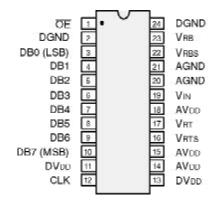
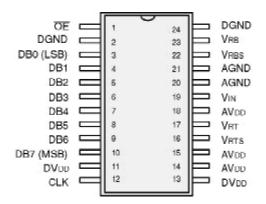
XRD8785


XPEXAR

ORDERING INFORMATION


Package	Temperature	Part No.	DNL	INL
Туре	Range		(LSB)	(LSB)
SOIC (Jedec)	–40 to +85°C	XRD8785AID	+/- 0.75	+/-1.5
SOP (EIAJ)	−40 to +85°C	XRD8785AIK	+/- 0.75	+/-1.5
Plastic Dip (300MIL)	–40 to +85°C	XRD8785AIP	+/- 0.75	+/-1.5

PIN CONFIGURATIONS

See Packaging Section for Package Dimensions

24-Pin PDIP (300 MIL) - P24

24-Pin SOP (EIAJ, 5.4mm) – K24 24-Pin SOIC (Jedec, 300 MIL) – D24

PIN OUT DEFINITIONS

PIN NO.	NAME	DESCRIPTION	PIN NO.	NAME	DESCRIPTION
1	OE	Output Enable	13	DV_{DD}	Digital Power Supply
2	DGND	Digital Ground	14	AV_{DD}	Analog Power Supply
3	DB0	Data Output Bit 0 (LSB)	15	AV_{DD}	Analog Power Supply
4	DB1	Data Output Bit 1	16	V _{RTS}	Generates 2.6 V if tied to $V_{\mbox{\tiny RT}}$
5	DB2	Data Output Bit 2	17	V _{RT}	Top Reference
6	DB3	Data Output Bit 3	18	AV_{DD}	Analog Power Supply
7	DB4	Data Output Bit 4	19	VIN	Analog Input
8	DB5	Data Output Bit 5	20	AGND	Analog Ground
9	DB6	Data Output Bit 6	21	AGND	Analog Ground
10	DB7	Data Output Bit 7 (MSB)	22	V _{RBS}	Generates 0.6 V if tied to V_{RB}
11	DV_{DD}	Digital Power Supply	23	V _{RB}	Bottom Reference
12	CLK	Sampling Clock Input	24	DGND	Digital Ground

ELECTRICAL CHARACTERISTICS TABLE

UNLESS OTHERWISE SPECIFIED: $AV_{DD} = DV_{DD} = 5V$, FS = 15MHZ (50% DUTY CYCLE),

 V_{RT} = 2.6V, V_{RB} = 0.6V, T_{A} = 25°C

			25°C			
Parameter	Symbol	Min	Тур	Max	Units	Test Conditions/Comments
KEYFEATURES						
Resolution		8			Bits	
Sampling Rate	FS	0.1	15	20	MHz	
ACCURACY						
Differential Non-Linearity	DNL			+/-0.75	LSB	@ 15MHz
Differential Non-Linearity	DNL		+/-0.5		LSB	@ 10MHz
Integral Non-Linearity	INL			+/-1.5	LSB	Best Fit Line
						(Max INL – Min INL)/2
Zero Scale Error	EZS		+3		LSB	
Full Scale Error	EFS		-2		LSB	
REFERENCEVOLTAGES						
Positive Ref. Voltage	V _{RT}		2.6	AV _{DD}	V	
Negative Ref. Voltage	V _{RB}	AGND	0.6		V	
Differential Ref. Voltage ³	V _{REF}	1.0		AV _{DD}	v	$V_{BEF} = V_{BT} - V_{BB}$
Ladder Resistance	R	245	350	550	Ω	
Ladder Temp. Coefficient	R _{tco}		2000		ppm/°C	
Self Bias 1						
Short V_{RB} and V_{RBS}	V _{RB}		0.6		V	
Short V_{RT} and V_{RTS}	V _{RT} -V _{RB}		2		V	
Self Bias 2						
$V_{RB} = AGND,$	V _{RT}		2.3		V	
Short V_{RT} and V_{RTS}						
ANALOGINPUT						
Input Bandwidth (-1 dB) ^{2,4}	BW		50		MHz	
Input Voltage Range	V _{IN}	V _{RB}		V _{RT}	V	
Input Capacitance 5	C _{IN}		16		pF	
Aperture Delay ²	t _{AP}		3		ns	
DIGITAL INPUTS						
Logical "1" Voltage	V _{IH}	4.0			V	
Logical "0" Voltage	V _{IL}			1.0	V	
DC Leakage Currents 6	I _{IN}					$V_{IN} = DGND to DV_{DD}$
CLK			5		μA	
OE			5		μΑ	
Input Capacitance			5		pF	
Clock Timing (See Figure 1.)7						
Clock Period	1/FS	50	66.7		ns	
High Pulse Width	t _{PWH}	25	33.3		ns	
Low Pulse Width	t _{PWL}	25	33.3		ns	
DIGITAL OUTPUTS						С _{оит} =15 рF
Logical "1" Voltage	V _{OH}	4.5			V	$I_{LOAD} = 4 \text{ mA}$
Logical "0" Voltage	V _{oL}			0.4	V	$I_{LOAD} = 4 \text{ mA}$
3-state Leakage	I _{oz}		10		μΑ	$V_{OUT} = DGND \text{ to } DV_{DD}$
Data Valid Delay ⁸	t _{DL}		10		ns	
Data Enable Delay	t _{DEN}		5		ns	
Data 3-state Delay	t _{DHZ}		5		ns	

Rev. 3.00

ELECTRICAL CHARACTERISTICS TABLE (CONT'D)

UNLESS OTHERWISE SPECIFIED: $AV_{DD} = DV_{DD} = 5V$, FS = 15MHZ (50% DUTY CYCLE),

 $V_{RT} = 2.6V, V_{RB} = 0.6V, T_{A} = 25^{\circ}C$

			25°C			
Parameter	Symbol	Min	Тур	Max	Units	Test Conditions/Comments
ACPARAMETERS						
Differential Gain Error	dg		2		%	FS = 4 x NTSC
Differential Phase Error	d_{ph}		1		Degree	FS = 4 x NTSC
POWERSUPPLIES						
Operating Voltage $(AV_{DD}, DV_{DD})^9$	V_{DD}	4.5	5	5.5	V	
Current (AGND + DGND)	I _{DD}		15	25	mA	Does not include ref. current

/ / / / / / / / / /

NOTES

1. The difference between the measured and the ideal code width (V_{REF}/256) is the DNL error (Figure 3). The INL error is the maximum distance (in LSBs) from the best fit line to any transition voltage (Figure 4). Accuracy is a function of the sampling rate (FS).

2. Guaranteed, not tested

3. Specified values guarantee functionality. Refer to other parameters for accuracy.

4. -1dB bandwidth is a measure of performance of the A/D input stage (S/H + amplifier). Refer to other parameters for accuracy within the specified bandwidth.

5. See $V_{\mathbb{N}}$ input equivalent circuit (Figure 5). Switched capacitor analog input requires driver with low output resistance.

6. All inputs have diodes to DV_{DD} and DGND. Input DC currents will not exceed specified limits for any input voltage between DGND and DV_{DD}.

7. $t_{\rm R}$, $t_{\rm F}$ should be limited to >5ns for best results.

8. Depends on the RC load connected to the output pin.

9. AGND & DGND pins are connected through the silicon substrate. Connect together at the package and to the analog ground plane.

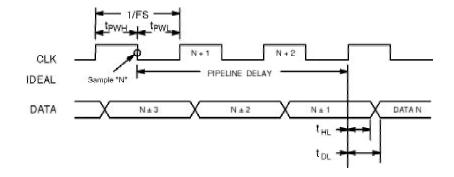
Specifications are subject to change without notice

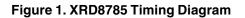
ABSOLUTE MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)^{1, 2, 3}

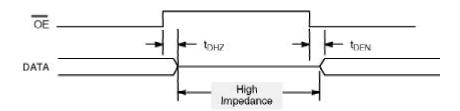
$V_{\scriptscriptstyle DD}$ to GND	7V
V _{RT} & V RB	V_{DD} +0.5 to GND –0.5V
V _{IN}	V_{DD} +0.5 to GND –0.5V
All Inputs	V_{DD} +0.5 to GND –0.5V
All Outputs	V_{DD} +0.5 to GND –0.5V

o +150°C
+300°C
. 675mW
2mW/°C

NOTES:


Downloaded from Arrow.com.


1. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.


2. Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies. All inputs have protection diodes which will protect the device from short transients outside the supplies of less than 100mA for less than 100ms.

3. V_{DD} refers to AV_{DD} and DV_{DD} . GND refers to AGND and DGND.

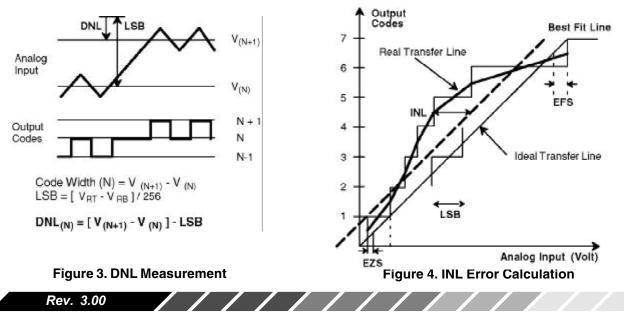
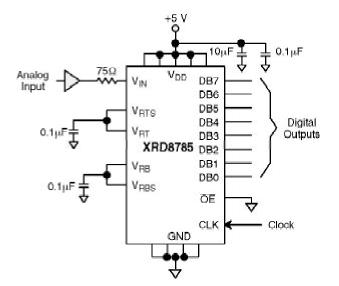



Figure 5. Equivalent Input Circuit

XPEXAR

Figure 6. Typical Circuit Connections

APPLICATION NOTES

XRD8785

Signals should not exceed V_{DD} +0.5V or go below GND –0.5V. All pins have internal protection diodes that will protect them from short transients (<100µs) outside the supply range.

AGND and DGND pins are connected internally through the P-substrate. DC voltage differences between GND pins will cause undesirable internal substrate currents.

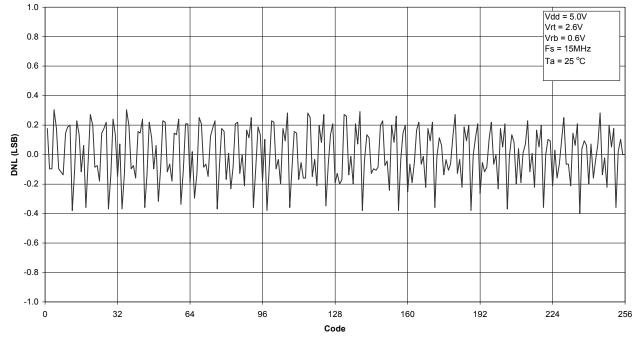
The power supply (V_{DD}) and reference voltage $(V_{RT} \& V_{RB})$ pins should be decoupled with 0.1µF and 10µF capacitors to AGND, placed as close to the chip as possible.

The digital outputs should not drive long wires or buses. The capacitive coupling and reflections will contribute noise to the conversion. To avoid timing errors, use the rising edge of the sample clock (CLK) to latch data from the XRD8785 to other parts of the system.

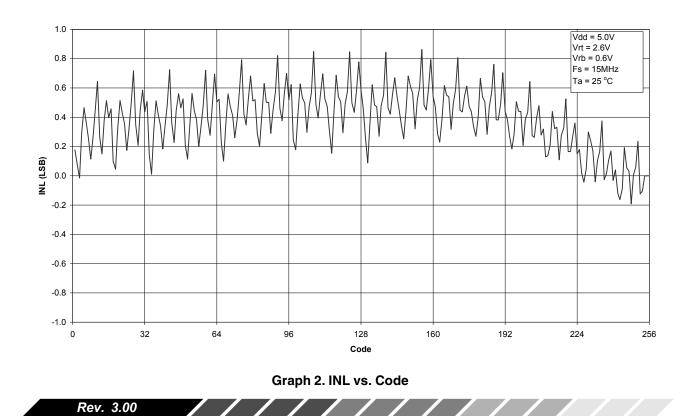
The reference can be biased internally by shorting V_{RT} to V_{RTS} and V_{RB} to V_{RBS}. This will generate 0.6V at V_{RB} and 2.6V at V_{RT} (see Figure 5).

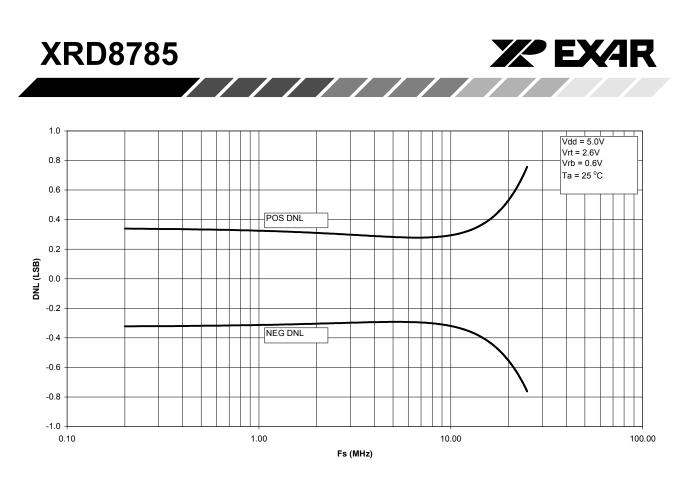
If the internal reference pins $V_{\rm RTS}$ and/or $V_{\rm RBS}$ are not used, they should be left unconnected.

The output enable pin (\overline{OE}) should not be left unconnected. If not controlled by an active signal then it must be tied to a logic low value.



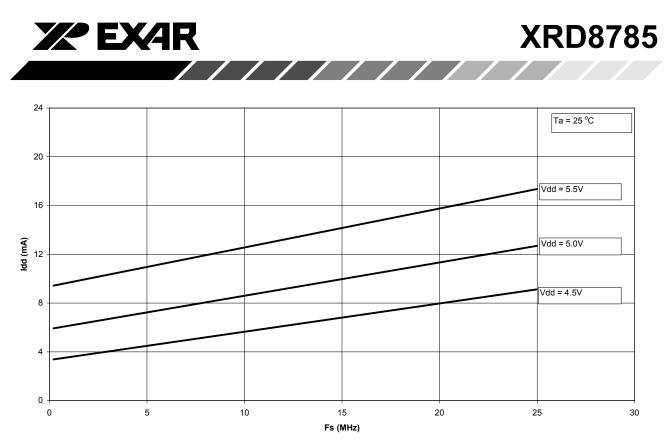
/ / / /

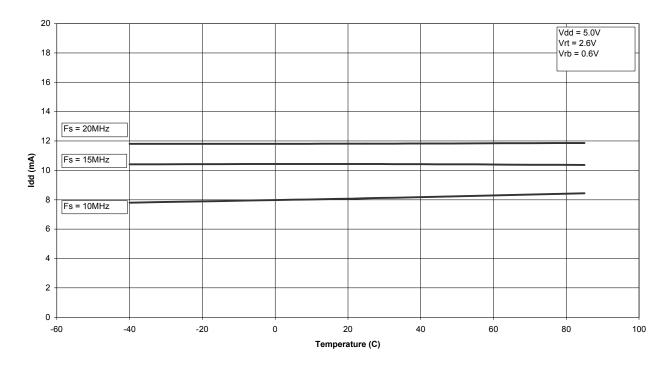


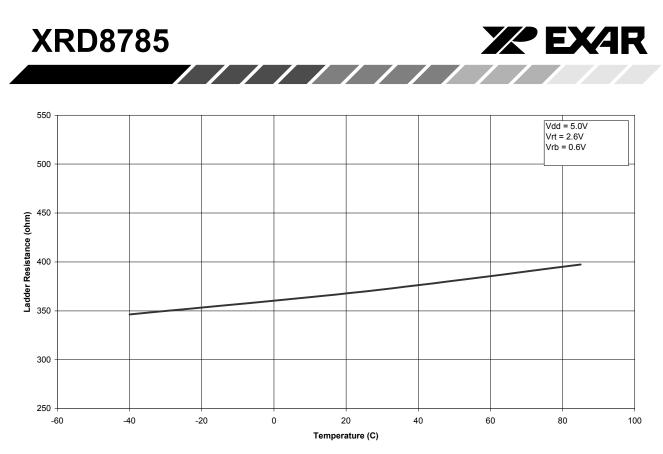


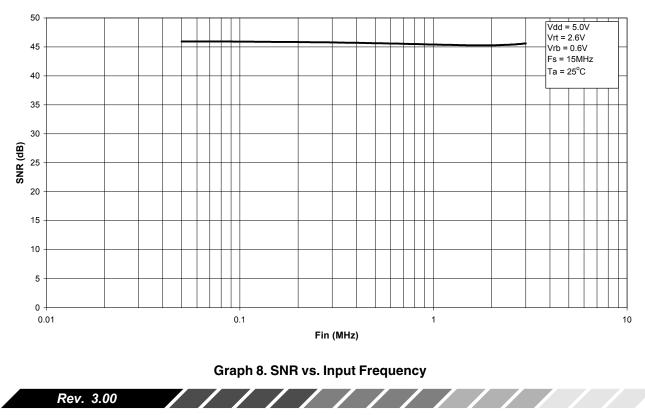
PERFORMANCE CHARACTERISTICS

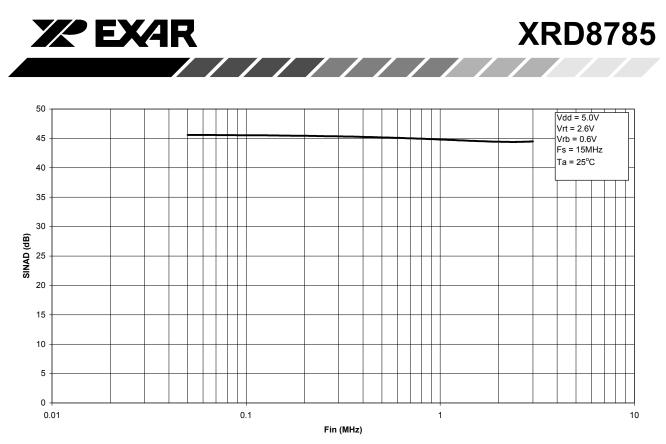


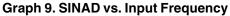


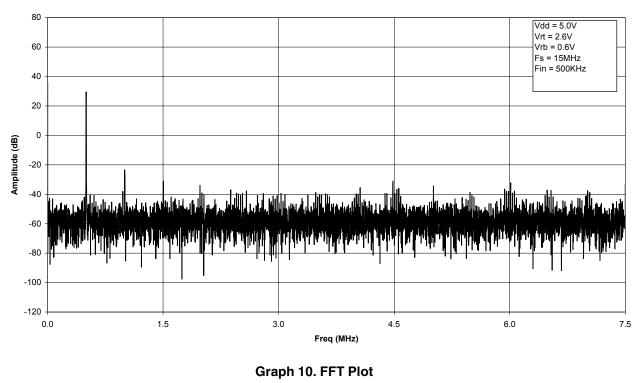


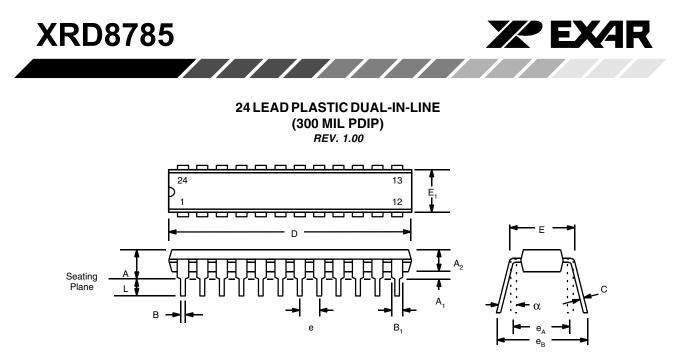


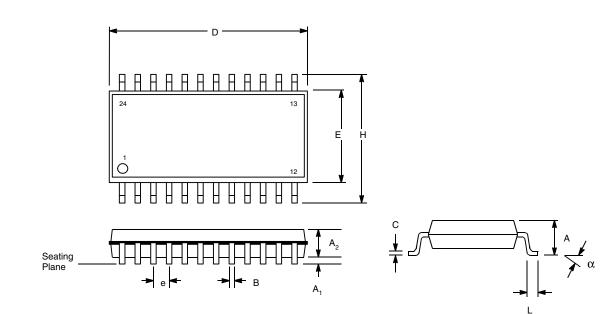




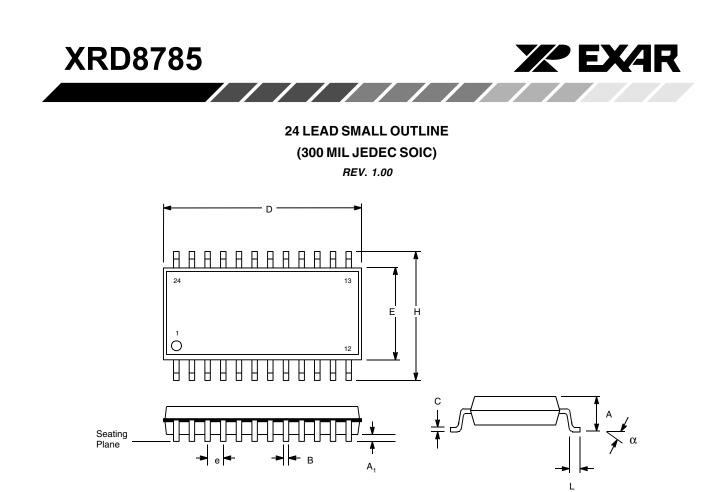







Note: The control dimension is the inch column

	INCHES		MILLIME	TERS
SYMBOL	MIN	MAX	MIN	MAX
A	0.145	0.210	3.68	5.33
A1	0.015	0.070	0.38	1.78
A2	0.115	0.195	2.92	4.95
В	0.014	0.024	0.36	0.56
B1	0.030	0.070	0.76	1.78
С	0.008	0.014	0.20	0.38
D	1.125	1.275	28.58	32.39
E	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
е	0.10	0 BSC	2.54 BS	SC
eA	0.30	0 BSC	7.62 BS	SC
eB	0.310	0.430	7.87	10.92
L	0.115	0.160	2.92	5.08
а	0°	15°	0°	15°


24 LEAD EIAJ SMALL OUTLINE (5.4 mm EIAJ SOP)

REV. 1.00

	INC	HES	MILLIMETERS	
SYMBOL	MIN	MAX	MIN	MAX
А	0.069	0.083	1.75	2.10
A1	0.002	0.008	0.05	0.20
A2	0.067	0.075	1.70	1.90
В	0.012	0.020	0.30	0.50
С	0.004	0.008	0.10	0.20
D	0.587	0.594	14.90	15.10
E	0.209	0.217	5.30	5.50
е	0.050	0.050 BSC		7 BSC
н	0.299	0.315	7.60	8.00
L	0.012	0.030	0.30	0.76
а	0°	10°	0°	10°

Rev. 3.00

	INC	HES	MILL	IMETERS
SYMBOL	MIN	MAX	MIN	MAX
А	0.093	0.104	2.35	2.65
A1	0.004	0.012	0.10	0.30
В	0.013	0.020	0.33	0.51
С	0.009	0.013	0.23	0.32
D	0.598	0.614	15.20	15.60
E	0.291	0.299	7.40	7.60
е	0.0	0.050 BSC		BSC
Н	0.394	0.419	10.00	10.65
L	0.016	0.050	0.40	1.27
а	0°	8 °	0°	8°

Rev. 3.00

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for in accuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2002 EXAR Corporation Datasheet April 2002 Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

Rev. 3.00