50 Ω

HBM ESD capability of all pins: 2 kV

IEC ESD contact discharge of RF input pin: 8 kV

Only 2 external SMD parts

RoHS compliant package (Pb-free)

TSNP11-2.vsd

TSNP-11-2 Package top view (2.5 x 2.5 x 0.73 mm³)

Application

1575.42 MHz GPS, Galileo, GPS phones, personal navigaton devices

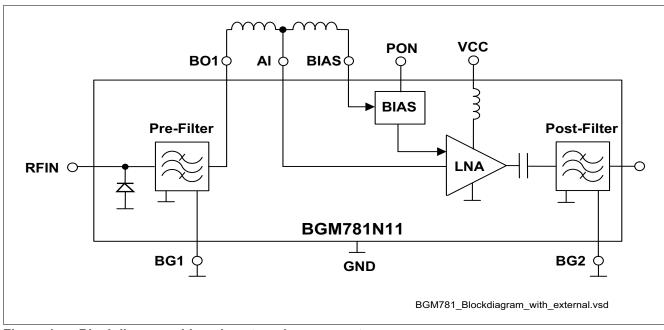


Figure 1 Blockdiagram with main external components

Data Sheet 4 Rev.3.2, 2010-10-28

Description

2 Description

The BGM781N11 is a combination of a low-insertion-loss pre-filter with Infineon's high performance low noise amplifier (LNA) and a high-attenuation post-filter for Global Positioning System (GPS) applications. Through the low insertion loss of the filters, the BGM781N11 provides 18.6 dB gain, 1.7 dB noise figure and high linearity performance. In addition BGM781N11 provides very high out-of-band attenuation in conjunction with a high input compression point. Its current consumption is as low as 3.3 mA. It operates over the 1.5 V to 3.6 V supply voltage range.

Туре	Package	Marking
BGM781N11	TSNP-11-2	M781

Pin Definition and Function

Table 1 Pin Definition and Function

Pin No.	Symbol	Function			
1	BG2	Optional Output-Filter GND			
2	PON	Power On/Off			
3	VCC	Power Supply			
4	n.c.	not used			
5	RFIN	RF Input			
6	BG1	Input-Filter GND			
7	BO1	Input-Filter Output			
8	Al	LNA Input			
9	BIAS	BIAS			
10	RFOUT	RF Output	RF Output		
11	GND	Package Middle Island			

Maximum Ratings

Table 2 Maximum Ratings

Parameter ¹⁾	Symbol	Value	Unit	Note / Test Condition
Voltage at pin BG2 to GND	V_{BG2}	-11	V	
Voltage at pin PON to GND	V_{PON}	-0.33.6	V	
Voltage at pin VCC to GND	$V_{\sf CC}$	-0.33.6	V	
Voltage at pin RFIN to GND	V_{RFIN}	-33	V	
Voltage at pin BG1 to GND	V_{BG1}	-33	V	
Voltage at pin B01 to GND	V_{BO1}	-33	V	
Voltage at pin AI to GND	V_{Al}	-0.30.9	V	
Voltage at pin BIAS to GND	V_{BIAS}	-0.30.9	V	
Voltage at pin RFOUT to GND	V_{RFOUT}	-33	V	
Current into pin VCC	I_{VCC}	25	mA	
RF input power inband	P_{IN}	3	dBm	Continuous wave signal f = 1575.42 MHz 50 ohm source and load impedances

Description

Table 2 Maximum Ratings (cont'd)

Parameter ¹⁾	Symbol	Value	Unit	Note / Test Condition
RF input power out of band	$P_{IN,OOB}$	21		Continuous wave signal $f = 50 - 1460$ MHz and 1710 - 4000 MHz 50 ohm source and load impedances
Total power dissipation	P_{tot}	90	mW	
Junction temperature	T_{J}	150	°C	
Ambient temperature range	T_{A}	-40 85	°C	
Storage temperature range	T_{STG}	-65 85	°C	
ESD capability HBM of all pins, with pin 6 and GND middle island pin 11 tied together	V_{ESD1}	2	kV	according to JESD22A-114
ESD contact discharge capability of RF input pin 5	V_{ESD2}	8	kV	according to IEC61000-4-2

¹⁾ All voltages refer pin-to-pin, unless otherwise specified.

Electrical Characteristics

3 Electrical Characteristics

Table 3 Electrical Characteristics: T_A = 25 °C, V_{CC} = 1.8 V, $V_{PON,ON}$ = 1.8 V, $V_{PON,OFF}$ = 0 V¹⁾

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Supply Voltage	$V_{\sf CC}$	1.5	1.8	3.6	V	
Supply Current	$I_{\sf CC}$	-	3.3	-	mA	ON-Mode
		-	0.2	3	μΑ	OFF-Mode
Power On Control Voltage	V_{pon}	1.0	-	Vcc	V	ON-Mode
		0	-	0.4	V	OFF-Mode
Power On Control Current	I_{pon}	-	5	-	μΑ	ON-Mode
		-	-	1	μΑ	OFF-Mode
Power Gain Settling Time ²⁾	t_{S}	-	5	-	μS	OFF- to ON-Mode
		-	5	-	μS	ON- to OFF-mode
Passband Parameters @ f = 1575.42 MHz						
Insertion Power Gain	$ S_{21} ^2$	17.1	18.6	-	dB	
Noise Figure ³⁾	NF	-	1.7	2.3	dB	$Z_{\rm S}$ = 50 Ω
Input Return Loss	$RL_{\sf in}$	-	12	-	dB	
Output Return Loss	RL_{out}	-	15	-	dB	
Reverse Isolation	$1/ S_{12} ^2$	-	40	-	dB	
Inband Input 3rd Order Intercept Point	IIP ₃	-	-7	-	dBm	$f_1 = 1575.42 \text{ MHz}$ $f_2 = f_1 + 1 \text{ MHz}$
Inband Input 1 dB Compression Point	IP _{1dB}	-	-15	-	dBm	f ₁ = 1575.42 MHz
Out-of-band Input 1 dB Compression Point	<i>IP</i> _{1dB_900M}	-	20	-		f ₁ = 900 MHz
Out-of-band Input 1 dB Compression Point	<i>IP</i> _{1dB_1710M}	-	20	-		f ₁ = 1710 MHz
Stopband Parameters						
Rejection ⁴⁾	Rej _{900M}	-	90	-	dBc	f = 806 MHz - 928 MHz
Rejection ⁴⁾	<i>Rej</i> _{1800M}	-	80	-	dBc	f = 1710 MHz - 1980 MH
Rejection ⁴⁾	<i>Rej</i> _{2400M}	-	72	-	dBc	f = 2400 MHz - 2500 MH
Stability	k	-	>1	-		f = 20 MHz - 20 GHz

¹⁾ Specification based on performance as measured on BGM781N11application board shown in Figure 3 and including PCB losses (unless noted otherwise)

²⁾ To be within 1 dB of the final gain OFF- to ON-mode; to be within 3 dB of the final gain ON- to OFF-mode

³⁾ PCB and connector losses subtracted, verified on AQL base

⁴⁾ Rejection= $|(1/|S_{21}|^2)$ at stopband frequency $|+|(1/|S_{21}|^2)$ at 1575.42 MHz

Application Information

4 Application Information

4.1 Application Circuit

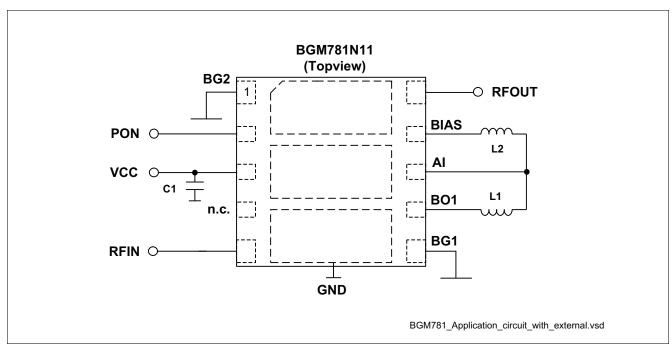


Figure 2 Application circuit with external components

Table 4 Bill of Materials

Name	Value	Package	Manufacturer	Function
C1	1 μF	0402	Various	Supply voltage filtering (optional)
L1	3.6 nH	0402	muRata LQG15HS	Input matching
L2	33 nH	0402	muRata LQG15HS	Bias
N1	BGM781N11	TSNP-11-2	Infineon	GPS FE Module

Application Information

4.2 Application Board

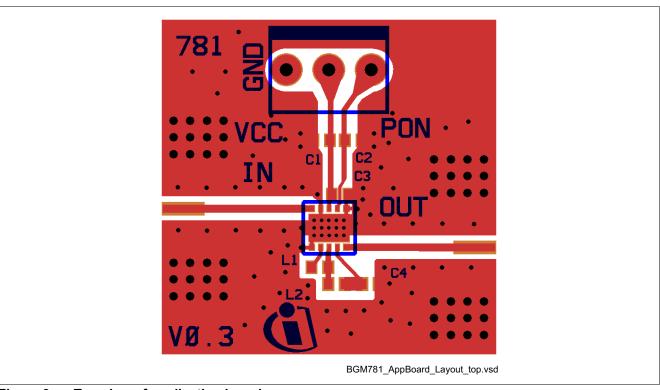


Figure 3 Top view of application board

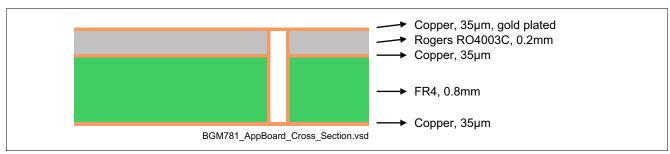


Figure 4 Cross section view of application board

Package Information

5 Package Information

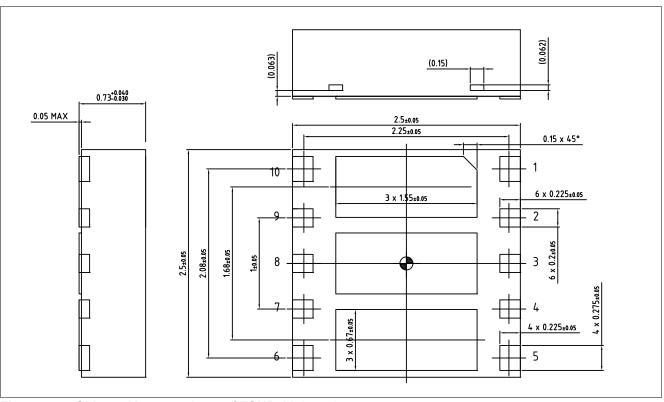


Figure 5 Side and bottom views of TSNP-11-2 package

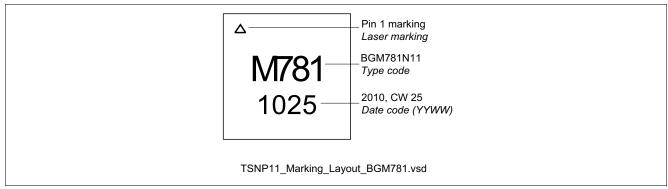


Figure 6 Marking layout

Package Information

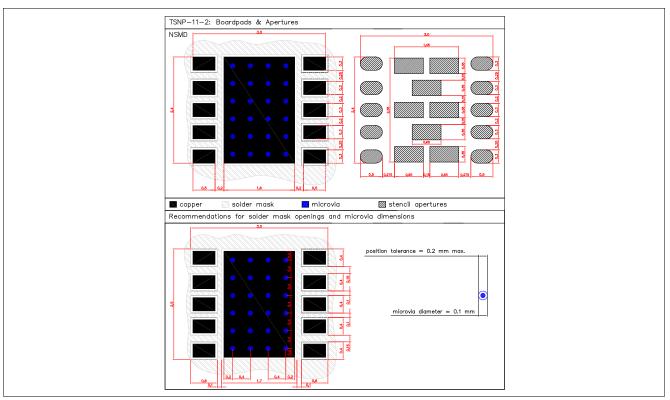


Figure 7 Recommended TSNP-11-2 footprint for optimum RF performance

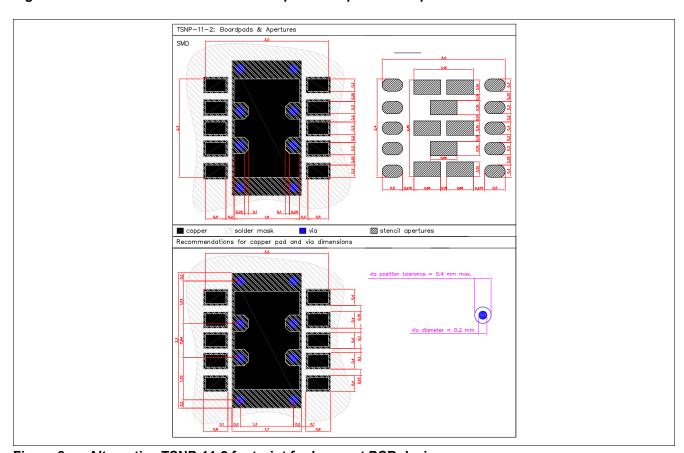


Figure 8 Alternative TSNP-11-2 footprint for low cost PCB designs

Packing Information

6 Packing Information

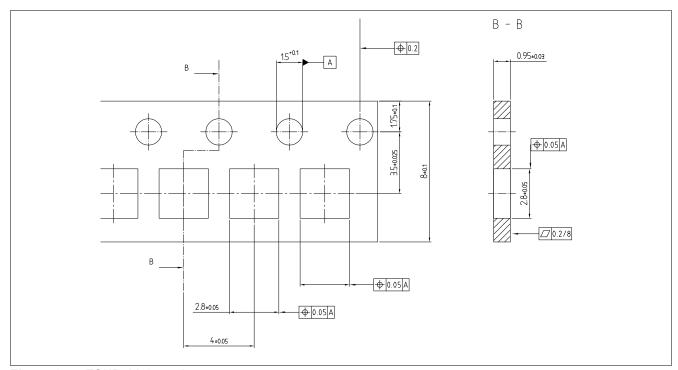


Figure 9 TSNP-11-2 carrier tape

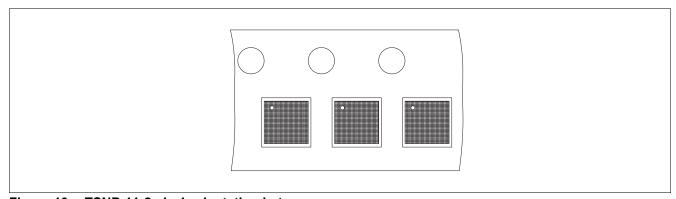


Figure 10 TSNP-11-2 pin 1 orientation in tape