Contents

1	Electric	al ratings	3
2		al characteristics	
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e mechanical data	10
	4.1		
	4.2	TO-220 type A package information	13
	4.3	TO-247 package information	15
5	D ² PAK	packing information	17
6	Revisio	n history	19

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	± 25	V
ΙD	Drain current (continuous) at T _C = 25 °C	34	Α
I _D	Drain current (continuous) at T _C = 100 °C	22	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	136	Α
Ртот	Total dissipation at T _C = 25 °C	250	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	dv/dt ⁽³⁾ MOSFET dv/dt ruggedness		V/ns
T _{stg}	Storage temperature range		°C
Tj	Operating junction temperature range	- 55 to 150	°C

Notes:

Table 3: Thermal data

Symbol	Parameter		Unit		
Symbol	Farameter	D ² PAK	TO-220	TO-247	Onit
R _{thj-case}	Thermal resistance junction-case	0.5		°C/W	
Rthj-pcb ⁽¹⁾	Thermal resistance junction-pcb	30			°C/W
R _{thj-amb}	Thermal resistance junction-ambient		62.5	50	°C/W

Notes:

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I_{AR}	Avalanche current, repetetive or not repetitive (pulse width limited by T _{jmax})	6	Α
Eas	Single pulse avalanche energy (starting T_j = 25 °C, I_D = I_{AR} ; V_{DD} = 50 V)	800	mJ

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}}I_{SD} \leq 34$ A, di/dt ≤ 400 A/ μ s; V_{DS(peak)} < V_{(BR)DSS}, V_{DD} = 400 V.

 $^{^{(3)}}V_{DS} \le 480 \text{ V}$

⁽¹⁾When mounted on FR-4 board of inch², 2oz Cu.

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	600			V
	Zoro goto voltago Drain	V _{GS} = 0 V, V _{DS} = 600 V			1	μΑ
IDSS	Zero gate voltage Drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{C} = 125 \text{ °C}^{(1)}$			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 17 A		0.076	0.087	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	2370	1	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	112	1	pF
Crss	Reverse transfer capacitance	V _{GS} = 0 V		2.5	ı	pF
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V	-	454	ı	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	4.5	ı	Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 34 A,	-	55	1	nC
Qgs	Gate-source charge	V _{GS} = 0 to 10 V	-	8.5	ı	nC
Q_{gd}	Gate-drain charge	(see Figure 18: "Test circuit for gate charge behavior")	-	25	-	nC

Notes:

Table 7: Switching energy

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _(off)	Turn-off energy (from 90% V _{GS} to 0% I _D)	$V_{DD} = 400 \text{ V}, I_D = 2.5 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$	ı	13	1	μJ
		$V_{DD} = 400 \text{ V}, I_D = 5 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	14.5	-	μJ

577

⁽¹⁾Defined by design, not subject to production test

 $^{^{(1)}}C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

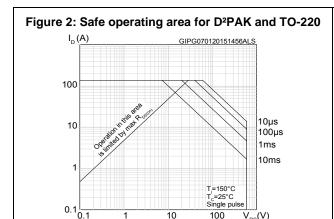
Table 8: Switching times

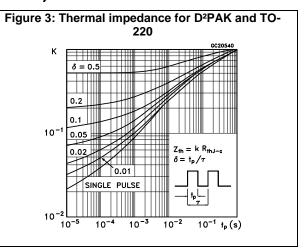
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 300 V, I _D = 17 A,	i	16.5	ı	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	9.5	-	ns
$t_{\text{d(off)}}$	Turn-off-delay time	(see Figure 17: "Test circuit for resistive load switching times" and	i	96.5	1	ns
t _f	Fall time	Figure 22: "Switching time waveform")	-	8	-	ns

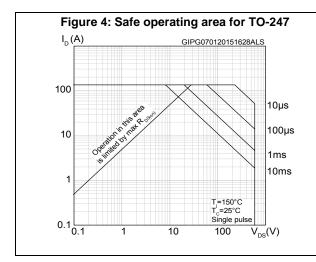
Table 9: Source drain diode

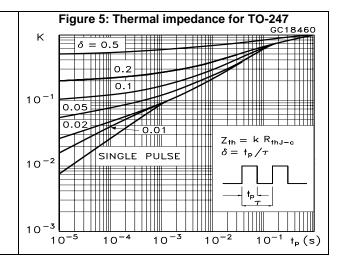
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		34	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		136	Α
V _{SD} (2)	Forward on voltage	V _{GS} = 0 V, I _{SD} = 34 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 34 A, di/dt = 100 A/µs,	-	438		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V (see Figure 19: "Test circuit for inductive load switching and diode	-	9		μC
I _{RRM}	Reverse recovery current	recovery times")	-	41.5		Α
t _{rr}	Reverse recovery time	I _{SD} = 34 A, di/dt = 100 A/μs,	-	538		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C (see Figure 19: "Test circuit for inductive load switching and diode	_	12		μC
I _{RRM}	Reverse recovery current	recovery times")	-	44.5		Α

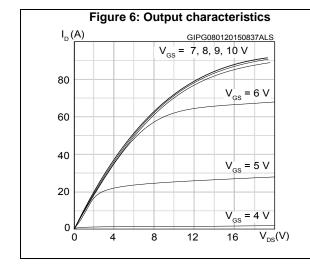
Notes:

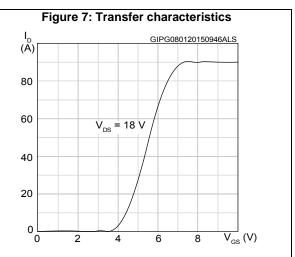

⁽¹⁾Pulse width is limited by safe operating area

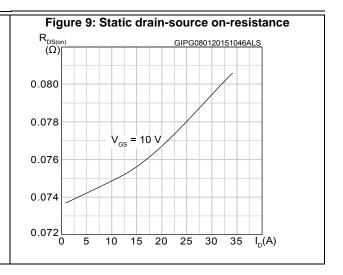

 $^{^{(2)}}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

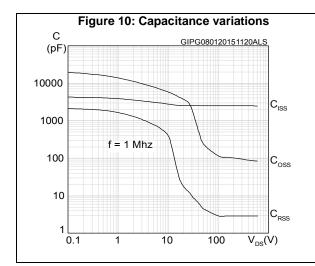

2.1 **Electrical characteristics (curves)**

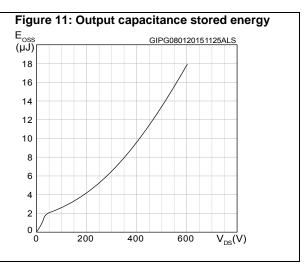

 $V_{DS}(V)$

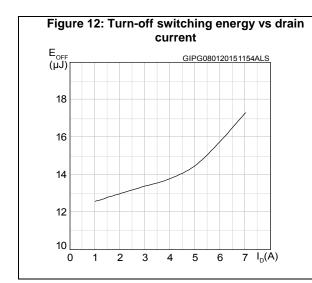

100

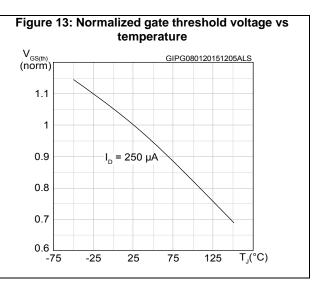


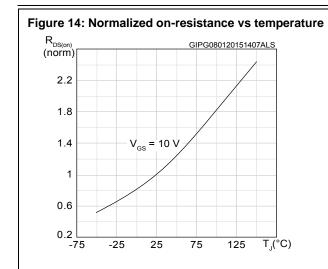


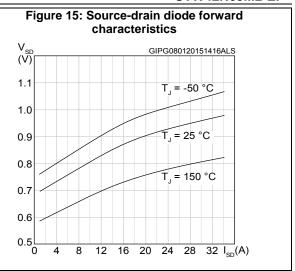


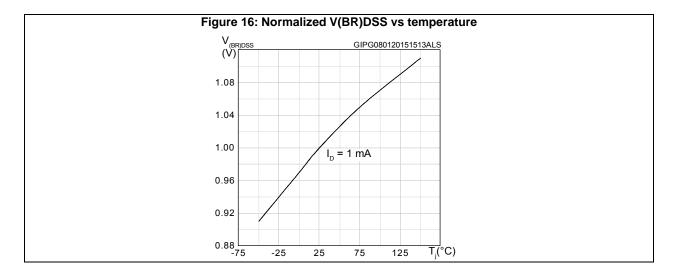

DocID027327 Rev 2

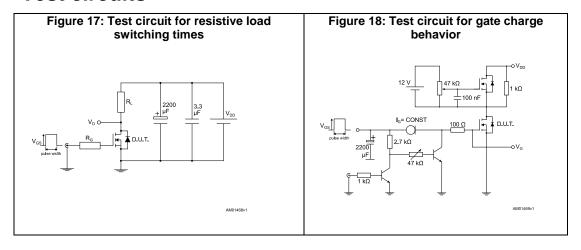

6/20

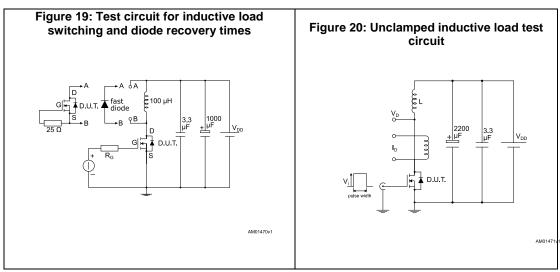


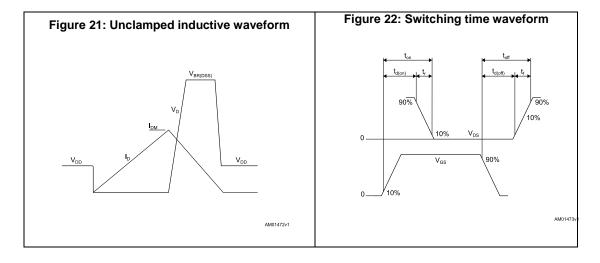












3 Test circuits

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 D²PAK (TO-263) type A2 package information

E E/2

B E E

Figure 23: D²PAK (TO-263) type A2 package outline

Table 10: D²PAK (TO-263) type A2 package mechanical data

Table 10: D-PAK (10-263) type AZ package mechanical data					
Dim.		mm			
Dilli.	Min.	Тур.	Max.		
Α	4.40		4.60		
A1	0.03		0.23		
b	0.70		0.93		
b2	1.14		1.70		
С	0.45		0.60		
c2	1.23		1.36		
D	8.95		9.35		
D1	7.50	7.75	8.00		
D2	1.10	1.30	1.50		
E	10.00		10.40		
E1	8.70	8.90	9.10		
E2	7.30	7.50	7.70		
е		2.54			
e1	4.88		5.28		
Н	15.00		15.85		
J1	2.49		2.69		
L	2.29		2.79		
L1	1.27		1.40		
L2	1.30		1.75		
R		0.40			
V2	0°	_	8°		

9.75

16.9

1.6

2.54

5.08

Figure 24: D²PAK (TO-263) recommended footprint (dimensions are in mm)

4.2 TO-220 type A package information

Figure 25: TO-220 type A package outline

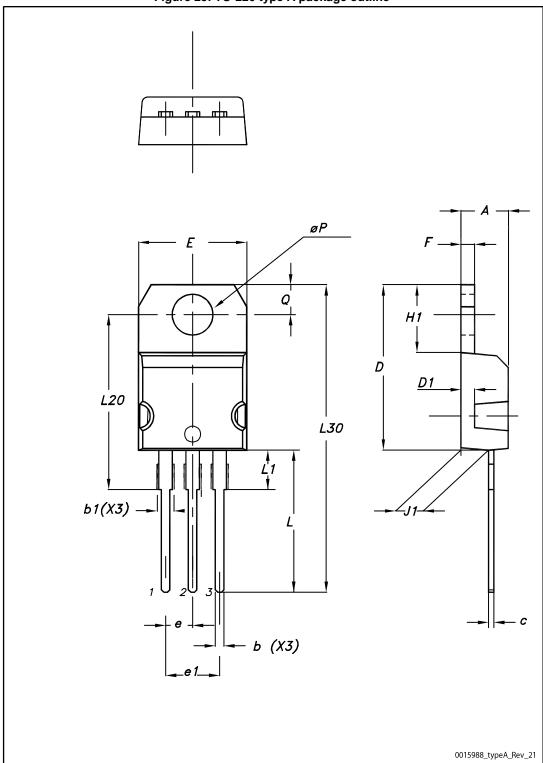


Table 11: TO-220 type A package mechanical data

B		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

4.3 TO-247 package information

Figure 26: TO-247 package outline

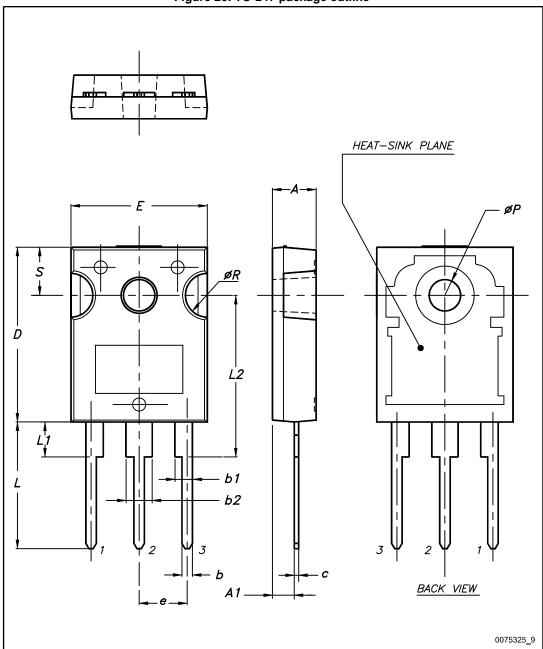
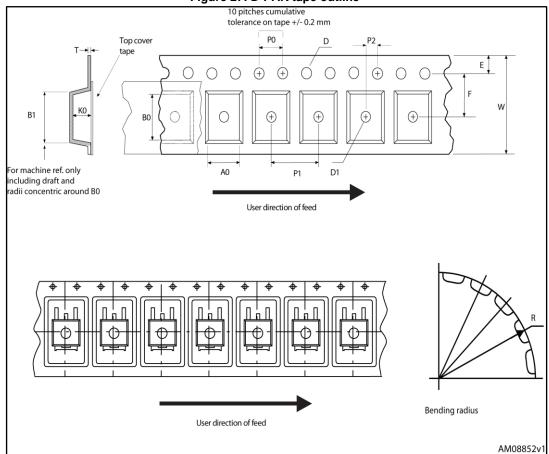



Table 12: TO-247 package mechanical data

Dim	·	mm	
Dim.	Min.	Тур.	Max.
A	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

5 D²PAK packing information

Figure 27: D²PAK tape outline

A 40mm min. access hole at slot location

Tape slot in core for tape start 2.5mm min.width

AM06038v1

Figure 28: D²PAK reel outline

Table 13: D²PAK tape and reel mechanical data

Таре			Reel		
Dim.	mm		Dim	mm	
	Min.	Max.	Dim.	Min.	Max.
A0	10.5	10.7	А		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
Е	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base quantity 1000		1000
P2	1.9	2.1	Bulk quantity 1000		1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

6 Revision history

Table 14: Document revision history

Date	Revision	Changes	
20-Jan-2015	1	First release.	
03-Nov-2017	2	Updated Section 4.1: "D²PAK (TO-263) type A2 package information" and Section 5: "D²PAK packing information" Minor text changes.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

