1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Drain-to-Source Voltage	BV _{DSS}
Drain-to-Gate Voltage	
Gate-to-Source Voltage	
Operating Ambient Temperature, T _A	
Storage Temperature, T _S	

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

Electrical Specifications: $T_A = 25^{\circ}$ C unless otherwise specified. All DC parameters are 100% tested at 25°C unless otherwise stated. Pulse test: 300 µs pulse, 2% duty cycle.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Drain-to-Source Breakdown Voltage	BV _{DSS}	-350	_	_	V	$V_{GS} = 0V$, $I_D = -2$ mA
Gate Threshold Voltage	$V_{GS(th)}$	-1		-2.4	V	$V_{GS} = V_{DS}$, $I_D = -1$ mA
Change in V _{GS(th)} with Temperature	$\Delta V_{GS(th)}$	1		4.8	mV/°C	$V_{GS} = V_{DS}$, $I_D = -1$ mA (Note 1)
Gate Body Leakage Current	I _{GSS}		_	-100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$
		1		-10	μΑ	V _{GS} = 0V, V _{DS} = Maximum rating
Zero-Gate Voltage Drain Current	I _{DSS}	l		-1	mA	V_{DS} = 0.8 Maximum rating, V_{GS} = 0V, T_A = 125°C (Note 1)
On-State Drain Current	1	-0.2	-0.3		Α	$V_{GS} = -4.5V, V_{DS} = -25V$
On-State Drain Current	I _{D(ON)}	-0.4	-1.1	_	Α	$V_{GS} = -10V, V_{DS} = -25V$
Static Drain-to-Source On-State Resistance	D		20	30	Ω	$V_{GS} = -4.5V$, $I_{D} = -100 \text{ mA}$
Static Diani-to-Source Off-State Resistance	R _{DS(ON)}		19	25	Ω	$V_{GS} = -10V$, $I_D = -100 \text{ mA}$
Change in R _{DS(ON)} with Temperature	$\Delta R_{DS(ON)}$	_	_	0.75	%/°C	$V_{GS} = -10V, I_D = -100 \text{ mA}$ (Note 1)

Note 1: Specification is obtained by characterization and is not 100% tested.

AC ELECTRICAL CHARACTERISTICS

Electrical Specifications: T _A = 25°C unless otherwise specified. Specification is obtained by characterization and
is not 100% tested.

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Forward Transconductance	G _{FS}	100	175	_	mmho	$V_{DS} = -25V$, $I_{D} = -100$ mA
Input Capacitance	C _{ISS}	_	60	125	pF	V _{GS} = 0V,
Common-Source Output Capacitance	Coss	_	20	70	pF	$V_{DS} = -25V$,
Reverse Transfer Capacitance	C _{RSS}	_	10	25	pF	f = 1 MHz
Turn-On Delay Time	t _{d(ON)}	_	_	10	ns	
Rise Time	t _r	_	_	10	ns	$V_{DD} = -25V,$
Turn-Off Delay Time	t _{d(OFF)}	_	_	20	ns	$I_D = -0.4A,$ $R_{GEN} = 25\Omega$
Fall Time	t _f	_	_	13	ns	- GEN
DIODE PARAMETER						
Diode Forward Voltage Drop	V_{SD}		_	-1.8	V	$V_{GS} = 0V$, $I_{SD} = -100$ mA (Note 1)
Reverse Recovery Time	t _{rr}	_	300		ns	$V_{GS} = 0V, I_{SD} = -100 \text{ mA}$

Note 1: Unless otherwise stated, all DC parameters are 100% tested at 25°C. Pulse test: 300 μs pulse, 2% duty cycle.

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
TEMPERATURE RANGE						
Operating Ambient Temperature	T _A	-55	_	+150	°C	
Storage Temperature	T _S	-55	_	+150	°C	
PACKAGE THERMAL RESISTANCE						
3-lead TO-92	θ_{JA}	_	132	_	°C/W	

THERMAL CHARACTERISTICS

Package	I _D (Note 1) (Continuous) (mA)	I _D (Pulsed) (mA)	Power Dissipation at T _A = 25°C (W)	I _{DR} (Note 1) (mA)	I _{DRM} (mA)
3-lead TO-92	-86	-600	0.74	-86	-600

Note 1: I_D (continuous) is limited by maximum rated T_J .

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g. outside specified power supply range) and therefore outside the warranted range.

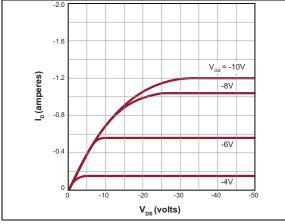


FIGURE 2-1: Output Characteristics.

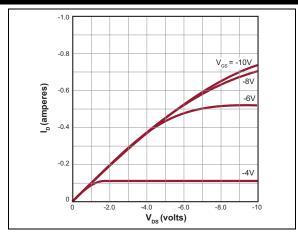
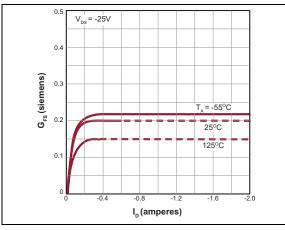
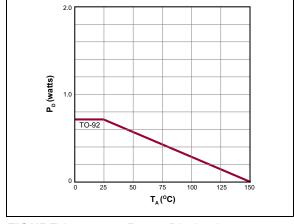
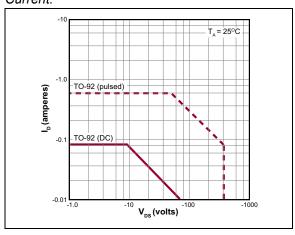
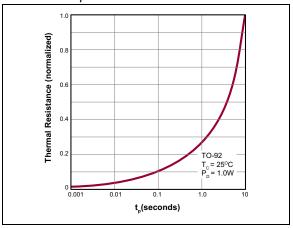


FIGURE 2-4: Saturation Characteristics.


FIGURE 2-2: Transconductance vs. Drain Current.

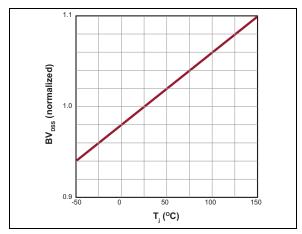

FIGURE 2-5: Power Dissipation vs. Ambient Temperature.

FIGURE 2-3: Maximum Rated Safe Operating Area.

FIGURE 2-6: Thermal Response Characteristics.

FIGURE 2-7: BV_{DSS} Variation with Temperature.

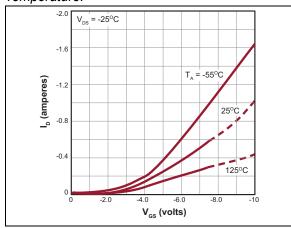
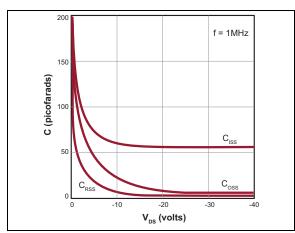



FIGURE 2-8: Transfer Characteristics.

FIGURE 2-9: Capacitance vs. Drain-to-Source Voltage.

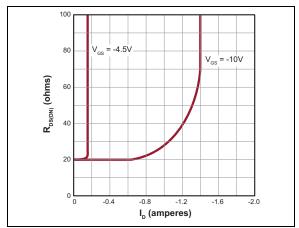
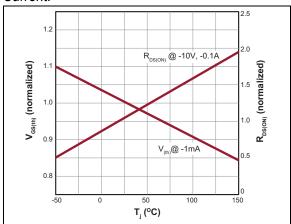



FIGURE 2-10: On-Resistance vs. Drain Current.

FIGURE 2-11: $V_{(th)}$ and R_{DS} Variation with Temperature.

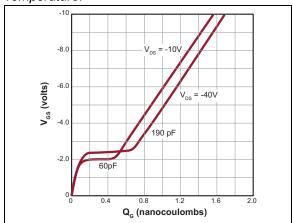


FIGURE 2-12: Gate Drive Dynamic Characteristics.

TP2535

3.0 PIN DESCRIPTION

The details on the pins of TP2535 TO-92 package are listed in Table 3-1. Refer to **Package Type** for the location of pins.

TABLE 3-1: TO-92 PIN FUNCTION TABLE

Pin Number	Pin Name	Description					
1	Source	Source					
2	Gate	Gate					
3	Drain	Drain					

4.0 FUNCTIONAL DESCRIPTION

Figure 4-1 illustrates the switching waveforms and test circuit for the TP2535.

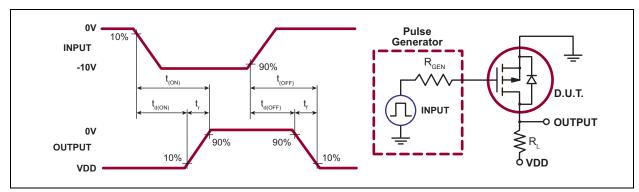


FIGURE 4-1: Switching Waveforms and Test Circuit.

TABLE 4-1: PRODUCT SUMMARY

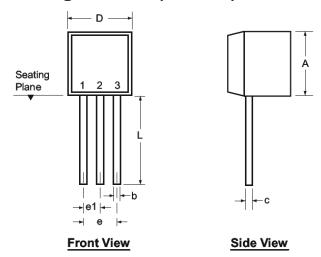
BV _{DSS} /BV _{DGS} (V)	R _{DS(ON)} (Maximum) (Ω)	V _{GS(TH)} (Maximum) (V)	I _{D(ON)} (Minimum) (A)
-350	25	-0.4	-2.4

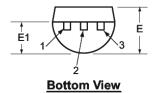
5.0 PACKAGE MARKING INFORMATION

5.1 Package Marking Information

Legend: XX...X Product Code or Customer-specific information
Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')

NNN Alphanumeric traceability code


e3 Pb-free JEDEC® designator for Matte Tin (Sn)


* This package is Pb-free. The Pb-free JEDEC designator (e3)

can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

3-Lead TO-92 Package Outline (L/LL/N3)

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Symb	ool	Α	b	С	D	E	E1	е	e1	L
	MIN	.170	.014 [†]	.014 [†]	.175	.125	.080	.095	.045	.500
Dimensions (inches)	NOM	-	-	-	-	-	-	-	-	-
(MAX	.210	.022 [†]	.022†	.205	.165	.105	.105	.055	.610*

JEDEC Registration TO-92.
* This dimension is not specified in the JEDEC drawing.
† This dimension differs from the JEDEC drawing.

Drawings not to scale.

TP2535

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (June 2020)

- Converted Supertex Doc# DSFP-TP2535 to Microchip DS20005971A
- · Added a pin function table
- · Changed the package marking format
- Removed the 3-Lead TO-92 N3 P003, P005, P013, and P014 media types
- Made minor text changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	<u>xx</u>		- <u>x</u> - <u>x</u> i	Example:	
Device	Package Options		Environmental Media Type	a) TP2535N3-G:	P-Channel Enhancement- Mode, Vertical DMOS FET, 3-lead TO-92, 1000/Bag
Device:	TP2535	=	P-Channel Enhancement-Mode Vertical DMOS FET		
Package:	N3	=	3-lead TO-92		
Environmental:	G	=	Lead (Pb)-free/RoHS-compliant Package		
Media Type:	(blank)	=	1000/Bag for an N3 Package		

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKiT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN:978-1-5224-6257-6

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan

Tel: 86-27-5980-5300 China - Xian

Tel: 86-29-8833-7252 China - Xiamen

Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune

Tel: 91-20-4121-0141 Japan - Osaka

Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910

Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820 France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611

Fax: 39-0331-466781 **Italy - Padova** Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Downloaded from Arrow.com.