

Table of Contents

1	Orde	ering Info	ormation3			4.3.7	NFC	61
2	MPC	5125 B	lock Diagrams			4.3.8	FEC	63
3	Pin A	Assignm	nents5			4.3.9	USB ULPI	66
	3.1	324-b	all TEPBGA Pin Assignments 5			4.3.10	MMC/SD/SDIO Card Host Controller (SDHC) .	67
	3.2	Pin M	uxing and Reset States				DIU	
			Power and Ground Supply Summary			4.3.12	CAN	71
4	Elect	trical an	d Thermal Characteristics			4.3.13	I ² C	71
	4.1	DC El	ectrical Characteristics			4.3.14	J1850	72
		4.1.1	Absolute Maximum Ratings36			4.3.15	PSC	72
		4.1.2	Recommended Operating Conditions			4.3.16	GPIOs and Timers	79
		4.1.3	DC Electrical Specifications37			4.3.17	Fusebox	79
		4.1.4	Electrostatic Discharge			4.3.18	IEEE 1149.1 (JTAG)	80
		4.1.5	Power Dissipation	5	Syste	em Desi	gn Information	82
		4.1.6	Thermal Characteristics		5.1	Power	Up/Down Sequencing	82
	4.2	Oscilla	ator and PLL Electrical Characteristics		5.2	Systen	n and CPU Core AV _{DD} Power Supply Filtering.	82
		4.2.1	System Oscillator Electrical Characteristics44		5.3	Conne	ction Recommendations	82
		4.2.2	RTC Oscillator Electrical Characteristics 44		5.4	Pullup/	Pulldown Resistor Requirements	83
		4.2.3	System PLL Electrical Characteristics45			5.4.1	Pulldown Resistor Requirements for TEST Pin	83
		4.2.4	e300 Core PLL Electrical Characteristics 45		5.5	JTAG .		83
	4.3	AC Ele	ectrical Characteristics46			5.5.1	JTAG_TRST	83
		4.3.1	Overview				e300 COP/BDM Interface	
		4.3.2	AC Operating Frequency Data	6	Pack	age Info	ormation	87
		4.3.3	Resets		6.1	Packag	ge Parameters	87
		4.3.4	External Interrupts		6.2	Mecha	ınical Dimensions	88
		4.3.5	SDRAM (DDR)50	7	Produ	uct Doc	umentation	91
		4.3.6	LPC	8	Revis	sion Hist	tory	91

1 Ordering Information

Temperature Range Y = -40 °C to 125 °C, junction

Package Identifier VN = 324 TEPBGA Pb-free

Operating Frequency 400 = 400 MHz Tape and Reel Status R = Tape and reel (blank) = Trays

Qualification Status

P = Pre qualification

M = Fully spec. qualified, general market flow S = Fully spec. qualified, automotive flow

Note: Not all options are available on all devices. Refer to Table 1.

Figure 1. MPC5125 Orderable Part Number Description

Table 1 shows the orderable part numbers for the MPC5125.

Table 1. MPC5125 Orderable Part Numbers

Freescale Part Number ¹	Package Description	Speed (MHz)	Operating T	emperature ²
Treescale Fait Number	i ackage bescription	Max ³ (f _{MAX})	Min (T _L)	Max (T _H)
MPC5125YVN400	MPC5125 324TEPBGA package Lead-free (PbFree)	400 MHz core 200 MHz bus	−40 °C	125 °C

NOTES:

All packaged devices are PPC5125, rather than MPC125, until product qualifications are complete.

² The lowest ambient operating temperature (T_A) is referenced by T_L; the highest junction temperature is referenced by T_H.

³ Maximum speed is the maximum frequency allowed including frequency modulation (FM).

2 MPC5125 Block Diagrams

Figure 2 shows a simplified MPC5125 block diagram.

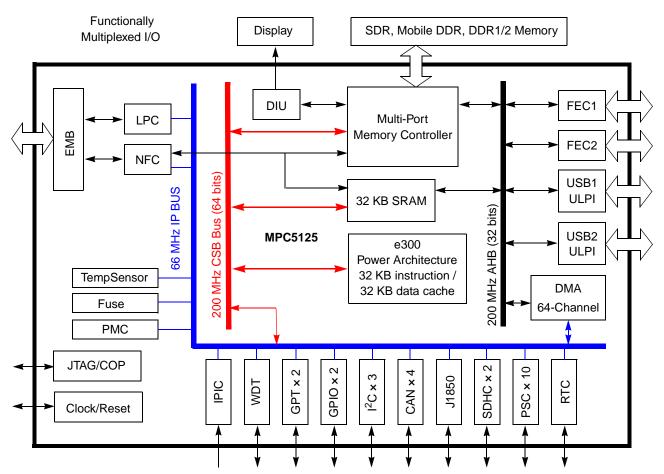


Figure 2. Simplified MPC5125 Block Diagram

This section details pin assignments.

3.1 324-ball TEPBGA Pin Assignments

Figure 3 shows the 324-ball TEPBGA pin assignments.

			1	1	1	1								ı				ı			1	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
Α	VSS	VSS	EMB_A D01	EMB_A D00	GPIO01	GPIO02	RTC_X TALO	RTC_X TALI	SYS_X TALI	SYS_X TALO	AVDD_ SPLL	PSC0_ 1	PSC0_ 2	VDD_I O	PSC1_ 4	CAN2_ TX	HRESE T_B	SRESE T_B	I2C1_S DA	MCAS_ B	MWE_B	VSS
В	VSS	EMB_A D05	EMB_A D03	EMB_A D02	J1850_ TX	GPIO00	VSS	CAN2_ RX	VDD_I O	AVSS_ OSC_T MPS_S PLL	AVSS_ CPLL	VDD_I O	PSCO_ 3	PSC1_	CAN1_ TX	TDO	VDD_I O	I2C1_S CL	VDD_I O_MEM	MA15	MA14	MA11
С	EMB_A D11	EMB_A D09	EMB_A D07	EMB_A D06	VDD_I O	J1850_ RX	GPIO03	HIB_M ODE_B	CAN1_ RX	AVDD_ OSC_T MPS	PSC0_ 0	PSC1_ 0	PSC1_ 1	VDD_I O	TDI	TCK	PORES ET_B	MCKE	MRAS_ B	MA12	VDD_I O_MEM	MA09
D	TMPS_ ANAVIZ	EMB_A D10	VDD_I O	AVDD_ FUSEW R	EMB_A D04	PSC_M CLK_IN	VSS	VBAT	SPLL_A NAVIZ	AVDD_ CPLL	PSC0_ 4	VSS	PSC1_ 3	TEST	TMS	TRST_ B	VDD_I O_MEM	MCS_B	VDD_I O_MEM	MA13	MA08	MA06
Е	EMB_A D15	EMB_A D13	EMB_A D12	EMB_A D08															MA10	MA07	MA04	MA03
F	EMB_A D21	VDD_I O	EMB_A D16	VSS															MA02	MA05	VSS	MA01
G	EMB_A D25	EMB_A D18	EMB_A D17	VDD_I O						TOF	DO/	VN VI	EW						VDD_I O_MEM	MA00	MBA2	MCK_B
н	EMB_A D28	VDD_I O	EMB_A D20	EMB_A D14															MBA0	MBA1	VDD_I O_MEM	мск
J	EMB_A D31	EMB_A D26	EMB_A D23	EMB_A D19					VSS	VDD	VDD	VDD	VDD	VSS					MODT	MDQ31	MDQ30	MDQ29
К	EMB_A X00	VSS	EMB_A D24	EMB_A D22					VSS	VSS	VSS	VSS	VSS	VDD					MVTT3	MDQ28	VSS	MDM3
L	LPC_A X03	EMB_A X02	EMB_A D29	VSS					VDD	VSS	VSS	VSS	VSS	VDD					VSS	MDQ26	MDQ27	MDQS3
М	LPC_C S0_B	VDD_I O	EMB_A D30	EMB_A D27					VDD	VSS	VSS	VSS	VSS	VDD					MVTT2	MDQ23	MDQ24	MDQ25
N	NFC_R B	LPC_O E_B	LPC_R WB	EMB_A X01					VSS	VSS	VSS	VSS	VSS	VDD					MVREF	MDQ20	VSS	MDQ22
Р	NFC_C E0_B	VSS	LPC_A CK_B	VSS					VSS	VDD	VDD	VDD	VDD	VSS					VDD_I O_MEM	MDQ18	MDQS2	MDQ21
R	SDHC1 _D2	SDHC1 _D3	VDD_I O	LPC_C LK															MVTT1	MDQ16	VDD_I O_MEM	MDM2
Т	SDHC1 _CLK	SDHC1 _CMD	SDHC1 _D0	SDHC1 _D1															VDD_I O_MEM	MDQ13	MDQ17	MDQ19
U	FEC1_ CRS	VSS	FEC1_ COL	I2C2_S DA															MDQ07	MDQS1	VSS	MDQ15
٧	FEC1_ MDC	FEC1_ MDIO	VDD_I O	I2C2_S CL															VDD_I O_MEM	MDQ10	MDM1	MDQ14
w	FEC1_ TX_CL K	FEC1_ TX_ER	FEC1_ TXD_1	FEC1_ TXD_0	VDD_I O	USB1_ STOP	USB1_ DIR	VSS	USB1_ DATA1	VSS	DIU_HS YNC	VSS	DIU_LD 08	DIU_LD 13	VDD_I O	DIU_LD 21	VSS	MVTT0	VDD_I O_MEM	MDQ06	MDQ11	MDQ12
Υ	FEC1_ TXD_3	VSS	FEC1_ TX_EN	FEC1_ RXD_2	FEC1_ RX_ER	USB1_ DATA6	USB1_ DATA5	USB1_ CLK	USB1_ DATA0	DIU_LD 01	DIU_LD 03	DIU_LD 07	DIU_LD 10	DIU_LD 14	DIU_LD 17	DIU_LD 22	DIU_VS YNC	MDQ01	MDM0	MDQ05	VDD_I O_MEM	MDQ09
AA	FEC1_ TXD_2	FEC1_ RXD_3	FEC1_ RXD_1	VDD_I O	USB1_ NEXT	VSS	USB1_ DATA4	DIU_DE	VDD_I O	DIU_LD 02	DIU_LD 04	VDD_I O	DIU_LD 11	VDD_I O	DIU_LD 16	VDD_I O	DIU_LD 23	VSS	MDQ02	MDQS0	MDQ04	MDQ08
АВ	VSS	FEC1_ RXD_0	FEC1_ RX_DV	FEC1_ RX_CL K	USB1_ DATA7	USB1_ DATA3	USB1_ DATA2	DIU_CL K	DIU_LD 00	DIU_LD 05	DIU_LD 06	DIU_LD 09	DIU_LD 12	DIU_LD 15	DIU_LD 18	DIU_LD 19	DIU_LD 20	VDD_I O	MDQ00	VDD_I O_MEM	MDQ03	VSS

Figure 3. Ball Map for the MPC5125 324 TEPBGA Package

MPC5125 Microcontroller Data Sheet, Rev. 4

Freescale Semiconductor 5

Pin Muxing and Reset States

Table 2 provides the pinout listing for the MPC5125.

Table 2. MPC5125 Pin Multiplexing

	Pin	B6	A5	A6	C7	A8	A7	C8	
	Notes	Dedicated input can be used to receive an external wakeup.	Dedicated input can be used to receive an external wakeup.	Dedicated input can be used to receive an external wakeup.	Dedicated input can be used to receive an external wakeup.	I		In Hibernation mode , this pin provides a signal to shut down an external power supply.	
	Power Domain	VBAT	VBAT	VBAT	VBAT	VBAT	VBAT	VBAT	
ı	I/O Direction	-	-	-	-	-	0	0	
	Peripheral ⁵	GPI01 	GPI01 - -	GPI01 — —	GPI01 	RTC 	RTC 	RTC	Analog Visible Signal
	Functions ⁴	GPI000	GPI001	GPI002 - -	GPI003 - -	RTC_XTALI	RTC_XTALO - -	HIB_MODE 	Analog \
•	Alternate Function ³	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALT0 ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	
	Pad I/O Control Register ¹ and Offset ²	1	1	1	1	1	1	1	
	Pin	0PIO00	GPI001	GPI002	GPI003	RTC_XTALI	RTC_XTALO	HIB_MODE	

Table 2. MPC5125 Pin Multiplexing (continued)

Pin	Pad I/O Control Register ¹ and Offset ²	Alternate Function ³	Functions ⁴	Peripheral ⁵	I/O Direction	Power Domain	Notes	Pin
SPLL_ANAVIZ	I	ALTO ALT1 ALT2 ALT3	SPLL_ANAVIZ		111	I	I	60
TMPS_ANAVIZ	I	ALTO ALT1 ALT2 ALT3	TMPS_ANAVIZ	111	111	I	I	70
SYS_XTALI	I	ALTO ALT1 ALT2 ALT3	SYS_XTALI	SysClock — — — — — — — — — — — — — — — — — — —	-	SYS_PLL_ _AVDD	I	A9
SYS_XTALO	I	ALTO ALT1 ALT2 ALT3	SYS_XTALO	SysClock — — — — — — — — — — — — — — — — — — —	0	SYS_PLL	I	A10
MCS	0x00 IO_CON- TROL_MEM	ALTO ALT1 ALT2 ALT3	MCS0	DRAM - -	0	VDD_IO_MEM	I	D18
MCAS	0x00 IO_CON- TROL_MEM	ALTO ALT1 ALT2 ALT3	MCAS	DRAM	0	VDD_IO_MEM	I	A20
MRAS	0x00 IO_CON- TROL_MEM	ALTO ALT1 ALT2 ALT3	MRAS —	DRAM 	0	VDD_IO_MEM		C19
MVREF	I	ALT0 ALT1 ALT2 ALT3	MVREF	DRAM — — — — — — — — — — — — — — — — — — —	-	VDD_IO_MEM	I	N19

Table 2. MPC5125 Pin Multiplexing (continued)

Pin	W18	R19	M19	X 9 13	A21	AB19	Y18	AA19
Notes	I	1	I	I	I	1	I	
Power Domain	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM
I/O Direction	-	-	-	-	0	9	9	0.
Peripheral ⁵	DRAM 	DRAM 	DRAM 	DRAM 	DRAM 	DRAM	DRAM	DRAM — — — — — — — — — — — — — — — — — — —
Functions ⁴	MVTT0 	MVTT1 	MVTT2 	MVTT3 	MWE	MDQ00	MDQ01	MDQ02
Alternate Function ³	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3
Pad I/O Control Register ¹ and Offset ²	1	I	I	I	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM
Pin	MVTT0	MVTT1	MVTT2	MVTT3	MWE	MDQ00	MDQ01	MDQ02
	Pad I/O Control Alternate Functions ⁴ Peripheral ⁵ Direction Power Domain Notes and Offset ²	Pad I/O Control Register¹ and Offset² Alternate Function³ ALT1 Functions⁴ MVTT0 Peripheral⁵ DRAM I/O DIrection In VDD_IO_MEM Power Domain Power Domain Notes — ALT1 — — — — ALT2 — — — — ALT2 — — — ALT2 — — — ALT3 — — — ALT3 — — — ALT3 — — —	Pad I/O Control and Offset ² ALT2 Alternate ALT3 Functions ⁴ DRAM Peripheral ⁵ DIrection I/O Direction Power Domain Notes - ALT0 MVTT0 DRAM I VDD_IO_MEM — ALT2 - - - - - ALT3 - - - - ALT3 - - - ALT1 - - - ALT1 - - - ALT1 - - - ALT1 - - ALT2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	Pad I/O Begister ¹ and Offset ² ALT Functions ⁴ ALT Functions ⁴ ALT Peripheral ⁵ DRAM I/O DIPOSITION Power Domain Notes - ALT0 MVTT0 DRAM I VDD_IO_MEM - - ALT2 - - - - ALT3 - - - - ALT4 - - - ALT3 - - - ALT4 - - - ALT4 - - - ALT4 - - ALT4 - - ALT5 - - ALT4 - - ALT5 - -	Control Register Functions Functions Pad Wo Pad Wo Peripheral Peripheral Punctions Peripheral Punctions Peripheral Punctions Peripheral Punctions Peripheral Punctions Punctions	Control Register 1 and Offset 2 and Offset 2 and Offset 3 and Offset 3 and Offset 4 and Offset 5 and Offset 5 and Offset 5 and Offset 6 an	Control Register/ and Offset Alternate Functions ⁴ Functions ⁴ Peripheral ⁵ Direction Direction Nover Domain Notes — ALTO ALT3 MVTT0 DRAM 1 VDD_IO_MEM — ALT3 — — — —	Peripheral

Table 2. MPC5125 Pin Multiplexing (continued)

AA22 **AB21** W20 **U19** AA21 Y22 V20 Pin Y20 Notes **Power Domain** VDD_IO_MEM VDD_IO_MEM VDD IO MEM VDD_IO_MEM VDD_IO_MEM VDD_IO_MEM VDD_IO_MEM VDD_IO_MEM Direction 9 | 9 | | | 9 | | | 9 | | | 9 | | | 9 | | | Peripheral⁵ DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM Functions⁴ MDQ05 MDQ06 MDQ08 MDQ10 MDQ04 MDQ09 MDQ03 MDQ07 Alternate Function³ 0x00 ALT0 IO_CON- ALT1 TROL_MEM ALT2 ALT3 0x00 ALTO IO_CON- ALT1 TROL_MEM ALT2 ALT3 0x00 ALT0 IO_CON- ALT1 TROL_MEM ALT2 Pad I/O Control Register¹ and Offset² 0x00 IO_CON-MDQ05 MDQ06 MDQ08 MDQ10 MDQ03 MDQ04 MDQ07 MDQ09 Pin

Table 2. MPC5125 Pin Multiplexing (continued)

W21 T20 **V22 U22** P20 Pin R20 T21 Notes **Power Domain** VDD_IO_MEM VDD_IO_MEM VDD IO MEM VDD_IO_MEM VDD_IO_MEM VDD_IO_MEM VDD_IO_MEM VDD_IO_MEM Direction 9 | | | 9 | | | 9119 9119 9 | | | 9 | | | 9119 Peripheral⁵ DRAM DRAM DRAM DRAM DRAM DRAM DRAM DRAM GPT1 GPT1 Functions⁴ MDQ12 MDQ13 MDQ14 MDQ16 MDQ18 GPT1[2] MDQ11 GPT1[0] MDQ17 GPT1[1] MDQ15 Alternate Function³ 0x00 ALT0 IO_CON- ALT1 TROL_MEM ALT2 ALT3 0x00 ALTO IO_CON- ALT1 TROL_MEM ALT2 ALT3 0x00 ALT0 IO_CON- ALT1 TROL_MEM ALT2 ALT3 0x00 ALT0 ALT1 ALT2 IO_CON ALT2 TROL_MEM ALT3 ALTO ALT1 ALT2 ALT3 0x00 IO_CON-TROL_MEM Pad I/O Control Register¹ and Offset² 0x00 IO_CON-MDQ12 MDQ13 MDQ16 MDQ18 MDQ14 MDQ15 MDQ17 MDQ11 Pin

Table 2. MPC5125 Pin Multiplexing (continued)

Pin	T22	N20	P22	N22	M20	M21	M22	L20
Notes	I	I			I	1	I	1
Power Domain	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM
I/O Direction	9 9	2 9 1 1 9	9119	9119	9119	9119	2112	9 9
Peripheral ⁵	DRAM 	DRAM — — — — — — — — — — — — — — — — — — —	DRAM GPT1	DRAM GPT1	DRAM GPT1	DRAM — — — GPIO1	DRAM GPIO1	DRAM — — — GPIO1
Functions ⁴	MDQ19 	MDQ20 	MDQ21 GPT1[5]	MDQ22 GPT1[6]	MDQ23 GPT1[7]	MDQ24 GPIO21	MDQ25 GPIO22	MDQ26 — GPIO23
Alternate Function ³	ALTO ALT1 ALT2		ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3
Pad I/O Control Register ¹ and Offset ²	0x00 IO_CON- TPO: MEM	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM
Pin	MDQ19	MDQ20	MDQ21	MDQ22	MDQ23	MDQ24	MDQ25	MDQ26

Table 2. MPC5125 Pin Multiplexing (continued)

R22 Pin K20 **V21** L21 **J**22 **J**20 **J21** Notes **Power Domain** VDD_IO_MEM VDD_IO_MEM VDD IO MEM VDD_IO_MEM VDD_IO_MEM VDD_IO_MEM VDD_IO_MEM VDD_IO_MEM Direction 9119 9119 9119 9119 18 0 | | | 0 | | | 0 | | 9 Peripheral⁵ __ GPI01 DRAM — DRAM GPI01 DRAM __ GPI01 DRAM __ GPI01 DRAM GPI01 DRAM GP101 DRAM DRAM Functions⁴ GPI024 **GPI025 GPI026 GPI027** GPI028 **GPI029** MDQ28 MDQ29 MDQ30 MDQ27 MDQ31 MDM2 MDM0 MDM1 Alternate Function³ 0x00 ALT0 ALT1 IO_CON- ALT2 TROL_MEM ALT3 ALTO ALT1 ALT2 ALT3 ALTO ALT1 ALT2 ALT3 IO_CON-TROL_MEM IO_CON-TROL_MEM Pad I/O Control Register¹ and Offset² 0x00 00x0 MDQ28 MDQ29 MDQ30 MDQ27 MDQ31 MDM0 MDM2 MDM1 Pin

MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 4

Table 2. MPC5125 Pin Multiplexing (continued)

Pin	K22	AA20	U20	P21	L22	H19	H20	G21
Notes	Ι	I	I	I		I	I	
Power Domain	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM	VDD_IO_MEM
I/O Direction	0 9	<u>Q</u>	9	9119	9119	0	0	0
Peripheral ⁵	DRAM GPIO1	DRAM	DRAM	DRAM GPIO1	DRAM — — GPIO2	DRAM	DRAM	DRAM
Functions ⁴	MDM3 — GPIO30	MDQS0	MDQS1 - -	MDQS2 - - GPIO31	MDQS3 	MBA0 	MBA1 	MBA2
Alternate Function ³	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3
Pad I/O Control Register ¹ and Offset ²	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM	0x00 IO_CON- TROL_MEM
Pin	MDM3	MDQS0	MDQS1	MDQS2	MDQS3	MBA0	MBA1	MBA2
	Pad I/O Control Alternate Functions ⁴ Peripheral ⁵ Direction and Offset ²	Pad I/O Control Register¹ and Offset² ALT1 Alternate Functions³ ALT1 Functions³ DRAM Peripheral⁵ Direction I/O Direction Power Domain Notes 0x00 ALT0 MDM3 DRAM O VDD_IO_MEM — IO_CON- TROL_MEM ALT2 — — — — TROL_MEM ALT3 GPIO30 GPIO31 I/O GPIO31 I/O	Pad I/O Control And Offset ² Alternate Functions ³ Functions ⁴ Peripheral ⁵ I/O Direction Power Domain Notes 0x00 ALT1 — — — — — IO_CON- TROL_MEM ALT2 — — — — — 0x00 ALT0 MDQS0 DRAM I/O VDD_IO_MEM — 0x00 ALT1 — — — — — 1O_CON- ALT2 ALT1 I/O GPIO10 I/O VDD_IO_MEM — 0x00 ALT1 — — — — IO_CON- ALT1 ALT1 — — — IO_CON- ALT2 ALT1 — — — IO_CON- ALT2 ALT1 — — — IO_CON- ALT2 ALT2 — — — IO_CON- ALT2 ALT2 — — — IO_CON- ALT2 ALT2 — — — IO_CON- ALT2	Pad I/O Control and Offset ² and Offset ³ ALT1 Functions ⁴ MDM3 Peripheral ⁵ DRAM Peripheral ⁵ Direction I/O DIPOM Power Domain Notes 0x00 ALT1 — — — — — 1O_CON- TROL_MEM ALT2 — — — — — 0x00 ALT1 — — — — — 1O_CON- TROL_MEM ALT2 — — — — 0x00 ALT1 — — — — 1O_CON- TROL_MEM ALT2 — — — 0x00 ALT1 — — — 0x00 ALT1 — — — 0x00 ALT1 — — — 10_CON- TROL_MEM ALT1 — — — 10_CON- TROL_MEM ALT1 — — — 10_CON- TROL_MEM ALT2 — — — 10_CON- TROL_MEM ALT2 — —	Pad I/O Register ¹ and Offset ² ALT1 IO_CON- IO_CON- ALT2 IO_CON- ALT2 ALT2 ALT2 IO_CON- ALT2 ALT3 ALT3 ALT3 ALT4 ALT3 ALT4 ALT2 ALT4 ALT4 ALT2 ALT4 ALT5 ALT6 ALT7 ALT7 ALT6 ALT7 ALT7 ALT7 ALT7 ALT7 ALT7 ALT7 ALT7	Pad VO Register ¹ and Offset ² Au Control Alternate Au Control Functions ⁴ Au Control Pertipheral ⁵ DRAM VO VDD_IO_MEM Power Domain Notes 0x00 ALT0 MDM3 DRAM O VDD_IO_MEM — 1O_CON- 1C_CON- 1C_CON- TROL_MEM ALT0 ALT1 MDGS0 DRAM VO VDD_IO_MEM — 0x00 ALT0 ALT1 MDGS1 DRAM VO VDD_IO_MEM — 10_CON- TROL_MEM ALT1 ALT1 — — — — — 0x00 OX00 ALT0 ALT1 MDGS2 DRAM VO VDD_IO_MEM — 10_CON- TROL_MEM ALT1 ALT1 — — — — 0x00 OX00 ALT0 ALT1 — — — — 10_CON- TROL_MEM ALT2 ALT1 — — — — 0x00 OX00 ALT0 ALT2 — — — — 10_CON- TROL_MEM ALT2 ALT2 — — — — 0x00 OX00 ALT0 ALT2 —<	Pad VO Register ¹ and Offiset ² and Offiset ² and Offiset ³ and Offiset ³ and Offiset ⁴ and Offis	Pad VO Control Alternate ALT3 Functions ⁴ MDM3 Feripheral ⁵ Peripheral ⁵ MDM3 Peripheral ⁵ Direction I/O Directions ALT1 ALT2 ALT3 Functions ⁴ MDM3 Peripheral ⁵ DRAM I/O DIPCOM Peripheral ⁵ MDM3 DRAM O VDD_IO_MEM Notes 0x00 ALT1 — — — — — — 1O_CON- MAT2 ALT3 — — — — — — 1O_CON- MAT2 ALT2 — — — — — — 1O_CON- MAT2 ALT2 — — — — — — 1O_CON- MAT2 ALT3 — — — — — — 1O_CON- MAT2 ALT3 — — — — — — 1O_CON- MAT2 ALT3 GPIO31 DRAM I/O VDD_IO_MEM — — 1O_CON- MAT3 ALT3 — — — — — — 0x00 ALT1 MBA1<

Table 2. MPC5125 Pin Multiplexing (continued)

G20 F22 E22 F20 **D**22 E20 Pin E21 Notes **Power Domain** VDD_IO_MEM VDD_IO_MEM VDD IO MEM VDD_IO_MEM VDD_IO_MEM VDD_IO_MEM VDD_IO_MEM VDD_IO_MEM Direction 0 | | | 0 | | | 0 | | | 0 | | | 0 | | | 0 | | | 0 | | | Peripheral⁵ DRAM — DRAM DRAM — DRAM DRAM DRAM DRAM DRAM Functions⁴ MA03 MA05 MA06 MA01 MA04 MA07 Alternate Function³ 0x00 ALT0 ALT1 IO_CON- ALT2 TROL_MEM ALT3 0x00 ALT0 IO_CON ALT2 TROL_MEM ALT3 0x00 ALT0 ALT1 IO_CON- ALT2 TROL_MEM ALT3 ALTO ALT1 ALT2 ALT3 IO_CON-TROL_MEM Pad I/O Control Register¹ and Offset² 0x00 MA02 **MA03** MA05 MA06 MA00 MA01 MA04 MA07 Pin

Table 2. MPC5125 Pin Multiplexing (continued)

					!	`		
Control Alternate Functions ⁴ Register ¹ Function ³ and Offset ²		Functi	ons ⁴	Peripheral ⁵	I/O Direction	Power Domain	Notes	Pin
0x00 ALT0 MA08 ALT1 —		MA08 —		DRAM —	0	VDD_IO_MEM	I	D21
IO_CON- ALT2 — TROL_MEM ALT3 —	ALT2 — — ALT3 — —	11		11	1.1			
0x00 ALT0 MA09		MA09		DRAM	0	VDD_IO_MEM	I	C22
IO_CON- ALT2 — TROL_MEM ALT3 —	ALT2 — — — — — — — — — — — — — — — — — — —	11		11				
0x00 ALT0 MA10		MA10		DRAM -	0	VDD_IO_MEM	I	E19
IO_CON- ALT2 — TROL_MEM ALT3 —	ALT2 — — — ALT3 — — — — — — — — — — — — — — — — — — —	11			11			
0x00 ALT0 MA11		MA11		DRAM	0	VDD_IO_MEM	I	B22
IO_CON- ALT2 — TROL_MEM ALT3 —	ALT1 — — ALT2 — — ALT3 — — ALT3	1 1 1		1 1 1				
0x00 ALTO MA12		MA12		DRAM	0	VDD_IO_MEM	I	C20
IO_CON- ALT2 — TROL_MEM ALT3 —	ALI — ALT2 — ALT3 —	1 1 1						
0x00 ALT0 MA13 —		MA13 —		DRAM —	0	VDD_IO_MEM	I	D20
IO_CON- ALT2 — TROL_MEM ALT3 —	ALT2 — — ALT3 — — — — — — — — — — — — — — — — — — —	1 1						
0x00 ALT0 MA14		MA14 —		DRAM —	0	VDD_IO_MEM	I	B21
IO_CON- ALT2 — TROL_MEM ALT3 —	ALT2 — — — ALT3 — — — — — — — — — — — — — — — — — — —	1 1		1 1				
0x00 ALT0 MA15/MCS1		MA15/MCS1		DRAM	0	VDD_IO_MEM	1	B20
IO_CON- ALT2 — TROL_MEM ALT3 —	ALT2 — ALT3 — —	1 1		1 1				

Table 2. MPC5125 Pin Multiplexing (continued)

G22 C18 119 H22 Pin Z S S **R**4 Ξ Notes **Power Domain** VDD_IO_MEM VDD_IO_MEM VDD IO MEM VDD_IO_MEM VDD_IO VDD_IO VDD_IO VDD_IO Direction 18 0919 0919 0 | | | 0 | | | 0 | | | 0 | | | 0 0 | | 9 Peripheral⁵ — GPI01 DRAM — DRAM __ GPI01 LPC PSC3 — GPIO1 DRAM DRAM GP101 LPC PSC3 LPC LPC Functions⁴ LPC_CLK TPA1 LPC_CS0 LPC_R/W PSC3_4 LPC_OE PSC3_3 GPI005 GP1006 **GPI004 GPI007** MCKE MODT Alternate Function³ 0x00 ALT0 ALT1 IO_CON- ALT2 TROL_MEM ALT3 0x00 ALT0 ALT1 IO_CON- ALT2 TROL_MEM ALT3 0x00 ALT0 ALT1 IO_CON- ALT2 TROL_MEM ALT3 ALTO ALT1 ALT2 ALT3 IO_CON-TROL_MEM Pad I/O Control Register¹ and Offset² STD_PU STD_PU STD_PU STD_PU 0x00 0x04 0x05 90x0 0x07 LPC_CSO_B LPC_OE_B LPC_RWB LPC_CLK MCKE MODT MCK MCK Pin

Table 2. MPC5125 Pin Multiplexing (continued)

Pin	P3	7	A4	A3	B4	B3	D5
Notes	-	I	ALT2: Reset configuration Boot ROM Location 0	ALT2: Reset configuration Boot ROM Location 1	ALT2: Reset configuration Boot Mode Select	ALT2: Reset configuration LPC Port Size 0	ALT2: Reset configuration LPC Port Size 1
Power Domain	VDD_IO	Ol_ddv	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO
I/O Direction	9009	0001	9	9	9	9	9
Peripheral ⁵	LPC NFC LPC GPIO1	LPC NFC LPC	LPC	LPC	LPC	LPC	LPC
Functions ⁴	LPC_ACK/LPC_BURST NFC_CE1 LPC_CS1 GPIO08	LPC_AX03/LPC_TS NFC_CE2 LPC_CS2	LPC_AD00/NFC_AD00	LPC_AD01/NFC_AD01 RST_CONF_LOC1	LPC_AD02/NFC_AD02 RST_CONF_BMS	LPC_AD03/NFC_AD03 RST_CONF_LPCDBW0	LPC_AD04/NFC_AD04 — RST_CONF_LPCDBW1 —
Alternate Function ³	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3
Pad I/O Control Register ¹ and Offset ²	0x08 STD_PU	0x09 STD_PU	0x2C STD_PU	0x2B STD_PU	0x2A STD_PU	0x29 STD_PU	0x28 STD_PU
Pin	LPC_ACK_B	LPC_AX03	EMB_AD00	EMB_AD01	EMB_AD02	EMB_AD03	EMB_AD04

Table 2. MPC5125 Pin Multiplexing (continued)

	Pin	B2	C4	C3	E4	C2	D2	5	E3
	Notes	ALT2: Reset configuration Core PLL Multiplication Factor 0	ALT2: Reset configuration Core PLL Multiplication Factor 1	ALT2: Reset configuration Core PLL Multiplication Factor 2	ALT2: Reset configuration System PLL Multiplication Factor 0	ALT2: Reset configuration System PLL Multiplication Factor 1	ALT2: Reset configuration System PLL Multiplication Factor 2	ALT2: Reset configuration	ALT2: Reset configuration
•	Power Domain	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO
	I/O Direction	O/I	0	0/1	0/I 0/I	0/1 0/1	0/1	0/1	0/1
•	Peripheral ⁵	LPC —	LPC	LPC	LPC PSC3 GPIO1	LPC PSC3 GPIO1	LPC PSC3 GPIO1	LPC PSC2 GPIO1	LPC PSC2 GPIO1
	Functions ⁴	LPC_AD05/NFC_AD05 — RST_CONF_COREPLL6 —	LPC_AD06/NFC_AD06 RST_CONF_COREPLL5	LPC_AD07/NFC_AD07 RST_CONF_COREPLL4	LPC_AD08/NFC_AD08 PSC3_2 RST_CONF_SPMF0 GPIO28	LPC_AD09/NFC_AD09 PSC3_1 RST_CONF_SPMF1 GPIO27	LPC_AD10/NFC_AD10 PSC3_0 RST_CONF_SPMF2 GPIO26	LPC_AD11/NFC_AD11 PSC2_4 RST_CONF_SPMF3 GPIO25	LPC_AD12/NFC_AD12 PSC2_3 RST_CONF_PREDIV0 GPIO24
	Alternate Function ³	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALT0 ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3
	Pad I/O Control Register ¹ and Offset ²	0x27 STD_PU	0x26 STD_PU	0x25 STD_PU	0x24 STD_PU	0x23 STD_PU	0x22 STD_PU	0x21 STD_PU	0x20 STD_PU
	Pin	EMB_AD05	EMB_AD06	EMB_AD07	EMB_AD08	EMB_AD09	EMB_AD10	EMB_AD11	EMB_AD12

Table 2. MPC5125 Pin Multiplexing (continued)

	Pin	E2	1 4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	Д	F3	63	G2
	Notes	ALT2: Reset configuration	ALT2: Reset configuration	ALT2: Reset configuration	I	ALT2: Reset configuration	ALT2: Reset configuration
	Power Domain	VDD_IO	VDD_IO	Ol_ddv	VDD_IO	OI ⁻ GG/	VDD_IO
	I/O Direction	0/1	0/1 0/1	0/1	<u> </u>	<u> </u>	<u>S</u>
	Peripheral ⁵	LPC PSC2 GPIO1	LPC PSC2 GPIO1	LPC PSC2 GPIO1	LPC		LPC
•	Functions ⁴	LPC_AD13/NFC_AD13 PSC2_2 RST_CONF_PREDIV1 GPIO23	LPC_AD14/NFC_AD14 PSC2_1 RST_CONF_PREDIV2 GPIO22	LPC_AD15/NFC_AD15 PSC2_0 RST_CONF_SYSOSCEN GPIO21	LPC_AD16/LPC_A01/NFC _WE 	LPC_AD17/LPC_A02/NFC _RE RST_CONF_PLL_LOCK 	LPC_AD18/LPC_A03/NFC_ _CLE RST_CONF_LPCMX
	Alternate Function ³	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3		ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3
	Pad I/O Control Register ¹ and Offset ²	0x1F STD_PU	0x1E STD_PU	0x1D STD_PU	0x1C STD_PU	0x1B STD_PU	0x1A STD_PU
	Pin	EMB_AD13	EMB_AD14	EMB_AD15	EMB_AD16	EMB_AD17	EMB_AD18

Table 2. MPC5125 Pin Multiplexing (continued)

	Pin	40	£ 13	F	조	E)	83	61	75
	Notes	ALT2: Reset configuration	I	I	ALT2: Reset configuration	I	I	I	I
	Power Domain	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO
	I/O Direction	<u> </u>	9119	9119	9 9	2112	9119	9119	9 9
•	Peripheral ⁵	LPC	LPC GPIO1	LPC GPIO1	LPC GPIO1	LPC GPIO1	LPC GPIO1	LPC GPIO1	LPC GPIO1
	Functions ⁴	LPC_AD19/LPC_A04/NFC_ALE	LPC_AD20/LPC_A05 — GPIO20	LPC_AD21/LPC_A06 — GPIO19	LPC_AD22/LPC_A07 — RST_CONF_LPC_TS GPI018	LPC_AD23/LPC_A08 — GPIO17	LPC_AD24/LPC_A09	LPC_AD25/LPC_A10 GPI015	LPC_AD26/LPC_A11
	Alternate Function ³	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3
	Pad I/O Control Register ¹ and Offset ²	0x19 STD_PU	0x18 STD_PU	0x17 STD_PU	0x16 STD_PU	0x15 STD_PU	0x14 STD_PU	0x13 STD_PU	0x12 STD_PU
	Pin	EMB_AD19	EMB_AD20	EMB_AD21	EMB_AD22	EMB_AD23	EMB_AD24	EMB_AD25	EMB_AD26

Table 2. MPC5125 Pin Multiplexing (continued)

ļ	Pin	M		Ξ		F3		M3		J.		K1		4 4	
	Notes	I		I		I		I		I		I		I	
	Power Domain	Ol_ddv		OI [_] QQA		OI ⁻ GGA		Ol_ddv		Ol_ddv		OI ⁻ GGA		VDD_IO	
	I/O Direction	0	1 9	0/I	119	0/1	9	<u>9</u> o	<u>ا 9</u>	9 −	1 9	0		0	0
	Peripheral ⁵	LPC	GPI01	LPC	GPI01	CPC	GPI01	LPC	GPI01	LPC	GPI01	CPC		LPC	LPC
	Functions ⁴	LPC_AD27/LPC_A12 —	— GPIO13	LPC_AD28/LPC_A13	_ _ GPI012	LPC_AD29/LPC_A14	_ _ GPI011	LPC_AD30/LPC_A15 CAN_CLK	— GPIO10	LPC_AD31/LPC_A16 PSC_MCLK_IN	— GPIO09	LPC_AX00/LPC_ALE	1 1 1	LPC_AX01/LPC_TSIZ0	 LPC_CS4
	Alternate Function ³	ALTO ALT1	ALT3	ALTO	ALI 1 ALT2 ALT3	ALTO	ALT2 ALT3	ALT0 ALT1	ALT2 ALT3	ALTO ALT1	ALT2 ALT3	ALTO	ALI - ALT2 ALT3	ALTO	ALT1 ALT2 ALT3
	Pad I/O Control Register ¹ and Offset ²	0×11	STD_PU	0x10	STD_PU	0x0F	STD_PU	0×0E	STD_PU_ST	0x0D	STD_PU_ST	0x0C	STD_PU	0x0B	STD_PU
	Pin	EMB_AD27		EMB_AD28		EMB_AD29		EMB_AD30		EMB_AD31		EMB_AX00		EMB_AX01	

Table 2. MPC5125 Pin Multiplexing (continued)

AB8 AA8 W11 AB9 **Y17** Pin Ξ \Box 7 When booting from the NFC, the NFC_RB pin needs an external pullup resistor. Notes **Power Domain** VDD_IO VDD_IO VDD_IO VDD_IO VDD_IO VDD_IO VDD_IO VDD_IO Direction - | | 9 0990 0990 0990 9999 0 | | 9 -099 0001 Peripheral⁵ CAN3 DIU DIU GPIO2 GPI01 GPI01 DIU PSC4 USB1 GPIO1 DIU PSC4 USB1 LPC DIU PSC4 USB1 LPC DIU PSC4 USB1 LPC NFC NFC LPC LPC LPC_AX02/LPC_TSIZ1 Functions⁴ PSC4_0 USB1_DATA0 LPC_AX04 PSC4_3 USB1_DATA3 PSC4_2 USB1_DATA2 LPC_AX06 DIU_DE PSC4_1 USB1_DATA1 DIU_HSYNC DIU_VSYNC CAN3_RX CLK_OUT2 DIU_LD00 GPIO32 PC_AX05 NFC_CE3 LPC_CS3 NFC_R/B0 NFC_CE0 DIU_CLK **GPI029** GP1030 GPI031 Alternate Function³ 0x02E ALT0 ALT1 STD_PU_ST ALT2 ALT3 ALTO ALT1 ALT2 ALTO ALT1 ALT2 ALT3 ALT3 Pad I/O Control Register¹ and Offset² STD_PU_ST STD_PU STD_PU STD_PU STD_PU STD_PU STD_PU 0x02D 0x02F 0x030 0x032 0x033 0x031 0x0A NFC_CE0_B DIU_HSYNC DIU_VSYNC EMB_AX02 DIU_LD00 NFC_RB DIU_CLK DIU_DE Pin

MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 4

Table 2. MPC5125 Pin Multiplexing (continued)

	Pin	٧١٥	AA10	717	AA11	AB10	AB11	Y12	W13
	Notes		1		I			1	
	Power Domain	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO
	I/O Direction	0/1	0/2 0	9,9,0	9,9,0	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	9909	9 9 - 9	- NO
*	Peripheral ⁵	CAN3 DIU DIU GPIO2	DIU PSC4 USB1 LPC	DIU PSC5 USB1 LPC	DIU PSC5 USB1 LPC	DIU PSC5 USB1 GPIO2	DIU PSC5 USB1 GPIO2	DIU PSC5 USB1 GPIO2	CAN4 PSC6 DIU GPIO2
	Functions ⁴	CAN3_TX CLK_OUT3 DIU_LD01 GPIO33	DIU_LD02 PSC4_4 USB1_DATA4 LPC_AX07	DIU_LD03 PSC5_0 USB1_DATA5 LPC_AX08	DIU_LD04 PSC5_1 USB1_DATA6 LPC_AX09	DIU_LD05 PSC5_2 USB1_DATA7 GPIO34	DIU_LD06 PSC5_3 USB1_STOP GPIO35	DIU_LD07 PSC5_4 USB1_CLK GPIO36	CAN4_RX PSC6_0 DIU_LD08 GPIO37
	Alternate Function ³	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALT0 ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3
	Pad I/O Control Register ¹ and Offset ²	0x034 STD_PU	0x035 STD_PU	0x036 STD_PU	0x037 STD_PU	0x038 STD_PU	0x039 STD_PU	0x03A STD_PU_ST	0x03B ALT0 ALT1 STD_PU_ST ALT2 ALT3
	Pin	DIU_LD01	DIU_LD02	DIU_LD03	DIU_LD04	DIU_LD05	DIU_LD06	DIU_LD07	DIU_LD08

Table 2. MPC5125 Pin Multiplexing (continued)

Pin Council Authorised Au							•		
0x03C ALTO CAN4_TX CAN4_TX CAN4_TX CAN4_TX CAN4_TX CAN4_TX CAN4_TX CAN4_TX CAN5_GE_1	Pin	Pad I/O Control Register ¹ and Offset ²	Alternate Function ³	Functions ⁴	Peripheral ⁵	I/O Direction	Power Domain	Notes	Pin
STD_PU ALT2 DIU_LD09 DIU DIU DIU DIU_LD09 DIU DIU DIU_LD09 DIU DIU DIU_LD09 DIU DIU DIU_LD01 DIU DIU_LD01 DIU_LD01 DIU_LD01 DIU_LD01 DIU_LD01 DIU_LD01 DIU_LD01 DIU_LD01 DIU DIU DIU DIU DIU DIU_LD01 DIU DI	-LD09	0x03C	ALT0 AIT1	×	CAN4 PSC6	o <u>S</u>	VDD_IO	I	AB12
0x03D ALTO DIU_LD10 DIU I/O VDD_IO — STD_PU ALT1 PSC6_2 PSC6 I/O VDD_IO — STD_PU ALT2 USB1 NEXT USB1 I/O VDD_IO — 0x03E ALT2 USB1 NEXT USB1 I/O VDD_IO — 0x03E ALT1 PSC6_3 PSC6 I/O VDD_IO — 0x03F ALT2 USB1 DIR USB1 I/O VDD_IO — 0x03F ALT2 USB2_DATA0 USB2 I/O VDD_IO — 0x040 ALT3 USB2_DATA0 USB2_D I/O I/O VDD_IO — 0x040 ALT3 USB2_DATA1 USB2_DATA1 USB2_DATA1 USB2_DATA1 USB2_DATA1 USB2_DATA2 U		STD_PU	ALT2 ALT3		DIU GPIO2	299			
STD_PU ALI1 PSC6.2 PSC6 WO 0x03E ALT2 USB1 NEXT USB2 WO 0x03E ALT2 GPIO39 GPIO29 WO STD_PU ALT2 DIU_LD14 DIU WO VDD_IO 0x03F ALT3 GPIO20 WO VDD_IO — 0x03F ALT3 GPIC20 WO VDD_IO — 0x03F ALT3 GPIC20 WO VDD_IO — 0x03F ALT3 GPIC20 WO VDD_IO — 0x040 ALT3 GPIC20 WO VDD_IO — 0x040 ALT3 GPT2(0) GPT2 WO VDD_IO — 0x040 ALT4 DIU_LD14 DIU WO VDD_IO — 0x041 ALT3 GPT2(1) GPT2 WO VDD_IO — 0x042 ALT3 USB2_DATA2 USB2 WO VDD_IO — 0x043	J_LD10	0x03D	ALTO		DIU	0/1	Ol_ddv	I	Y13
0x03E ALTO DIU_LD11 DIU I/O VDD_IO STD_PU ALT1 PSC6.3 PSC6 I/O VDD_IO STD_PU ALT2 USB1_DIR USB1 I/O VDD_IO 0x03F ALT3 GPIC40 GPIC2 I/O VDD_IO 0x040 ALT2 USB2_DATAO USB2 I/O VDD_IO 0x040 ALT3 GPT2[0] GPT2 I/O VDD_IO 0x040 ALT3 GPT2[1] GPT2 I/O VDD_IO 0x041 ALT3 GPT2[1] GPT2 I/O VDD_IO 0x041 ALT3 GPT2[1] GPT2 I/O VDD_IO 0x041 ALT3 GPT2[1] GPT2 I/O VDD_IO 0x042 ALT3 GPT2[2] GPT2 I/O VDD_IO 0x042 ALT4 USB2_DATA3 USB2 I/O VDD_IO 0x042 ALT3 USB2_DATA3 GPT2 I/O VDD_IO <		STD_PU	ALT1 ALT2 ALT3		PSC6 USB1 GPIO2	<u></u> 909			
STD_PU ALT PSUC_3 FOUR	J_LD11		ALT0		DIU	99	OI_ddv	1	AA13
0x03F ALT3 GPIO40 GPIO2 I/O VDD_IO 0x03F ALT0 DIU_LD12 DIU I/O VDD_IO STD_PU ALT3 GPT2[0] GPT2 I/O VDD_IO 0x040 ALT3 GPT2[0] GPT2 I/O VDD_IO 0x040 ALT0 DIU_LD13 DIU I/O VDD_IO 0x041 ALT1 PSC7_D I/O VDD_IO — 0x041 ALT1 PSC7_D I/O VDD_IO — 0x041 ALT2 USB2_DATA2 USB2 I/O VDD_IO — 0x041 ALT2 USB2_DATA2 USB2 I/O VDD_IO — STD_PU ALT2 USB2_DATA2 USB2 I/O VDD_IO — STD_PU ALT3 GPT2[1] GPT2 I/O VDD_IO — STD_PU ALT3 GPT2[2] GPT2 I/O VDD_IO — STD_PU_ST ALT3 GP			ALI I ALT2	œ	rsco USB1	⊇ –			
0x03F ALT0 DIU_LD12 DIU WO VDD_IO STD_PU ALT2 PSC6_4 PSC6 I/O VDD_IO 0x040 ALT2 CPT2[q] DIU_LD13 DIU I/O VDD_IO 0x040 ALT0 DIU_LD13 DIU I/O VDD_IO — 0x041 ALT3 GPT2[q] GPT2 I/O VDD_IO — 0x041 ALT3 GPT2[q] GPT2 I/O VDD_IO — 0x041 ALT3 GPT2[q] DIU_LD14 DIU I/O VDD_IO — 0x041 ALT3 GPT2[q] GPT2 I/O VDD_IO — 0x042 ALT1 PSC7_1 PSC7_2 I/O VDD_IO — 0x042 ALT3 GPT2[q] GPT2 I/O VDD_IO — 0x043 ALT1 USB_2 DATA3 USB_2 I/O VDD_IO — 0x043 ALT2 USB_2 DATA3 USB_2 I/O			ALT3	GPIO40	GPI02	<u>0</u>			
STD_PU ALT1 PSC6 4 PSC6 10 PSC6 I/O 0x040 ALT2 USB2_DATA0 USB2 I/O 0x040 ALT0 DIU_LD13 DIU I/O VDD_IO STD_PU ALT2 USB2_DATA1 USB2 I/O VDD_IO 0x041 ALT3 GPT2[1] GPT2 I/O VDD_IO 0x044 ALT0 DIU_LD14 DIU I/O VDD_IO STD_PU ALT1 PSC7_1 PSC7_1 I/O VDD_IO STD_PU ALT2 USB2_DATA2 USB2 I/O VDD_IO ALT3 GPT2[2] GPT2 I/O VDD_IO — STD_PU ALT3 GPT2[3] GPT2 I/O VDD_IO — ALT3 GPT2[3] GPT2 I/O VDD_IO — — ALT3 GPT2[3] GPT2 I/O VDD_IO — — ALT4 LICA_OUTO DIU I/O VDD_IO — — <td>J_LD12</td> <td></td> <td></td> <td>2</td> <td>DIO</td> <td>0/1</td> <td>VDD_IO</td> <td>I</td> <td>AB13</td>	J_LD12			2	DIO	0/1	VDD_IO	I	AB13
Ox040				TAO	PSC6 USB2	<u> </u>			
0x040 ALT0 DIU_LD13 DIU I/O VDD_IO — STD_PU ALT2 USB2_DATA1 USB2 I/O VDD_IO — 0x041 ALT3 GPT2[1] GPT2 I/O VDD_IO — 0x041 ALT1 PSC7_1 VO VDD_IO — — STD_PU ALT2 USB2_DATA2 USB2 I/O VDD_IO — 0x042 ALT3 GPT2[2] GPT2 I/O VDD_IO — 0x042 ALT0 DIU_LD15 DIU I/O VDD_IO — STD_PU ALT3 GPT2[2] GPT2 I/O VDD_IO — 0x043 ALT3 GPT2[3] GPT2 I/O VDD_IO — 0x043 ALT3 GPT2[3] GPT2 I/O VDD_IO — STD_PU_ST ALT2 DIU_LD16 DIU I/O VDD_IO — ALT3 GPIO41 GPIO41 GPIO2 I/O) - 1 1	ALT3	GPT2[0]	GPT2	2 9			
STD_PU ALT1 PSC7_0 PSC7_0 I/O <	J_LD13	0x040	ALTO		DIO	0/1	VDD_IO	I	W14
STD_PU ALI2 USBZ_DAIATI USBZ_		(ALT1		PSC7	9 9			
0x041 ALT0 DIU_LD14 DIU I/O VDD_IO — STD_PU ALT2 USB2_DATA2 USB2 I/O VDD_IO — 0x042 ALT3 GPTZ[2] DIU_LD15 DIU I/O VDD_IO — 0x042 ALT1 PSC7_2 PSC7 I/O VDD_IO — STD_PU ALT2 USB2_DATA3 USB2 I/O VDD_IO — 0x043 ALT3 GPTZ[3] GPT2 I/O VDD_IO — 0x043 ALT0 CLK_OUT0 DIU O VDD_IO — ALT1 I2C3_SCL I/O VDD_IO — — STD_PU_ST ALT2 DIU_LD16 DIU I/O VDD_IO — STD_PU_ST ALT2 DIU_LD16 DIU I/O VDD_IO — ALT3 GPIO41 GPIO2 I/O VDD_IO —		الا الا	ALT3	USBZ_DAIA1 GPT2[1]	USBZ GPT2	29			
STD_PU ALT1 PSC7_1 PSC7_1 PSC7_1 PSC7_1 PSC7_1 PSC7_1 PSC7_1 PSC7_2 PSC7_2 <td>J_LD14</td> <td>0x041</td> <td></td> <td>14</td> <td>DIO</td> <td>0/1</td> <td>VDD_IO</td> <td>I</td> <td>Y14</td>	J_LD14	0x041		14	DIO	0/1	VDD_IO	I	Y14
0x042 ALT3 GPT2[2] GPT2 I/O VDD_IO 0x042 ALT0 DIU_LD15 DIU I/O VDD_IO — STD_PU ALT2 USB2_DATA3 USB2 I/O VDD_IO — 0x043 ALT0 CLK_OUT0 DIU O VDD_IO — STD_PU_ST ALT2 USB2_SCL I/O VDD_IO — STD_PU_ST ALT2 DIU_LD16 DIU I/O VDD_IO — STD_PU_ST ALT2 DIU_LD16 DIU I/O VDD_IO — ALT3 GPIO41 GPIO41 GPIO2 I/O VDD_IO —		LIG CT2		ATA 2	PSC7	<u> </u>			
0x042 ALT0 DIU_LD15 DIU I/O VDD_IO — STD_PU ALT2 USB2_DATA3 USB2 I/O VDD_IO — 0x043 ALT0 CLK_OUT0 DIU O VDD_IO — STD_PU_ST ALT2 USB2_DATA3 GPT2 I/O VDD_IO — STD_PU_ST ALT0 CLK_OUT0 DIU O VDD_IO — STD_PU_ST ALT2 DIU_LD16 DIU I/O I/O I/O STD_PU_ST ALT3 GPIO41 GPIO2 I/O I/O I/O) - - -		GPT2[2]	GPT2	2 2			
STD_PU ALT1 PSC7_2 PSC7 I/O 0x043 ALT2 USB2_DATA3 USB2 I/O 0x043 ALT0 CLK_OUT0 DIU O VDD_IO STD_PU_ST ALT2 DIU_LD16 DIU I/O PIO STD_PU_ST ALT3 GPIO41 GPIO2 I/O PIO	J_LD15	0x042		5	DIO	0/1	VDD_IO	I	AB14
STD_PU ALT2 USBZ_UARAS USBZ VO		- - - - - -		C	PSC7	<u> </u>			
0x043 ALT0 CLK_OUT0 DIU O VDD_IO — ALT1 I2C3_SCL I/O I/O I/O — STD_PU_ST ALT2 DIU_LD16 DIU I/O I/O I/O ALT3 GPIO41 GPIO2 I/O I/O I/O I/O		ر ا ا	ALT3	USBZ_DAIA3 GPT2[3]	USB2 GPT2	29			
ALT	J_LD16	0x043			DIU	0 9	OI_ddv	I	AA15
ALT3 GPIO41 GPIO2		STD PU ST	ALI 1 ALT2		2 <u>.</u>	2 9			
		I I	ALT3	GPIO41	GPI02	0/			

MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 4

Table 2. MPC5125 Pin Multiplexing (continued)

	Pin	Y15	AB15	AB16	AB17	W16	Y16	AA17	4
	Notes	I	1	I		1	I	1	1
	Power Domain	Ol_ddv	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO
	I/O Direction	0/I 0/I 0	9,99,9	9, 9, 9,	0/1	9,99,9	9 9 - 9	99-9	0 0 - 0
	Peripheral ⁵	DIU I ² C3 DIU GPIO2	DIU PSC7 USB2 GPT2	DIU PSC7 USB2 GPT2	DIU PSC8 USB2 GPT2	DIU PSC8 USB2 GPT2	DIU PSC8 USB2 GPIO2	DIU PSC8 USB2 GPIO2	I ² C2 PSC8 USB2 GPIO2
•	Functions ⁴	CLK_OUT1 I2C3_SDA DIU_LD17 GPIO42	DIU_LD18 PSC7_3 USB2_DATA4 GPT2[4]	DIU_LD19 PSC7_4 USB2_DATA5 GPT2[5]	DIU_LD20 PSC8_0 USB2_DATA6 GPT2[6]	DIU_LD21 PSC8_1 USB2_DATA7 GPT2[7]	DIU_LD22 PSC8_2 USB2_DIR GPIO43	DIU_LD23 PSC8_3 USB2_NEXT GPIO44	12C2_SCL PSC8_4 USB2_CLK GPIO45
•	Alternate Function ³	ALT0 ALT1 ALT2 ALT3	ALT0 ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALT0 ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	
	Pad I/O Control Register ¹ and Offset ²	0x044 STD_PU_ST	0x045 STD_PU	0x046 STD_PU	0x047 STD_PU	0x048 STD_PU	0x049 STD_PU	0x04A STD_PU	0x4B ALT0 ALT1 STD_PU_ST ALT2 ALT3
	Pin	21Ω_LΒ17	DIU_LD18	DIU_LD19	DIU_LD20	DIU_LD21	DIU_LD22	DIU_LD23	I2C2_SCL

Table 2. MPC5125 Pin Multiplexing (continued)

B18 A19 B15 A16 AA1 Pin 4 65 **B**8 Dedicated input can be used Dedicated input can be used to receive an external to receive an external Notes wakeup. wakeup. **Power Domain** VDD_IO VDD_IO VDD_IO VDD_IO VDD_IO VDD_IO VBAT VBAT Direction 99-9 9909 0999 9909 0999 0999 Peripheral⁵ l²C1 PSC9 CAN3 GPIO2 CAN1 PSC9 I²C2 GPIO2 l²C2 PSC9 USB2 GPIO2 CAN2 PSC9 I²C2 GPIO2 l²C1 PSC9 CAN3 GPIO2 FEC1 PSC2 USB2 GPIO2 CAN1 CAN2 Functions⁴ FEC1_TXD_2 PSC2_0 USB2_DATA0 GPIO51 PSC9_4 USB2_STOP I2C1_SDA PSC9_3 CAN3_TX GPIO50 CAN2_TX PSC9_1 I2C2_SDA PSC9_2 CAN3_RX GPIO49 CAN1_TX PSC9_0 I2C2_SCL GPIO47 2C2_SDA CAN1_RX CAN2_RX 2C1_SCL **GPI046** GPI048 Alternate Function³ 0x4F ALT0 ALT1 STD_PU_ST ALT2 ALT3 0x50 ALT0 ALT1 STD_PU_ST ALT2 ALT3 0x4C ALT0 ALT1 STD_PU_ST ALT2 ALTO ALT1 ALT2 ALT3 ALT3 Pad I/O Control Register¹ and Offset² ST STD_PU_ST STD_PU STD_PU 0x4D 0x4E 0x51 FEC1_TXD_2 I2C2_SDA I2C1_SDA CAN1_TX CAN2_TX CAN1_RX CAN2_RX I2C1_SCL Pin

MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 4

Table 2. MPC5125 Pin Multiplexing (continued)

Pin	7	}	AA2	7	WZ	AA3	W3	2
Notes	I	I	I		I	I	I	I
Power Domain	OI_ddV	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO
I/O Direction	0 9 9 9	- 999	- 9 9 9	- 9 9 9	0 2 2 2	- 999	0 9 9 9	0 0/1 - 0/1
Peripheral ⁵	FEC1 PSC2 USB2 GPIO2	FEC1 PSC2 USB2 GPIO2	FEC1 PSC2 USB2 GPIO2	FEC1 PSC2 USB2 GPIO2	FEC1 PSC3 USB2 GPIO2	FEC1 PSC3 USB2 GPIO2	FEC1 PSC3 USB2 GPIO2	FEC1 PSC3 USB2 GPIO2
Functions ⁴	FEC1_TXD_3 PSC2_1 USB2_DATA1 GPIO52	FEC1_RXD_2 PSC2_2 USB2_DATA2 GPIO53	FEC1_RXD_3 PSC2_3 USB2_DATA3 GPIO54	FEC1_CRS PSC2_4 USB2_DATA4 GPIO55	FEC1_TX_ER PSC3_0 USB2_DATA5 GPIO56	FEC1_RXD_1/RMII_RX1 PSC3_1 USB2_DATA6 GPIO57	FEC1_TXD_1/RMII_TX1 PSC3_2 USB2_DATA7 GPIO58	FEC1_MDC/RMII_MDC PSC3_3 USB2_DIR GPIO59
Alternate Function ³	ALT0 ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALT0 ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3
Pad I/O Control Register ¹ and Offset ²	0x52 STD_PU	0x53 STD_PU	0x54 STD_PU	0x55 STD_PU	0x56 STD_PU	0x57 STD_PU	0x58 STD_PU	0x59 STD_PU
Pin	FEC1_TXD_3	FEC1_RXD_2	FEC1_RXD_3	FEC1_CRS	FEC1_TX_ER	FEC1_RXD_1	FEC1_TXD_1	FEC1_MDC

Table 2. MPC5125 Pin Multiplexing (continued)

AB2 AB3 AB4 Pin Υ5 72 ₩ ₹ Notes **Power Domain** VDD_IO VDD_IO VDD_IO VDD IO VDD_IO VDD_IO VDD_IO Direction - 9 - 9 - 9 - 9 9 | -9 -919 - 9 - 9 0 | - 9 108 Peripheral⁵ FEC1 PSC3 USB2 GPIO2 NFC GPIO2 USB2 GPIO2 USB2 GPIO2 GPI01 FEC1 PSC0 NFC GPIO1 FEC1 PSC0 _ GPI01 FEC1 FEC1 FEC1 PSC0 FEC1 FEC1_RX_ER/RMII_RX_E FEC1_TX_CLK/RMII_REF FEC1_RX_DV/RMII_CRS_ FEC1_MDIO/RMII_MDIO FEC1_RXD_0/RMII_RX0 FEC1_TXD_0/RMII_TX0 Functions⁴ FEC1_RX_CLK PSC0_1 NFC_R/\overline{B}2 GPIO05 R PSC3_4 USB2_NEXT GPIO60 USB2_STOP GPIO62 USB2_CLK DV PSC0_2 NFC_R/\overline{B}3 GPIO06 NFC_R/B1 GPIO63 PSC0_0 GPI004 GP1061 Alternate Function³ 0x5B ALT0 ALT1 STD_PU_ST ALT2 ALT3 0x5D ALT0 ALT1 STD_PU_ST ALT2 ALT3 0x5E ALT0 ALT1 STD_PU_ST ALT2 ALT3 0x5F ALT0 ALT1 STD_PU_ST ALT2 ALT3 ALTO ALT1 ALT2 ALT3 ALTO ALT1 ALT2 ALT3 ALTO ALT1 ALT2 ALT3 Pad I/O Control Register¹ and Offset² STD_PU_ST STD_PU STD_PU 0x5A 0x5B 0x5C 0x5E 09x0 FEC1_TX_CLK FEC1_RX_CLK FEC1_RXD_0 FEC1_TXD_0 FEC1_RX_ER FEC1 RX DV FEC1_MDIO Pin

MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 4

Table 2. MPC5125 Pin Multiplexing (continued)

ļ	Pin	۲3	EU U3	6	6M	AB7	AB6	AA7	7
	Notes	I	I	I		I	I	I	I
	Power Domain	VDD_IO	VDD_IO	VDD_IO	VDD_IO	OI_DDV	VDD_IO	OI_DDV	VDD_IO
	I/O Direction	0/1	- 9 9	0/ 0/ -	0/1	9901	99-1	9991	99-1
	Peripheral ⁵	PSC0 GPIO1	FEC1 PSC0 GPIO1	USB2 PSC1 FEC2	USB2 PSC1 FEC2	USB2 PSC1 FEC2	USB2 PSC1 FEC2	USB2 PSC1 FEC2	USB2 PSC4 FEC2
	Functions ⁴	FEC1_TX_EN/RMII_TX_E N PSC0_3 GPIO07	FEC1_COL PSC0_4 — GPIO08	USB1_DATA0 PSC1_0 FEC2_RXD_1/RMII_RX1	USB1_DATA1 PSC1_1 FEC2_TXD_1/RMII_TX1	USB1_DATA2 PSC1_2 FEC2_MDC/RMII_MDC	USB1_DATA3 PSC1_3 FEC2_RX_ER/RMII_RX_E R	USB1_DATA4 PSC1_4 FEC2_MDIO/RMII_MDIO	USB1_DATA5 PSC4_0 FEC2_RXD_0/RMII_RX0
	Alternate Function ³	ALTO ALT1 ALT2 ALT3	ALT0 ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3
	Pad I/O Control Register ¹ and Offset ²	0x61 STD_PU	0x62 STD_PU_ST	0x63 STD_PU	0x64 STD_PU	0x65 STD_PU	0x66 STD_PU	0x67 STD_PU	0x68 STD_PU
	Pin	FEC1_TX_EN	FEC1_COL	USB1_DATA0	USB1_DATA1	USB1_DATA2	USB1_DATA3	USB1_DATA4	USB1_DATA5

Table 2. MPC5125 Pin Multiplexing (continued)

ļ	Pin	У6	AB5	We	λ8	AA5	W7		11
	Notes	I	I	I	I	1	I		I
	Power Domain	Ol_ddv	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO		VDD_IO
	I/O Direction	O/I	99-1	0 9 - 1	- 2 -	- 0 0	- - 9		0 0 0 0
	Peripheral ⁵	USB2 PSC4 FEC2	USB2 PSC4 FEC2	USB2 PSC4 FEC2	USB2 PSC4 FEC2	USB2 — FEC2 GPIO1	USB2 FEC2 GPIO1	SDHC	SDHC1 NFC FEC2 GPIO1
-	Functions ⁴	USB1_DATA6 PSC4_1 FEC2_TXD_0/RMII_TX0	USB1_DATA7 PSC4_2 FEC2_TX_CLK/RMII_REF CLK	USB1_STOP PSC4_3 FEC2_RX_CLK	USB1_CLK PSC4_4 FEC2_RX_DV/RMII_CRS_ DV	USB1_NEXT FEC2_TX_EN/RMII_TX_E N R GPI009	USB1_DIR — FEC2_COL GPI010	0)	SDHC1_CLK NFC_CE1 FEC2_TXD_2 GPI011
	Alternate Function ³	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3	ALT0 ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3		ALTO ALT1 ALT2 ALT3
	Pad I/O Control Register ¹ and Offset ²	0x69 STD_PU	0x6A STD_PU_ST	0x6B STD_PU_ST	0x6C STD_PU_ST	0x6D STD_PU	0x6E STD_PU_ST		0x6F STD_PU
	Pin	USB1_DATA6	USB1_DATA7	USB1_STOP	USB1_CLK	USB1_NEXT	USB1_DIR		SDHC1_CLK

Table 2. MPC5125 Pin Multiplexing (continued)

ļ	Pin	12	13	4 T	25	R2	90	2	A12
	Notes	I	I		I			I	I
	Power Domain	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO	VDD_IO
	I/O Direction	9909	99-9	99-0	99-0	9900	- 9	9999	9999
	Peripheral ⁵	SDHC1 PSC5 FEC2 GPIO1	SDHC1 PSC5 FEC2 GPIO1	SDHC1 PSC5 FEC2 LPC	SDHC1 PSC5 FEC2 LPC	SDHC1 PSC5 FEC2 LPC	_ _ GPIO1	PSC0 SDHC2 GPT1 GPIO1	PSC0 SDHC2 GPT1 GPIO1
	Functions ⁴	SDHC1_CMD PSC5_0 FEC2_TXD_3 GPI012	SDHC1_D0 PSC5_1 FEC2_RXD_2 GPIO13	SDHC1_D1_IRQ PSC5_2 FEC2_RXD_3 LPC_CS5	SDHC1_D2 PSC5_3 FEC2_CRS LPC_CS6	SDHC1_D3_CD PSC5_4 FEC2_TX_ER LPC_CS7	PSC_MCLK_IN GPI014	PSC0_0 SDHC2_CMD GPT1[0] GPIO15	PSC0_1 SDHC2_D0 GPT1[1] GPIO16
	Alternate Function ³	ALT0 ALT1 ALT2 ALT3	ALT0 ALT1 ALT2 ALT3	ALT0 ALT1 ALT2 ALT3	ALT0 ALT1 ALT2 ALT3	ALT0 ALT1 ALT2 ALT3	ALT0 ALT1 ALT2 ALT3	ALT0 ALT1 ALT2 ALT3	ALT0 ALT1 ALT2 ALT3
	Pad I/O Control Register ¹ and Offset ²	0x70 STD_PU	0x71 STD_PU	0x72 STD_PU	0x73 STD_PU	0x74 STD_PU	0x75 STD_PU_ST	0x76 STD_PU	0x77 STD_PU
	Pin	SDHC1_CMD	SDHC1_D0	SDHC1_D1	SDHC1_D2	SDHC1_D3	PSC_MCLK_IN	PSC0_0	PSC0_1

Table 2. MPC5125 Pin Multiplexing (continued)

A13 B13 C12 C13 **D13** A15 11 B14 Pin Notes **Power Domain** VDD_IO VDD_IO VDD_IO VDD_IO VDD_IO VDD_IO VDD_IO VDD_IO Direction 9999 9990 9000 0 9 − 0 9 − 9 - 9 0 9999 0 € Peripheral⁵ PSC0 SDHC2 GPT1 GPI01 PSC0 SDHC2 GPT1 GPIO1 PSC0 SDHC2 GPT1 CAN1 PSC1 SDHC2 GPT1 CAN2 NFC GPIO1 MFC GPI01 PSC1 PSC1 PSC1 PSC1 GPT1 GPT1 Functions⁴ PSC0_2 SDHC2_D1_IRQ GPT1[2] GPI017 PSC0_4 SDHC2_D3_CD GPT1[4] CAN1_TX PSC1_0 SDHC2_CLK GPT1[5] CAN2_TX PSC1_4 CKSTP_OUT NFC_CE2 GPIO20 PSC0_3 SDHC2_D2 GPT1[3] GPIO18 PSC1_3 CKSTP_IN NFC_R/\overline{B2} GPIO19 PSC1_1 CAN_CLK GPT1[6] IRQ0 PSC1_2 TPA2 GPT1[7] IRQ1 Alternate Function³ ALTO ALT1 ALT2 ALT3 Pad I/O Control Register¹ and Offset² STD_PU STD_PU STD_PU STD_PU STD_PU STD_PU STD_PU STD_PU 0x7B 0x78 0x79 0x7A 0x7C 0x7D 0x7E 0x7F PSC0_3 PSC0_2 PSC0_4 PSC1_0 PSC1_2 PSC1_3 PSC1_4 PSC1_1 Pin

MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 4

Table 2. MPC5125 Pin Multiplexing (continued)

	Pin	B5		90			C16			C15			B16			D15				D16			
	Notes	I		I			5. This pin contains an enabled internal Schmitt	trigger.		3. This JTAG pin has an	internal pullup P-FET, and	cannot be configured.	I			3. This JTAG pin has an	internal pullup P-FET, and	cannot be configured.		3. This JTAG pin has an	internal pullup P-FET, and		
	Power Domain	OI¯GGA		OI ⁻ QQA			OI ⁻ QQA			OI ⁻ GGA			OI_ddv			OI_ddv	l			OI_ddv			
	I/O Direction	0	0/0	1	- <u>0</u>		– I	I	1	1	I		0	1		-	I	1		_	I		
_	Peripheral ⁵	J1850 —	NFC I ² C1	J1850	NFC I ² C1	JTAG	JTAG —	I		JTAG	1	1 1	JTAG		1 1	JTAG	1	1		JTAG			System Control
	Functions ⁴	J1850_TX —	NFC_CE3 2C1_SCL	J1850_RX 	NFC_R/ <u>B</u> 3 I2C1_SDA		TCK -	ı	ı	TDI	1	1 1	TDO	ı	1 1	TMS		1	I	TRST	I	1 1	Syste
	Alternate Function ³	ALT0 ALT1	ALT2 ALT3	ALTO	ALT2 ALT3		ALTO ALT1	ALT2	ALT3	ALTO	ALT1	ALI 2 ALT 3	ALT0	ALT1	ALI 2 ALT3	ALT0	ALT1	ALT2	ALT3		ALT1	ALT3	
	Pad I/O Control Register ¹ and Offset ²	0×80	STD_PU_ST	0x81 ALT0	STD_PU_ST		I			I			I			I				I			
	Pin	J1850_TX		J1850_RX			TCK			IDI			TDO			TMS				TRST			

Table 2. MPC5125 Pin Multiplexing (continued)

	Pin	A17	C17	A18		D14
	Notes	This pin is an input or open-drain output, and have internal pull-up P-FETs. This pin can not be configured. This pin contains an enabled internal schmitt-trigger.	1. This pin is an input or open-drain output, and have internal pull-up P-FETs. This pin can not be configured. 2. This pin is an input only. This pin cannot be configured. 5. This pin contains an enabled internal schmitt-trigger.	This pin is an input or open-drain output, and have internal pull-up P-FETs. This pin can not be configured. This pin contains an enabled internal schmitt-trigger.		2. This pin is an input only.This pin cannot be configured.4. This test pin must be tied to VSS.
	Power Domain	Ol_ddv	VDD_IO	VDD_IO		oi ⁻ aav
	I/O Direction	-	-	-		-
	Peripheral ⁵	111	1 1 1	111	Test/Debug	1 1 1
	Functions ⁴	HRESET	PORESET	SRESET	Tee	TEST - -
•	Alternate Function ³	ALTO ALT1 - ALT2 - ALT3 - ALT3	ALTO ALT1 ALT2 ALT3	ALTO ALT1 ALT2 ALT3		ALTO ALT1 ALT2 ALT2 ALT3
	Pad I/O Control Register ¹ and Offset ²	I	I	I		I
	Pin	HRESET	PORESET	SRESET		TEST

IO_CONTROL_MEM register access their alternate function ALT3 by setting the IO_CONTROL_MEM[16BIT] bit. This setting applies to all pins controlled Pins controlled by the STD_PU_ST register have a Schmitt trigger input; pins controlled by the STD_PU register do not. Pins controlled by the by IO_CONTROL_MEM. Pins not controlled by these registers are indicated with a "—'

2 Offset from IOCONTROL_BASE (default is 0xFF40_A000).

 $^3\,$ Except where noted in the Notes column, ALT0 is the primary (default) function for each pin after reset.

⁴ Alternate functions are chosen by setting the values of the STD_PU[FUNCMUX] bitfields inside the I/O Control module.

STD_PU[FUNCMUX] = 00 → ALT0 (default)

– STD_PU[FUNCMUX] = 01 → ALT1

– STD_PU[FUNCMUX] = 10 → ALT2

– STD_PU[FUNCMUX] = 11→ ALT3

For selecting alternate functions, the STD_PU and STD_PU_ST registers function the same. When no function is available on a pin's given ALT n function (value of STD_PU[FUNCMUX]), it is shown as "—

Module included on the MCU

3.2.1 Power and Ground Supply Summary

Table 3. MPC5125 324 TEPBGA Power/Ground

Pin Name	Function Description	Voltage ¹	Package Pin Locations
V _{DD}	Supply voltage — e300 core and peripheral logic	1.4 V	J10, J11, J12, J13, K14, L9, L14, M9, M14, N14, P10, P11, P12, P13
V _{DD_IO}	Supply voltage — I/O buffers	3.3 V	A14, B9, B12, B17, C5, C14, D3, F2, G4, H2, M2, R3, V3, W5, W15, AA4, AA9, AA12, AA14, AA16, AB18
V _{DD_IO_MEM}	Supply voltage — memory	2	B19, C21, D17, D19, G19, H21, P19, R21, T19, V19, W19, Y21, AB20
AV _{DD_FUSEWR}	Power	3.3 V	D4
AV _{DD_CPLL}	Analog power	3.3 V	D10
AV _{DD_SPLL}	Analog power	3.3 V	A11
AV _{DD_OSC_TMPS}	Analog power	3.3 V	C10
V _{BAT}	Power	3.3 V	D8
AV _{SS_CPLL}	Analog ground	0 V	B11
AV _{SS_OSC_TMPS_SPLL}	Analog ground—Double-bonded AVSS_OSC_TMPS and AVSS_SPLL	0 V	B10
MV _{REF}	Analog input —Voltage reference for SSTL input pads	_2	N19
MV _{TT0}	Analog input —SSTL(DDR2) termination (ODT) voltage	2	W18
MV _{TT1}	Analog input —SSTL(DDR2) termination (ODT) voltage	2	R19
MV _{TT2}	Analog input —SSTL(DDR2) termination (ODT) voltage	2	M19
MV _{TT3}	Analog input —SSTL(DDR2) termination (ODT) voltage	2	K19
V _{SS}	Ground	0 V	A1, A2, A22, B1, B7, D7, D12, F4, F21, J9, J14, K2, K[9:13], K21, L4, L[10:13], L19, M[10:13], N[9:13], N21, P2, P4, P9, P14, U2, U21, W8, W10, W12, W17, Y2, AA6, AA18, AB1, AB22

NOTES:

NOTE

This table indicates only the pins with a permanently enabled internal pullup, pulldown, or Schmitt trigger. Most digital I/O pins can be configured to enable internal pullup, pulldown, or Schmitt trigger. See the *MPC5125 Reference Manual (MPC5125RM)*, "I/O Control" chapter.

MPC5125 Microcontroller Data Sheet, Rev. 4

Nominal voltages.

² Dependent on external memory type. See Table 3

4 Electrical and Thermal Characteristics

4.1 DC Electrical Characteristics

4.1.1 Absolute Maximum Ratings

The tables in this section describe the MPC5125 DC electrical characteristics. Table 4 gives the absolute maximum ratings.

Table 4. Absolute Maximum Ratings¹

Characteristic	Sym Min Max		Unit	SpecID	
Supply voltage — e300 core and peripheral logic	V _{DD}	-0.3 1.47		V	D1.1
Supply voltage — I/O buffers	V _{DD_IO} , V _{DD_IO_MEM} -0.3 3.6		V	D1.2	
Input reference voltage (DDR/DDR2)	MV _{REF}	-0.3	3.6	V	D1.15
Termination Voltage (DDR2)	MV _{TT}	-0.3	0.3 3.6		D1.16
Supply voltage — system APLL	AV _{DD_SPLL}	-0.3	3.6	V	D1.3
Supply voltage — system oscillator and temperature sensor	AV _{DD_OSC_TMPS}	-0.3	-0.3 3.6		D1.4
Supply voltage — e300 APLL	AV _{DD_CPLL}	-0.3	3.6	V	D1.5
Supply voltage — RTC (hibernation)	V _{BAT}	т -0.3 3.6		V	D1.6
Supply voltage — FUSE programming	AV _{DD_FUSEWR}	-0.3	3.6	V	D1.7
Input voltage (V _{DD_IO})	V _{in}	-0.3	V _{DD_IO} + 0.3	V	D1.9
Input voltage (V _{DD_IO_MEM})	V _{in}	-0.3	$V_{DD_IO_MEM} + 0.3$	V	D1.10
Input voltage (V _{BAT})	V _{in}	-0.3 V _{BAT} + 0.3		V	D1.11
Input voltage overshoot	V _{inos}	_	1	V	D1.12
Input voltage undershoot	V _{inus}	_	1	V	D1.13
Storage temperature range	T _{st} g	-55	150	οС	D1.14

NOTES:

4.1.2 Recommended Operating Conditions

Table 5 gives the recommended operating conditions.

Table 5. Recommended Operating Conditions

Characteristic	Sym	Min ¹	Тур	Max ¹	Unit	SpecID
Supply voltage — e300 core and peripheral logic	V _{DD}	1.33	1.4	1.47	V	D2.1
State retention voltage — e300 core and peripheral logic ²		1.08	_	_	V	D2.2

MPC5125 Microcontroller Data Sheet, Rev. 4

Freescale Semiconductor 37

Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage.

Table 5. Recommended Operating Conditions (continued)

Characteristic	Sym	Min ¹	Тур	Max ¹	Unit	SpecID
Supply voltage — standard I/O buffers	V_{DD_IO}	3.0	3.3	3.6	V	D2.3
Supply voltage — memory I/O buffers (DDR)	V _{DD_IO_MEM_DDR}	2.3	2.5	2.7	V	D2.4
Supply voltage — memory I/O buffers (DDR2, LPDDR, Mobile SDR)	V _{DD_IO_MEM_DDR2} V _{DD_IO_MEM_LPDDR}	1.7	1.8	1.9	V	D2.5
Supply voltage — memory I/O buffers (SDR)	V _{DD_IO_MEM_SDR}	3.0	3.3	3.6	V	D2.19
Input reference voltage (DDR/DDR2)	MV _{REF}	0.49 ×	0.50 ×	0.51 ×	V	D2.6
		V _{DD_IO_MEM}	$V_{DD_IO_MEM}$	$V_{DD_IO_MEM}$		
Termination voltage (DDR2)	MV_TT	MV _{REF} - 0.04	MV_REF	MV _{REF} + 0.04	V	D2.7
Supply voltage — system APLL	AV _{DD_SPLL}	3.0	3.3	3.6	V	D2.8
Supply voltage — system oscillator and temperature sensor	AV _{DD_OSC_TMPS}	3.0	3.3	3.6	V	D2.9
Supply voltage — e300 APLL	AV _{DD_CPLL}	3.0	3.3	3.6	V	D2.10
Supply voltage — RTC (hibernation)	V _{BAT} ³	3.0	3.3	3.6	V	D2.11
Supply voltage — FUSE programming	AV _{DD_FUSEWR}	3.0	3.3	3.6	V	D2.12
Input voltage — standard I/O buffers	V _{in}	0	_	V _{DD_IO}	V	D2.14
Input voltage — memory I/O buffers (DDR)	V_{in_DDR}	0	_	V _{DD_IO_} MEM_DDR	V	D2.15
Input voltage — memory I/O buffers (DDR2)	V _{in_DDR2}	0	_	V _{DD_IO_} MEM_DDR2	V	D2.16
Input voltage — memory I/O buffers (SDR)	V_{in_SDR}	0	_	V _{DD_IO_} MEM_SDR	V	D2.20
Input voltage — memory I/O buffers (LPDDR)	V_{in_LPDDR}	0	_	V _{DD_IO_} MEM_LPDDR	V	D2.18
Ambient operating temperature range	T _A	-40	_	+85	οС	D2.17

NOTES:

4.1.3 DC Electrical Specifications

Table 6 gives the DC electrical characteristics for the MPC5125 at recommended operating conditions.

Table 6. DC Electrical Specifications

Characteristic	Condition	Sym	Min	Max	Unit	SpecID
Input high voltage	Input type = TTL V _{DD_IO}	V _{IH}	$0.51 \times V_{DD_IO}$	_	V	D3.1
Input high voltage	Input type = TTL VDD_IO_MEM_DDR	V _{IH}	MV _{REF} + 0.15	_	V	D3.2

MPC5125 Microcontroller Data Sheet, Rev. 4

¹ These are recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed.

 $^{^{2}\,}$ The State Retention voltage can be applied to VDD after the device is placed in deep-sleep mode.

 $^{^{3}\,}$ VBAT should not be supplied by a battery of voltage less than 3.0 V.

Table 6. DC Electrical Specifications (continued)

Characteristic	Condition	Sym	Min	Max	Unit	SpecID
Input high voltage	Input type = TTL VDD_IO_MEM_DDR2	V _{IH}	MVREF + 0.125	_	V	D3.3
Input high voltage	Input type = TTL VDD_IO_MEM_LPDDR	V _{IH}	$0.7 imes V_{DD_IO_}$	_	V	D3.4
Input high voltage	Input type = TTL VDD_IO_MEM_SDR	V _{IH}	$0.7 imes V_{DD_IO_}$ MEM_SDR	_	V	D3.33
Input high voltage	Input type = Schmitt V _{DD_IO}	V _{IH}	$0.65 \times V_{DD_IO}$	_	V	D3.5
Input high voltage	SYS_XTALI crystal mode ¹ bypass mode ²	CV _{IH}	Vxtal + 0.4 (V _{DD_IO} / 2) + 0.4	_	V	D3.6
Input high voltage	RTC_XTALI crystal mode ³ bypass mode ⁴	RV _{IH}	$(V_{BAT} / 5) + 0.5$ $(V_{BAT} / 2) + 0.4$	_	V	D3.7
Input low voltage	Input type = TTL V _{DD_IO}	V _{IL}	_	$0.42 \times V_{DD_IO}$	V	D3.8
Input low voltage	Input type = TTL VDD_IO_MEM_DDR	V _{IL}	_	MV _{REF} – 0.15	V	D3.9
Input low voltage	Input type = TTL VDD_IO_MEM_DDR2	V _{IL}	_	MV _{REF} – 0.125	V	D3.10
Input low voltage	Input type = TTL VDD_IO_MEM_LPDDR	V _{IL}	_	$0.3 imes V_{DD_IO_}$ MEM_LPDDR	V	D3.11
Input low voltage	Input type = TTL VDD_IO_MEM_SDR	V _{IL}	_	$0.3 imes V_{DD_IO_}$ MEM_SDR	V	D3.34
Input low voltage	Input type = Schmitt V _{DD_IO}	V _{IL}	_	$0.35 \times V_{DD_IO}$	V	D3.12
Input low voltage	SYS_XTALI crystal mode bypass mode	CV _{IL}	_	$Vxtal - 0.4 \times (V_{DD_IO}/2) - 0.4$	V	D3.13
Input low voltage	RTC_XTALI crystal mode bypass mode	RV _{IL}	_	(V _{BAT} /5) - 0.5 (V _{BAT} /2) - 0.4	V	D3.14
Input leakage current	Vin = 0 or V _{DD_IO} /V _{DD_IO_MEM_DDR/2} (depending on input type) ⁵	I _{IN}	-2.5	2.5	μΑ	D3.15
Input leakage current	SYS_XTAL_IN $V_{in} = 0$ or $V_{DD_{lo}}$	I _{IN}	_	20	μΑ	D3.16
Input leakage current	RTC_XTAL_IN $V_{in} = 0$ or $V_{DD_{lo}}$	I _{IN}	-	1.0	μΑ	D3.17
Input current, pullup resistor ⁶	PULLUP V _{DD_IO} V _{in} = V _{IL}	I _{INpu}	25	150	μΑ	D3.18
Input current, pulldown resistor ⁸	PULLDOWN V _{DD_IO} V _{in} = V _{IH}	I _{INpd}	25	150	μA	D3.19
Output high voltage	IOH is driver dependent ⁷ V _{DD_IO}	V _{OH}	$0.8 \times V_{DD_IO}$	_	V	D3.20
Output high voltage	IOH is driver dependent ⁷ V _{DD_IO_MEM_DDR}	V _{OHDDR}	1.94	_	V	D3.21
Output high voltage	IOH is driver dependent ⁷ V _{DD_IO_MEM_DDR2}	V _{OHDDR2}	VDD_IO_ MEM – 0.28	_	V	D3.22
Output high voltage	IOH is driver dependent ⁷ VDD_IO_MEM_LPDDR	V _{OHLPDD} R	VDD_IO_ MEM – 0.28		V	D3.23

MPC5125 Microcontroller Data Sheet, Rev. 4

Table 6. DC Electrical Specifications (continued)

Characteristic	Condition	Sym	Min	Max	Unit	SpecID
Output high voltage	IOH is driver dependent ⁷ V _{DD_IO_MEM_SDR}	V _{OHSDR}	0.8 × VDD_IO_MEM	_	V	D3.35
Output low voltage	IOL is driver dependent ⁷ V _{DD_IO}	V _{OL}	_	$0.2 \times V_{DD_IO}$	V	D3.24
Output low voltage	IOL is driver dependent ⁷ V _{DD_IO_MEM_DDR}	V _{OLDDR}	_	0.36	V	D3.25
Output low voltage	IOL is driver dependent ⁷ V _{DD_IO_MEM_DDR2}	V _{OLDDR2}	_	0.28	V	D3.26
Output low voltage	IOL is driver dependent ⁷ V _{DD_IO_MEM_LPDDR}	V _{OLLPDD} R	_	0.28	V	D3.27
Output low voltage	IOL is driver dependent ⁷ V _{DD_IO_MEM_SDR}	V _{OLSDR}	_	0.2 × V _{DD_IO_MEM}	V	D3.36
DC injection current per pin ⁸	_	I _{CS}	-1.0	1.0	mA	D3.29
Input capacitance (digital pins)	_	C _{in}	_	7	pF	D3.30
Input capacitance (analog pins)	_	C _{in}	_	10	pF	D3.31
On-die termination (DDR2)	_	R _{ODT}	120	180	Ω	D3.32

NOTES

- This parameter is meant for those who do not use quartz crystals or resonators, but instead use CAN oscillators in crystal mode. In that case, V_{extal} − V_{xtal} ≥ 400 mV criteria has to be met for oscillator's comparator to produce the output clock.
- This parameter is meant for those who do not use quartz crystals or resonators, but instead use a signal generator clock to drive the clock in bypass mode. In this case, for the oscillator's comparator to produce the output clock, drive only the EXTAL pin. Do not connect anything to any other oscillator pin.
- ³ This parameter is meant for those who do not use quartz crystals or resonators, but instead use CAN oscillators in crystal mode to drive the clock. In that case, for the oscillator's comparator to produce the output clock, drive one of the XTAL_IN or XTAL_OUT pins. Do not connect anything to the other oscillator pins.
- ⁴ This parameter is meant for those who do not use quartz crystals or resonators, but instead use a signal generator clock to drive the clock in bypass mode. In that case, for the oscillator's comparator to produce the output clock, drive only the XTAL_IN pin. Do not connect anything to any other oscillator pin.
- Leakage current is measured with output drivers disabled and with pullups and pulldowns inactive.
- 6 Pullup current is measured at V_{II} and pulldown current is measured at V_{IH} .

cause disruption of normal operation.

- ⁷ See Table 7 for the typical drive capability of a specific signal pin based on the type of output driver associated with that pin as listed in Table 2.
- All injection current is transferred to V_{DD_IO}/V_{DD_IO_MEM}. An external load is required to dissipate this current to maintain the power supply within the specified voltage range.
 Total injection current for all digital input-only and all digital input/output pins must not exceed 10 mA. Exceeding this limit can

MPC5125 Microcontroller Data Sheet, Rev. 4

Table 7. General I/O Pads ¹ — I	Drive Current, Slew Rate
--	--------------------------

Pad Type	Supply Voltage	Drive Select/Slew Rate Control	Rise time max (ns)	Fall time max (ns)	Current loh (mA)	Current Iol (mA)	SpecID
General IO	V _{DD_IO} = 3.3 V	Configuration 3 (11)	1.4	1.6	35	35	D3.41
		Configuration 2 (10)	9.8	12			D3.42
		Configuration 1 (01)	19	24			D3.43
		Configuration 0 (00)	140	183			D3.44

NOTES:

Table 8. DDR I/O Pads¹ — Drive Current, Slew Rate

Pad Type	Supply Voltage	Drive Select/ Slew Rate Control	Rising slew max (ns) ²	Falling slew max (ns) ³	Current loh (mA)	Current lol (mA)	SpecID
DDR	$V_{DD_IO_MEM} = 2.5 \text{ V (DDR)}$	Configuration 3 (011)	0.45	0.45	16.2	16.2	D3.45
	V _{DD_IO_MEM} = 1.8 V (LPDDR	Configuration 0 (000)	0.8	0.8	4.6	4.6	D3.46
	and SDR)	Configuration 1 (001)			8.1	8.1	D3.47
	$V_{DD_IO_MEM} = 1.8 \text{ V (DDR2)}$	Configuration 2 (010)	0.7	0.7	5.3	5.3	D3.48
		Configuration 6 (110)			13.4	13.4	D3.49
	$V_{DD_IO_MEM} = 3.3 \text{ V (SDR)}$	Configuration 7 (111)	0.45	0.45	8	8	D3.50

NOTES:

4.1.4 Electrostatic Discharge

CAUTION

This device contains circuitry that protects against damage due to high-static voltage or electrical fields. However, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages. Operational reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (GND or V_{DD}). Table 11 gives package thermal characteristics for this device.

Table 9. ESD and Latch-Up Protection Characteristics

Sym	Rating	Min	Max	Unit	SpecID
V _{HBM}	Human body model (HBM) — JEDEC JESD22-A114-B	2000	_	V	D4.1
V_{MM}	Machine model (MM) — JEDEC JESD22-A115	200	_	V	D4.2
V _{CDM}	Charge device model (CDM) — JEDEC JESD22-C101	250	_	V	D4.3

MPC5125 Microcontroller Data Sheet, Rev. 4

General I/O—rise and fall times at drive load 50 pF.

¹ DDR—rise and fall times at 50 Ω transmission line impedance terminated to MV_{TT} (0.5 × V_{DD_IO_MEM}) + 4 pF load.

 $^{^2}$ Rising slew rate measured between 0.5 x $V_{DD_IO_MEM}$ – 450 mV and 0.5 x $V_{DD_IO_MEM}$ + 50 mV for all modes.

 $^{^3}$ Falling slew rate measured between 0.5 × $V_{DD_IO_MEM}$ + 50 mV and 0.5 × $V_{DD_IO_MEM}$ – 450 mV for all modes.

4.1.5 Power Dissipation

Power dissipation of the MPC5125 is caused by three different components:

- Dissipation of the internal or core digital logic (supplied by V_{DD})
- Dissipation of the analog circuitry (supplied by AV_{DD_SPLL} and AV_{DD_CPLL})
- Dissipation of the IO logic (supplied by V_{DD_IO_MEM} and V_{DD_IO})

Table 10 details typical measured core and analog power dissipation figures for a range of operating modes. However, the dissipation due to the switching of the IO pins cannot be given in general, but must be calculated for each application case using the following formula:

$$P_{IO} = P_{IOint} + \sum_{M} N \times C \times VDD_{IO}^2 \times f$$
 Eqn. 1

where N is the number of output pins switching in a group M, C is the capacitance per pin, V_{DD_IO} is the IO voltage swing, f is the switching frequency, and P_{IOint} is the power consumed by the unloaded IO stage. The total power consumption of the MPC5125 device must not exceed this value, which would cause the maximum junction temperature to be exceeded.

$$P_{total} = P_{core} + P_{analog} + P_{IO}$$
 Eqn. 2

Table 10. Power Dissipation

	Core Power Supply ((V _{DD_core}) ¹					
M1 -	High-Performand	e	1111	0			
Mode	e300 = 400 MHz, CSB =	200 MHz	Unit	SpecID			
Operational ²	620		mW	D5.1			
Doze ³	580		mW	D5.3			
Nap ³	235		mW	D5.2			
Sleep ³	230		mW	D5.4			
Deep-sleep ⁴	38			D5.5			
	RTC Power Supply	y (V _{BAT})	<u>I</u>	1			
Hibernation	20		μW	D5.6			
	PLL/OSC Power Supplies (AV _{DD_SPLL} , A	AV _{DD_CPLL} , AV _{DD_OSC_TM}	1PS) ⁵	1			
Operational	18		mW	D5.7			
Deep-sleep	55		μW	D5.8			
Unloaded I/O Power Supplies (V _{DD_IO} , V _{DD_IO_MEM}) ⁶							
V _{DD_IO} V _{DD_IO_MEM}							
Operational	180	40	mW	D5.9			
Deep-sleep	5	1	mW	D5.10			

NOTES:

MPC5125 Microcontroller Data Sheet, Rev. 4

¹ Typical core power is measured at $V_{DD_core} = 1.4 \text{ V}$, $T_{J} = 25 \,^{\circ}\text{C}$.

Operational power is measured while running an entirely cache-resident program with floating-point multiplication instructions in parallel with DDR write operation.

- Doze, Nap, and Sleep power are measured with the e300 core in Doze/Nap/Sleep mode; the system oscillator, system PLL, and core PLL active; and all other system modules inactive.
- Deep-sleep power is measured with the e300 core in Sleep mode. The system oscillator, system PLL, core PLL, and other system modules are inactive.
- ⁵ PLL power is measured at AV_{DD_SPLL} = AV_{DD_CPLL} = AV_{DD_OSC_TMPS} = 3.3 V, T_J = 25 °C.
- 6 Unloaded typical I/O power is measured at $V_{DD_IO} = 3.3 \text{ V}$, $V_{DD_MEM_IO} = 1.8 \text{ V}$, $T_J = 25 ^{\circ}C$.

NOTE

The maximum power depends on the supply voltage, process corner, junction temperature, and the concrete application and clock configurations.

4.1.6 Thermal Characteristics

Table 11. Thermal Resistance Data¹

Rating	Conditions	Sym	Value	Unit	SpecID
Thermal resistance junction-to-ambient natural convection ²	Single layer board – 1s	$R_{\theta JA}$	35	°C/W	D6.1
Thermal resistance junction-to-ambient natural convection ²	Four layer board – 2s2p	$R_{\theta JA}$	25	°C/W	D6.2
Thermal resistance junction-to-moving-air ambient ²	@ 200 ft./min., single layer board – 1s	$R_{\theta JMA}$	29	°C/W	D6.3
Thermal resistance junction-to-moving-air ambient ²	@ 200 ft./min., four layer board 2s2p	R_{\thetaJMA}	22	°C/W	D6.4
Thermal resistance junction-to-board ³	_	$R_{\theta JB}$	16	°C/W	D6.5
Thermal resistance junction-to-case ⁴	_	$R_{\theta JC}$	11	°C/W	D6.6
Junction-to-package-top natural convection ⁵	Natural convection	Ψ_{JT}	3	°C/W	D6.7

NOTES

- 1 Thermal characteristics are targets based on simulation that are subject to change per device characterization.
- Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package.
- Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.
- ⁴ Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.
- Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

4.1.6.1 Heat Dissipation

An estimation of the chip-junction temperature, T_I, can be obtained from the following equation:

$$T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$$
 Eqn. 3

where:

 T_A = ambient temperature for the package (${}^{\circ}C$)

 $R_{\theta IA}$ = junction to ambient thermal resistance (°C/W)

 P_D = power dissipation in package (W)

MPC5125 Microcontroller Data Sheet, Rev. 4

The junction to ambient thermal resistance is an industry standard value, which provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single-layer board, and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is correct depends on the power dissipated by other components on the board. The value obtained on a single-layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

Historically, the thermal resistance has frequently been expressed as the sum of a junction to case thermal resistance and a case to ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$
 Eqn. 4

where:

 $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)

 R_{HC} = junction to case thermal resistance (°C/W)

 $R_{\theta CA}$ = case to ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. You control the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, you can change the air flow around the device, add a heat sink, change the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This description is most useful for ceramic packages with heat sinks where some 90% of the heat flow is through the case to the heat sink to ambient. For most packages, a better model is required.

A more accurate thermal model can be constructed from the junction to board thermal resistance and the junction to case thermal resistance. The junction to case covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the top of the package. The junction to board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used for hand estimations or for a computational fluid dynamics (CFD) thermal model.

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_{I} = T_{T} + (\Psi_{IT} \times P_{D})$$
 Eqn. 5

where:

 T_T = thermocouple temperature on top of package (°C)

 Ψ_{JT} = thermal characterization parameter (°C/W)

 P_D = power dissipation in package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over approximately one mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

4.2 Oscillator and PLL Electrical Characteristics

The MPC5125 system requires a system-level clock input SYS_XTALI. This clock input may be driven directly from an external oscillator or with a crystal using the internal oscillator.

There is a separate oscillator for the independent real-time clock (RTC) system.

The MPC5125 clock generation uses two phase-locked loop (PLL) blocks.

MPC5125 Microcontroller Data Sheet, Rev. 4

- The system PLL (SYS_PLL) takes an external reference frequency and generates the internal system clock. The system clock frequency is determined by the external reference frequency and the settings of the SYS_PLL configuration.
- The e300 core PLL (CORE_PLL) generates a master clock for all of the CPU circuitry. The e300 core clock frequency is determined by the system clock frequency and the settings of the CORE_PLL configuration.

4.2.1 System Oscillator Electrical Characteristics

Table 12. System Oscillator Electrical Characteristics

Characteristic	Sym	Min	Typical	Max	Unit	SpecID
SYS_XTAL frequency	f _{sys_xtal}	15.6	33.3	35.0	MHz	O1.1

The system oscillator can work in oscillator mode or in bypass mode to support an external input clock as clock reference.

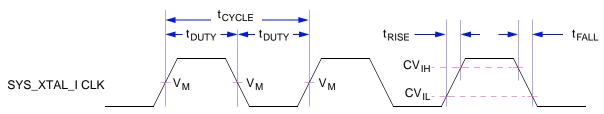


Figure 4. Timing Diagram — SYS_XTAL_IN

Table 13. SYS_XTAL_IN Timing

Sym	Description	Min	Max	Units	SpecID
t _{CYCLE}	SYS_XTALI cycle time ^{1,2}	64.1	28.57	ns	0.1.2
t _{RISE}	SYS_XTALI rise time ³	1	4	ns	O.1.3
t _{FALL}	SYS_XTALI fall time ⁴	1	4	ns	0.1.4
t _{DUTY}	SYS_XTALI duty cycle (measured at V _M) ⁵	40	60	%	O.1.5

NOTES:

4.2.2 RTC Oscillator Electrical Characteristics

Table 14. RTC Oscillator Electrical Characteristics

Characteristic	Sym	Min	Typical	Max	Unit	SpecID
RTC_XTAL frequency	f _{rtc_xtal}	-	32.768	_	kHz	O2.1

MPC5125 Microcontroller Data Sheet, Rev. 4

The SYS_XTALI frequency and system PLL settings must be chosen such that the resulting system frequencies do not exceed their respective maximum or minimum operating frequencies. See the MPC5125 Reference Manual (MPC5125RM).

The min/max cycle times are calculated using 1/f_{sys_xtal (MIN/MAX)} where the f_{sys_xtal (MIN/MAX)} (15.6 / 35 MHz) are taken from Table 12 (system oscillator electrical characteristics).

³ Rise time is measured from 20% of VDD to 80% of VDD.

⁴ Fall time is measured from 20% of VDD to 80% of VDD.

⁵ SYS_XTALI duty cycle is measured at V_M.

4.2.3 System PLL Electrical Characteristics

Table 15. System PLL Specifications

Characteristic	Sym	Min	Typical	Max	Unit	SpecID
Sys PLL input clock frequency ¹	f _{sys_xtal}	16	33.3	67	MHz	O3.1
Sys PLL input clock jitter ²	t _{jitter}	_	_	10	ps	O3.2
Sys PLL VCO frequency ¹	f _{VCOsys}	400	_	800	MHz	O3.3
Sys PLL VCO output jitter (Dj), peak to peak / cycle	f _{VCOjitterDj}	_	_	40	ps	O3.4
Sys PLL VCO output jitter (Rj), RMS 1 sigma	f _{VCOjitterRj}	_	_	12	ps	O3.5
Sys PLL relock time — after power up ³	t _{lock1}	_	_	200	μs	O3.6
Sys PLL relock time — when power was on ⁴	t _{lock2}	_	_	170	μs	O3.7

NOTES:

4.2.4 e300 Core PLL Electrical Characteristics

The internal clocking of the e300 core is generated from and synchronized to the system clock by means of a voltage-controlled core PLL.

Table 16. e300 PLL Specifications

Characteristic	Sym	Min	Typical	Max	Unit	SpecID
e300 frequency ^{1, 2}	f _{core}	200	_	400	MHz	O4.1
e300 PLL VCO frequency ¹	f _{VCOcore}	400	_	800	MHz	O4.3
e300 PLL input clock frequency	f _{CSB_CLK}	50	_	200	MHz	O4.4
e300 PLL input clock cycle time	t _{CSB_CLK}	5	_	20	ns	O4.5
e300 PLL relock time ³	t _{lock}	_	_	200	μs	O4.6

NOTES:

MPC5125 Microcontroller Data Sheet, Rev. 4

¹ The SYS_XTAL frequency and PLL configuration bits must be chosen such that the resulting system frequency, CPU (core) frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequencies.

² This represents total input jitter — short term and long term combined. Two different types of jitter can exist on the input to CORE_SYSCLK, systemic and true random jitter. True random jitter is rejected. Systemic jitter is passed into and through the PLL to the internal clock circuitry.

PLL-relock time is the maximum amount of time required for the PLL lock after a stable VDD and CORE_SYSCLK are reached during the power-on reset sequence.

PLL-relock time is the maximum amount of time required for the PLL lock after the PLL has been disabled and subsequently re-enabled during sleep modes.

The frequency and e300 PLL configuration bits must be chosen such that the resulting system frequencies, CPU (core) frequency, and e300 PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequencies in Table 17.

² The following hard-coded relationship exists between f_{core} and $f_{VCOcore}$: $(f_{core} = f_{VCOcore})$.

PLL-relock time is the maximum amount of time required for the PLL lock after a stable V_{DD} and CORE_SYSCLK are reached during the power-on reset sequence. This specification also applies when the PLL has been disabled and subsequently re-enabled during sleep modes.

4.3 AC Electrical Characteristics

4.3.1 Overview

The following list provides hyperlinks to the indicated timing specification sections.

- AC Operating Frequency Data
- Resets
- SDRAM (DDR)
- LPC
- NFC
- FEC
- USB ULPI
- MMC/SD/SDIO Card Host Controller (SDHC)

- DIU
- CAN
- I²C
- J1850
- PSC
- GPIOs and Timers
- Fusebox
- IEEE 1149.1 (JTAG)

AC test timing conditions:

Unless otherwise noted, all test conditions are as follows:

- $T_A = -40 \text{ to } 85 \, {}^{\circ}\text{C}$
- $V_{DD} = 1.33 \text{ to } 1.47 \text{ V}$ $V_{DD IO} = 3.0 \text{ to } 3.6 \text{ V}$
- Input conditions:
 - All inputs: t_{rise} , $t_{fall} \le 1$ ns
- Output Loading: All outputs: 50 pF

4.3.2 AC Operating Frequency Data

Table 17 provides the operating frequency information for the MPC5125.

Table 17. Clock Frequencies

	Min	Max	Units	SpecID
e300 Processor Core	200	400	MHz	A1.1
SDRAM clock	50	200	MHz	A1.2
CSB bus clock	50	200	MHz	A1.3
IP bus clock	8.3	66	MHz	A1.4
LPC clock	2.08	66	MHz	A1.6
NFC clock	3.13	50	MHz	A1.7
DIU clock	0.78	66	MHz	A1.8
SDHC clock	0.78	50	MHz	A1.9
CLKx	0.78	66	MHZ	A1.10

NOTES:

MPC5125 Microcontroller Data Sheet, Rev. 4

- 1. The SYS_XTAL_IN frequency, Sys PLL, and Core PLL settings must be chosen so that the resulting e300 clk, csb_clk, and MCK frequencies do not exceed their respective maximum or minimum operating frequencies.
- 2. The values are valid for the user-operation mode. There can be deviations for test modes.
- 3. When selecting the peripheral clock frequencies, care needs to be taken about requirements for baud rates and minimum frequency limitation.
- 4. The DDR data rate is 2x the DDR memory bus frequency.

SYS_XTAL_IN is the input clock multiplied by the system phase-locked loop (Sys PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the DDR controller (ddr_clk), and the clocks for the peripherals. The csb_clk serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies the csb_clk frequency to create the internal clock for the e300 core (core_clk). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word, which is loaded at power-on reset.

See the MPC5125 Reference Manual (MPC5125RM), for more information on the clock subsystem.

4.3.3 Resets

The MPC5125 has three reset pins:

- PORESET Power-on reset
- HRESET Hard reset
- SRESET Software reset

These signals are asynchronous I/O signals and can be asserted at any time. The input side uses a Schmitt trigger and requires the same input characteristics as other MPC5125 inputs, as specified in Section 4.1, "DC Electrical Characteristics."

As long as VDD is not stable the HRESET output is not stable.

Table 18. Reset Rise / Fall Timing

Description	Min	Max	Unit	SpecID
PORESET ¹ fall time	_	1	ms	A3.4
PORESET rise time	_	1	ms	A3.5
HRESET ^{2,3} fall time	_	1	ms	A3.6
HRESET rise time	_	1	ms	A3.7
SRESET fall time	_	1	ms	A3.8
SRESET rise time	_	1	ms	A3.9

NOTES:

- Make sure that the PORESET does not carry any glitches. The MPC5125 has no filter to prevent them from getting into the chip.
- ² HRESET and SRESET must have a monotonous rise time.
- The assertion of HRESET becomes active at power-on reset without any SYS_XTAL clock.

The timing relationship can be seen in the following figures.

MPC5125 Microcontroller Data Sheet, Rev. 4

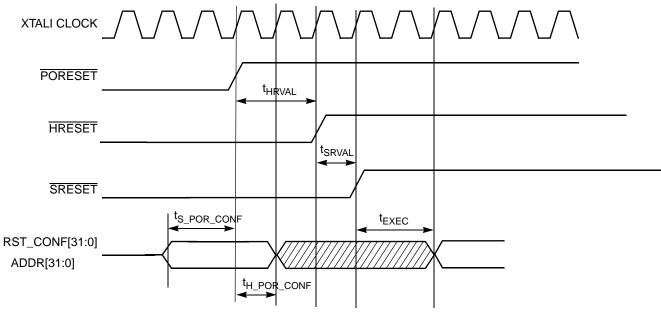


Figure 5. Power-Up Behavior

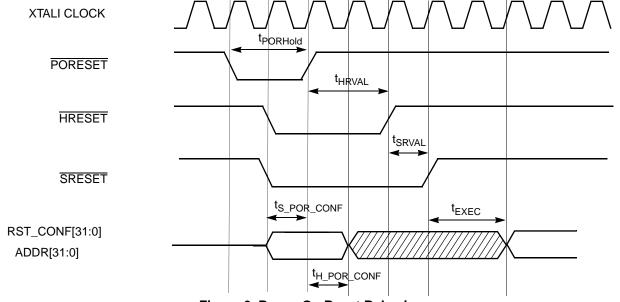


Figure 6. Power-On Reset Behavior

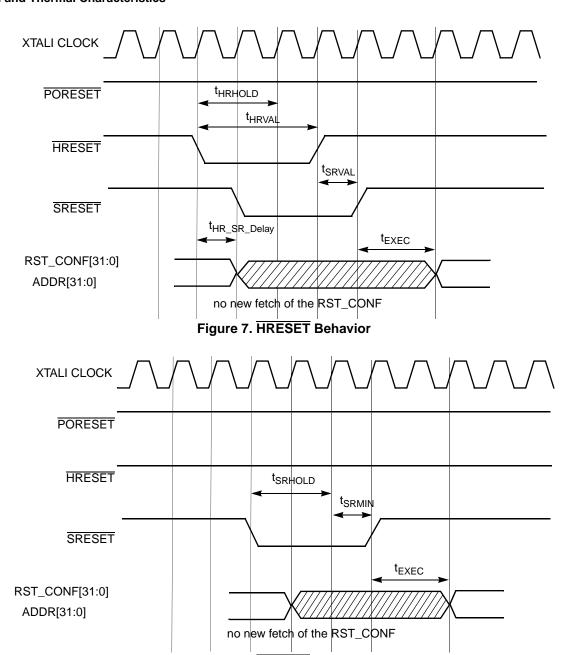


Figure 8. SRESET Behavior

Table 19. Reset Timing

Symbol	Description	Value (XTALI CLOCK)	SpecID
t _{PORHOLD}	Time PORESET must be held low before a qualified reset occurs.	4 cycles	A3.10
t _{HRVAL}	Time HRESET is asserted after a qualified reset occurs.	26810 cycles ¹	A3.11
t _{SRVAL}	Time SRESET is asserted after assertion of HRESET.	21 cycles	A3.12
t _{EXEC}	Time between SRESET assertion and first core instruction fetch.	4 cycles	A3.13
t _{S_POR_CONF}	Reset configuration setup time before assertion of PORESET.	1 cycle	A3.14

MPC5125 Microcontroller Data Sheet, Rev. 4

Table 19. Reset Timing (continued)

Symbol	Description	Value (XTALI CLOCK)	SpecID
t _{H_POR_CONF}	Reset configuration hold time after assertion of PORESET.	1 cycle	A3.15
t _{HR_SR_DELAY}	Time from falling edge of HRESET to falling edge of SRESET.	4 cycles	A3.16
t _{HRHOLD}	Time HRESET must be held low before a qualified reset occurs.	4 cycles	A3.17
t _{SRHOLD}	Time SRESET must be held low before a qualified reset occurs.	4 cycles	A3.18
t _{SRMIN}	Time SRESET is asserted after it has been qualified.	1 cycles	A3.19

NOTES:

4.3.4 External Interrupts

The MPC5125 provides three different kinds of external interrupts:

- IRQ interrupts
- GPIO interrupts with simple interrupt capability (not available in power-down mode)
- · Wakeup interrupts

Table 20. IPIC Input AC Timing Specifications

Descriptions	Symbol	Min	Unit	Spec ID
IPIC inputs — minimum pulse width	t _{PICWID}	2T	ns	A4.1

IPIC inputs must be valid for at least t_{PICWID} to ensure proper operation in edge-triggered mode.

4.3.5 SDRAM (DDR)

The MPC5125 memory controller supports these types of DDR devices:

- DDR-1 (SSTL_2 class II interface)
- DDR-2 (SSTL_18 interface)
- LPDDR (1.8V I/O supply voltage)
- SDR D-RAM

JEDEC standards define the minimum set of requirements for compliant memory devices:

- JEDEC standard, DDR2 SDRAM specification, JESD79-2C, May 2006
- JEDEC standard, Double Data Rate (DDR) SDRAM specification, JESD79E, May 2005
- JEDEC standard, Low Power Double Data Rate (LPDDR) SDRAM specification, JESD79-4, May 2006

The MPC5125 supports the configuration of two output drive strengths for DDR2 and LPDDR:

- Full drive strength
- Half drive strength (intended for lighter loads or point-to-point environments)

The MPC5125 memory controller supports dynamic on-die termination in the host device and in the DDR2 memory device.

This section includes AC specifications for all DDR SDRAM pins. The DC parameters are specified in Section 4.1, "DC Electrical Characteristics."

MPC5125 Microcontroller Data Sheet, Rev. 4

The timings will change when using the PLL lock detection circuit.

4.3.5.1 DDR SDRAM AC Timing Specifications

Table 21. DDR SDRAM Timing Specifications

At recommended operating conditions with $V_{DD_IO_MEM}$ of $\pm 5\%$

Parameter	Symbol	Min	Max	Unit	Notes	SpecID
Clock cycle time, CL = x	t _{CK}	6000	_	ps		A5.1
MCK AC differential crosspoint voltage	V _{OX-AC}	$(V_{DD_IO_MEM} \times 0.5) - 0.15$	$(V_{DD_IO_MEM} \times 0.5) + 0.15$	V	1	A5.2
CK HIGH pulse width	t _{CH}	0.47	0.53	t _{CK}	1,3	A5.3
CK LOW pulse width	t _{CL}	0.47	0.53	t _{CK}	1,3	A5.4
Skew between MCK and DQS transitions	t _{DQSS}	-0.25	0.25	t _{CK}	2,3	A5.5
Address and control output setup time relative to MCK rising edge	t _{OS(base)}	t _{CK} /2 – 1000	_	ps	2,3	A5.6
Address and control output hold time relative to MCK rising edge	t _{OH(base)}	t _{CK} /2 – 1000	_	ps	2,3	A5.7
DQ and DM output setup time relative to DQS	t _{DS1(base)}	t _{CK} /4 – 750	_	ps	2,3	A5.8
DQ and DM output hold time relative to DQS	t _{DH1(base)}	t _{CK} /4 – 750	_	ps	2,3	A5.9
DQS-DQ skew for DQS and associated DQ inputs	t _{DQSQ}	- (t _{CK} /4 - 600)	t _{CK} /4 - 600	ps	3	A5.10
DQS window position related to CAS read command	t _{DQSEN}	2t _{CK} + 1500	3t _{CK} – 1000	ps	1,2,3,4, 5	A5.11

NOTES

4.3.5.2 MobileDDR/LPDDR SDRAM AC Timing Specifications

Table 22. MobileDDR/LPDDR SDRAM Timing Specifications

At recommended operating conditions with V_{DD IO MEM} of $\pm 5\%$

Parameter	Symbol	Min	Max	Unit	Notes	SpecID
Clock cycle time, CL = x	t _{CK}	6000	_	ps		A5.1
MCK AC differential crosspoint voltage	V _{OX-AC}	$(V_{DD_IO_MEM} \times 0.5) - 0.1$	$(V_{DD_IO_MEM} \times 0.5) + 0.1$	V	1	A5.2
CK HIGH pulse width	t _{CH}	0.47	0.53	t _{CK}	1,3	A5.3
CK LOW pulse width	t _{CL}	0.47	0.53	t _{CK}	1,3	A5.4
Skew between MCK and DQS transitions	t _{DQSS}	-0.25	0.25	t _{CK}	2,3	A5.5
Address and control output setup time relative to MCK rising edge	t _{OS(base)}	t _{CK} /2 – 1000	_	ps	2,3	A5.6

MPC5125 Microcontroller Data Sheet, Rev. 4

¹ Measured with clock pin loaded with differential 100 Ω termination resistor.

² Measured with all outputs except the clock loaded with 50 Ω termination resistor to V_{DD IO MEM}/2.

 $^{^3}$ All transitions measured at mid-supply (V $_{\rm DD_IO_MEM}/2)$.

⁴ In this window, the first rising edge of DQS should occur. From the start of the window to DQS rising edge, DQS should be low.

The window position is given for t_{DQSEN} = 2.0 t_{CK} (RDLY = 2, HALF DQS DLY = QUART DQS DLY = 0) with CL = 3 DDR SDRAM device. For other values of t_{DQSEN}, the window position is shifted accordingly.

Table 22. MobileDDR/LPDDR SDRAM Timing Specifications (continued)

At recommended operating conditions with V_{DD IO MEM} of $\pm 5\%$

Parameter	Symbol	Min	Max	Unit	Notes	SpecID
Address and control output hold time relative to MCK rising edge	t _{OH(base)}	t _{CK} /2 – 1000	_	ps	2,3	A5.7
DQ and DM output setup time relative to DQS	t _{DS1(base)}	t _{CK} /4 – 750	_	ps	2,3	A5.8
DQ and DM output hold time relative to DQS	t _{DH1(base)}	t _{CK} /4 – 750	_	ps	2,3	A5.9
DQS-DQ skew for DQS and associated DQ inputs	t _{DQSQ}	- (t _{CK} /4 - 600)	t _{CK} /4 - 600	ps	3	A5.10
DQS window position related to CAS read command	t _{DQSEN}	2t _{CK} – 500	3t _{CK} – 1000	ps	1,2,3,4,5	A5.11

NOTES:

- ¹ Measured with clock pin loaded with differential 100 Ω termination resistor.
- ² Measured with all outputs except the clock loaded with 50 Ω termination resistor to V_{DD IO MEM}/2.
- $^3~$ All transitions measured at mid-supply (V_DD_IO_MEM/2).
- ⁴ In this window, the first rising edge of DQS should occur. From the start of the window to DQS rising edge, DQS should be low.
- The window position is given for t_{DQSEN} = 2.0 t_{CK} (RDLY = 2, HALF DQS DLY = QUART DQS DLY = 0) with CL = 3 MobileDDR/LPDDR SDRAM device. For other values of t_{DQSEN}, the window position is shifted accordingly.

4.3.5.3 DDR2 SDRAM AC Timing Specifications

Table 23. DDR2 (DDR2-400) SDRAM Timing Specifications

At recommended operating conditions with $V_{DD\ IO\ MEM}$ of ±5%

Parameter	Symbol	Min	Max	Unit	Notes	SpecID
Clock cycle time, CL = x	t _{CK}	5000	_	ps		A5.1
MCK AC differential crosspoint voltage	V _{OX-AC}	$(V_{DD_IO_MEM} \times 0.5) - 0.1$	$(V_{DD_IO_MEM} \times 0.5) + 0.1$	V	1	A5.2
CK HIGH pulse width	t _{CH}	0.47	0.53	t _{CK}	1,3	A5.3
CK LOW pulse width	t _{CL}	0.47	0.53	t _{CK}	1,3	A5.4
Skew between MCK and DQS transitions	t _{DQSS}	-0.25	0.25	t _{CK}	2,3	A5.5
Address and control output setup time relative to MCK rising edge	t _{OS(base)}	t _{CK} /2 – 750	_	ps	2,3	A5.6
Address and control output hold time relative to MCK rising edge	t _{OH(base)}	t _{CK} /2 – 750	_	ps	2,3	A5.7
DQ and DM output setup time relative to DQS	t _{DS1(base)}	t _{CK} /4 – 500	_	ps	2,3	A5.8
DQ and DM output hold time relative to DQS	t _{DH1(base)}	t _{CK} /4 – 500	_	ps	2,3	A5.9
DQS-DQ skew for DQS and associated DQ inputs	t _{DQSQ}	- (t _{CK} /4 - 600)	t _{CK} /4 - 600	ps	3	A5.10
DQS window position related to CAS read command	t _{DQSEN}	2.5t _{CK}	3t _{CK} + 1500	ps	1,2,3,4, 5	A5.11

MPC5125 Microcontroller Data Sheet, Rev. 4

NOTES:

- ¹ Measured with clock pin loaded with differential 100 Ω termination resistor.
- 2 Measured with all outputs except the clock loaded with 50 Ω termination resistor to V_{DD_IO_MEM}/2.
- 3 All transitions measured at mid-supply (V $_{\rm DD_IO_MEM}\!/2).$
- ⁴ In this window, the first rising edge of DQS should occur. From the start of the window to DQS rising edge, DQS should be low.
- ⁵ The window position is given for $t_{DQSEN} = 2.5 t_{CK}$ (RDLY = 2, HALF DQS DLY = 1, QUART DQS DLY = 0) with CL = 3 DDR2 SDRAM device. For other values of t_{DQSEN} , the window position is shifted accordingly.

4.3.5.4 SDR SDRAM AC Timing Specifications

Table 24. SDR SDRAM Timing Specifications

At recommended operating conditions with V_{DD IO MEM} of $\pm 5\%$

Parameter	Symbol	Min	Max	Unit	Notes	SpecID
Clock cycle time, CL = x	t _{CK}	7500	_	ps		A5.1
CK HIGH pulse width	t _{CH}	0.43	0.57	t _{CK}	1,3	A5.3
CK LOW pulse width	t _{CL}	0.43	0.57	t _{CK}	1,3	A5.4
Address, control, and data output setup time relative to MCK rising edge	t _{OS(base)}	t _{CK} /2 – 1000	_	ps	2,3	A5.6
Address, control, and data output hold time relative to MCK rising edge	t _{OH(base)}	t _{CK} /2 – 1000	_	ps	2,3	A5.7
Input data set-up time, relative to MCK	t _{IS}	1000	_	ps	3	A5.15
Input data hold time, relative to MCK	t _{IH}	1000	_	ps	3	A5.16

NOTES:

- ¹ Measured with clock pin loaded with 50 Ω termination resistor to mid-supply.
- ² Measured with all outputs except the clock loaded with 50 Ω termination resistor to V_{DD_IO_MEM}/2.
- ³ All transitions measured at mid-supply (V_{DD IO MEM}/2).

NOTE

To achieve better timing, balance the loading of DQS as MCK although DQS is not used in SDR mode.

Figure 9 shows the DDR SDRAM write timing.

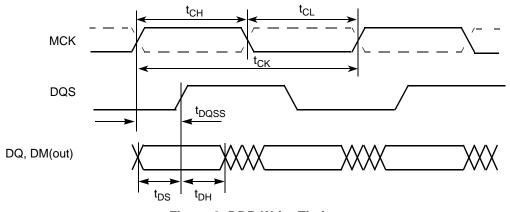


Figure 9. DDR Write Timing

MPC5125 Microcontroller Data Sheet, Rev. 4

Figure 10 and Figure 11 show the DDR SDRAM read timing.

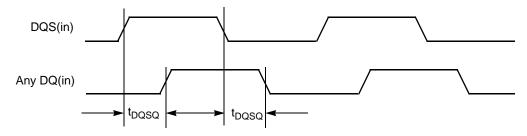


Figure 10. DDR Read Timing, DQ vs DQS

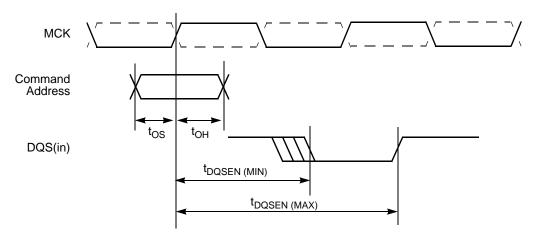


Figure 11. DDR Read Timing, DQSEN

Figure 12 shows the SDR AC timing.

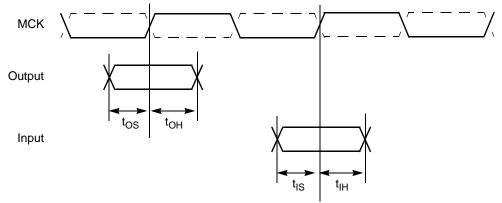


Figure 12. SDR AC Timing

Figure 13 provides the AC test load for the DDR bus.

Figure 13. DDR AC Test Load

MPC5125 Microcontroller Data Sheet, Rev. 4

4.3.6 LPC

The local-plus bus is the external bus interface of the MPC5125. A maximum of eight configurable chip selects (CS) are provided. There are two main modes of operation: non-MUXed and MUXed. The reference clock is the LPC CLK. The maximum bus frequency is 66 MHz.

Definition of terms:

WS = Wait state

DC = Dead cycle

HC = Hold cycle

DS = Data size in bytes

BBT =Burst bytes per transfer

AL = Address latch enable length

ALT = Chip select/Address Latch Timing

 $t_{LPCck} = LPC \ clock \ period$

Table 25. LPC Timing

Sym	Description	Min	Мах	Units	SpecID
t _{OD}	CS[x], ADDR, R√W, TSIZ, DATA (wr), TS, OE valid after LPC CLK (Output delay related to LPC CLK)	alid after LPC CLK		ns	A7.1
t ₁	Non-burst CS[x] pulse width	(2 + WS) × t _{LPCck}	(2 + WS) × t _{LPCck}	ns	A7.2
t ₂	ADDR, R/\overline{W} , TSIZ, DATA (wr) valid before $\overline{CS}[x]$ assertion	t _{LPCck} - t _{OD}	t _{LPCck} + t _{OD}	ns	A7.3
t ₃	OE assertion after CS[x] assertion	t _{LPCck} - t _{OD}	t _{LPCck} + t _{OD}	ns	A7.4
t ₄	ADDR, R/\overline{W} , TSIZ, data (wr) hold after $\overline{CS}[x]$ negation	t _{LPCck} - t _{OD}	$(HC + 1) \times t_{LPCck} + t_{OD}$	ns	A7.5
t ₅	TS pulse width	t _{LPCck}	t _{LPCck}	ns	A7.6
t ₆	DATA (rd) setup before LPC CLK	5	_	ns	A7.7
t ₇	DATA (rd) input hold	0	(DC + 1) × t _{LPCck}	ns	A7.8
t ₈	Read burst CS[x] pulse width	$(2 + WS + BBT/DS) \times t_{LPCck}$	$(2 + WS + BBT/DS) \times t_{LPCck}$	ns	A7.9
t ₉	Burst ACK pulse width	(BBT/DS) × t _{LPCck}	(BBT/DS) × t _{LPCck}	ns	A7.10
t ₁₀	Burst DATA (rd) input hold	0	_	ns	A7.11
t ₁₁	Read burst \overline{ACK} assertion after $\overline{CS}[x]$ assertion	(2+WS) × t _{LPCck}	(2+WS) × t _{LPCck}	ns	A7.12
t ₁₂	Non-MUXed write burst $\overline{\text{CS}}[x]$ pulse width	$(2.5 + WS + BBT/DS) \times t_{LPCck}$	$(2.5 + WS + BBT/DS) \times t_{LPCck}$	ns	A7.13
t ₁₃	Write burst ADDR, R/ \overline{W} , TSIZ, DATA (wr) hold after $\overline{CS}[x]$ negation	$0.5 \times t_{LPCck} - t_{OD}$	$(HC + 0.5) \times t_{LPCck} + t_{OD}$	ns	A7.14
t ₁₄	Write burst \overline{ACK} assertion after $\overline{CS}[x]$ assertion	$(2.5 + WS) \times t_{LPCck} - t_{OD}$	$(2.5 + WS) \times t_{LPCck} + t_{OD}$	ns	A7.15
t ₁₅	Write burst DATA valid	t _{LPCck} - t _{OD}	_	ns	A7.16
t ₁₆	Non-MUXed mode: asynchronous write burst ADDR valid before write DATA valid	$0.5 \times t_{LPCck} - t_{OD}$	$0.5 \times t_{LPCck} + t_{OD}$	ns	A7.17
t ₁₇	MUXed mode: ADDR cycle	$AL \times 2 \times t_{LPCck} - t_{OD}$	$AL \times 2 \times t_{LPCck}$	ns	A7.18
t ₁₈	MUXed mode: ALE cycle	$AL \times t_{LPCck}$	$AL \times t_{LPCck}$	ns	A7.19

MPC5125 Microcontroller Data Sheet, Rev. 4

Table 25. LPC Timing (cont	inued)
----------------------------	--------

Sym	Description	Min	Max	Units	SpecID
t ₁₉	Non-MUXed mode page burst: ADDR cycle	t _{LPCck} - t _{OD}	t _{LPCck}	ns	A7.20
t ₂₀	Non-MUXed mode page burst: burst DATA (rd) input setup before next ADDR cycle	t _{OD} + t ₆	_	ns	A7.21
t ₂₁	Non-MUXed mode page burst: burst DATA (rd) input hold after next ADDR cycle	0	_	ns	A7.22
t ₂₂	MUXed mode: non-burst $\overline{CS}[x]$ pulse width	$(ALT \times (AL \times 2) + WS) \times t_{LPCck}$	$(ALT \times (AL \times 2) + WS) \times t_{LPCck}$	ns	A7.23
t ₂₃	MUXed mode: read-burst $\overline{CS}[x]$ pulse width	$(ALT \times (AL \times 2) + WS) + BBT/DS) \times t_{LPCck}$	$(ALT \times (AL \times 2) + WS) + BBT/DS) \times t_{LPCck}$	ns	A7.23
t ₂₄	MUXed mode: write-burst $\overline{CS}[x]$ pulse width	$(ALT \times (AL \times 2) + 2.5 WS) + BBT/DS) \times t_{LPCck}$	$(ALT \times (AL \times 2) + 2.5 WS) + BBT/DS) \times t_{LPCck}$	ns	A7.23

4.3.6.1 Non-MUXed Mode

4.3.6.1.1 Non-MUXed Non-Burst Mode

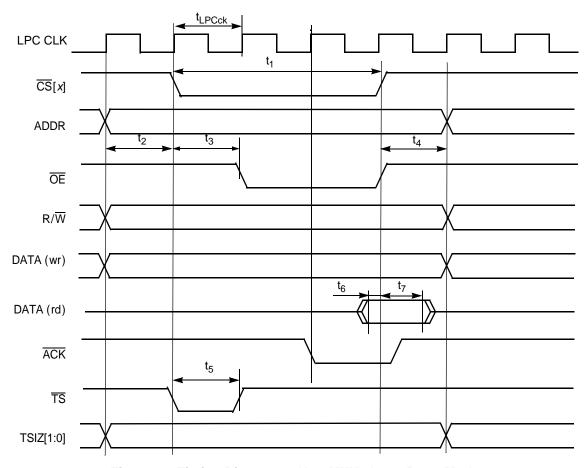


Figure 14. Timing Diagram — Non-MUXed non-Burst Mode

MPC5125 Microcontroller Data Sheet, Rev. 4

NOTE

 \overline{ACK} is asynchronous input signal and has no timing requirements. \overline{ACK} needs to be deasserted after $\overline{CS}[x]$ is deasserted.

4.3.6.1.2 Non-MUXed Synchronous Read Burst Mode

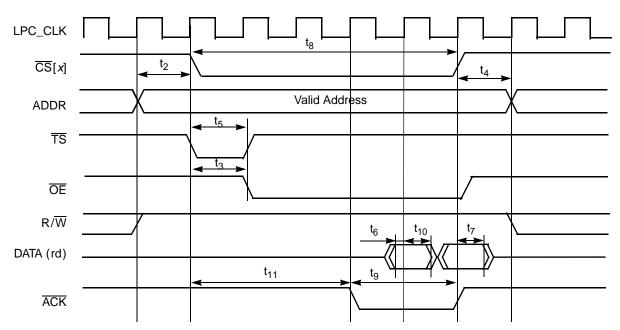


Figure 15. Timing Diagram — Non-MUXed Synchronous Read Burst Mode

4.3.6.1.3 Non-MUXed Synchronous Write Burst Mode

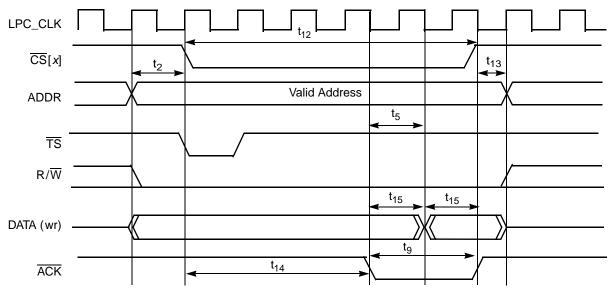


Figure 16. Timing Diagram — Non-MUXed Synchronous Write Burst

MPC5125 Microcontroller Data Sheet, Rev. 4

4.3.6.1.4 Non-MUXed Asynchronous Read Burst Mode (Page Mode)

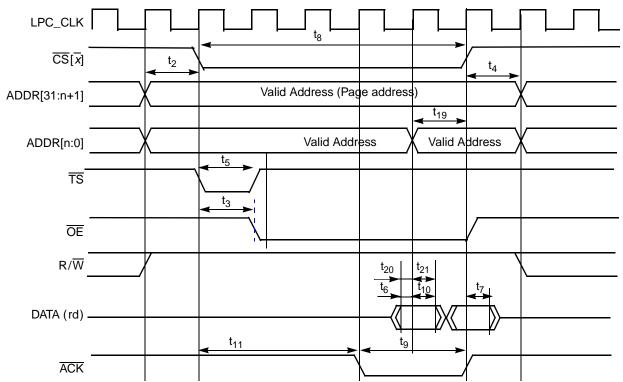


Figure 17. Timing Diagram — Non-MUXed Asynchronous Read Burst

4.3.6.1.5 Non-MUXed Asynchronous Write Burst Mode

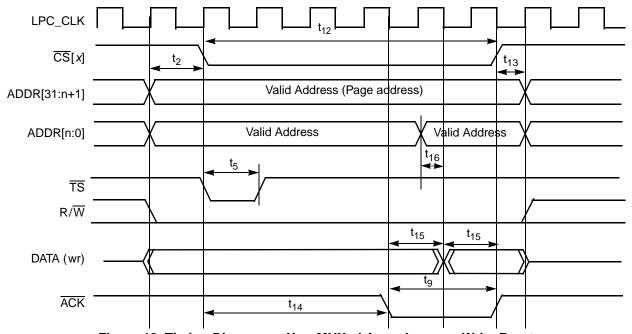


Figure 18. Timing Diagram — Non-MUXed Asynchronous Write Burst

MPC5125 Microcontroller Data Sheet, Rev. 4

4.3.6.2 MUXed Mode

4.3.6.2.1 MUXed Non-Burst Mode

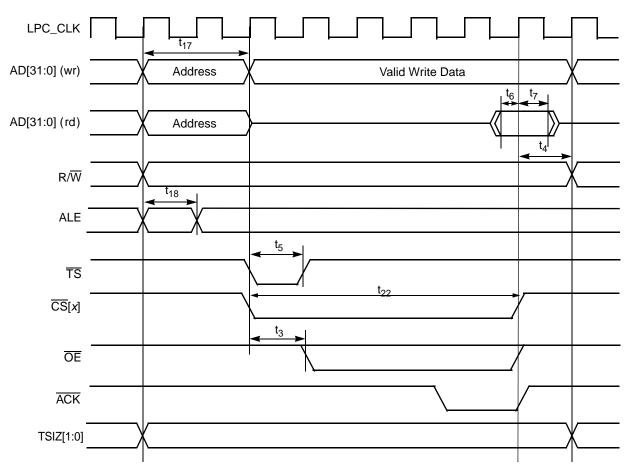


Figure 19. Timing Diagram — MUXed non-Burst Mode

NOTE

 \overline{ACK} is asynchronous input signal and has no timing requirements. \overline{ACK} needs to be deasserted after $\overline{CS}[x]$ is deasserted.

4.3.6.2.2 MUXed Synchronous Read Burst Mode

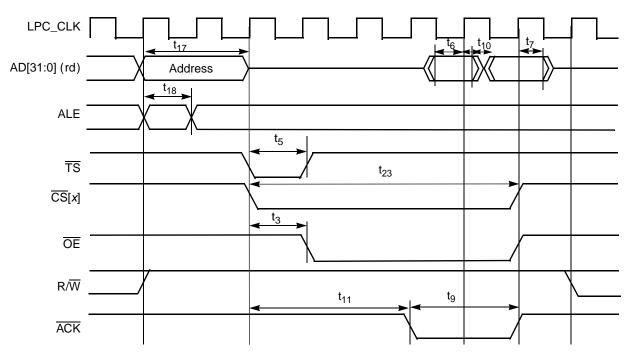


Figure 20. Timing Diagram — MUXed Synchronous Read Burst

4.3.6.2.3 MUXed Synchronous Write Burst Mode



Figure 21. Timing Diagram — MUXed Synchronous Write Burst

4.3.7 NFC

The NAND flash controller (NFC) implements the interface to standard NAND flash memory devices. This section describes the timing parameters of the NFC.

TH is the flash clock high time, TL is flash clock low time, where

$$TH = 5 \times NFC_RATIO_H / 8 (ns)$$

Eqn. 6

$$TL = 5 \times NFC_RATIO_L / 8 (ns)$$

Eqn. 7

Refer to the MPC5125 Reference Manual (MPC5125RM) for more information about NFC_RATIO_H and NFC_RATIO_L.

Table 26. NFC Target Timing Characteristics

Timing Parameter	Description	Min. value	Max. value	Unit	SpecID
t _{CLS}	NFC_CLE setup time	2TH + TL – 1	_	ns	A8.1
t _{CLH}	NFC_CLE hold time	TH + TL – 1	_	ns	A8.2
t _{CS}	NFC_CE[3:0] setup time	2TH + TL – 1	_	ns	A8.3
t _{CH}	NFC_CE[3:0] hold time	TH + TL	_	ns	A8.4
t _{WP}	NFC_WP pulse width	TL – 1	_	ns	A8.5
t _{ALS}	NFC_ALE setup time	2TH + TL	_	ns	A8.6
t _{ALH}	NFC_ALE hold time	TH + TL	_	ns	A8.7
t _{DS}	Data setup time	TL – 1	_	ns	A8.8
t _{DH}	Data hold time	TH – 1	_	ns	A8.9
t _{WC}	Write cycle time	TH + TL – 1	_	ns	A8.10
t _{WH}	NFC_WE hold time	TH – 1	_	ns	A8.11
t _{RR}	Ready to NFC_RE low	4TH + 3TL + 90	_	ns	A8.12
t _{RP}	NFC_RE pulse width	TL + 1	_	ns	A8.13
t _{RC}	READ cycle time	TL + TH – 1	_	ns	A8.14
t _{REH}	NFC_RE high hold time	TH – 1	_	ns	A8.15
t _{IS}	Data input setup time	6	_	ns	A8.16

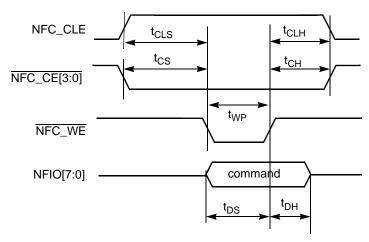


Figure 22. Command Latch Cycle Timing

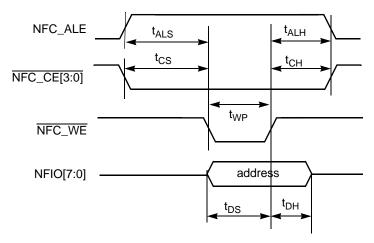


Figure 23. Address Latch Cycle Timing

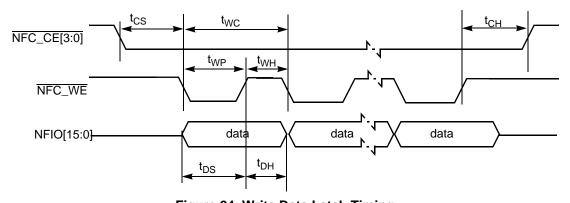


Figure 24. Write Data Latch Timing

MPC5125 Microcontroller Data Sheet, Rev. 4

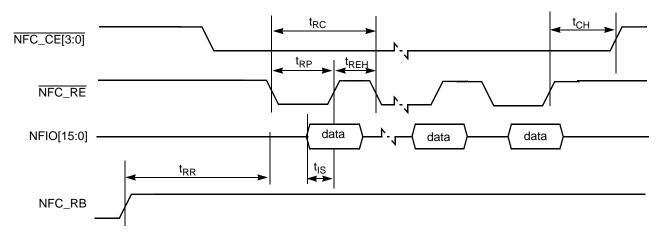


Figure 25. Read Data Latch Timing in Non-Fast Mode

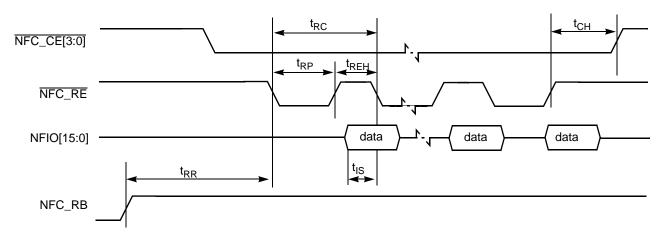


Figure 26. Read Data Latch Timing in Fast Mode

4.3.8 **FEC**

AC test timing conditions:

Output Loading All Outputs: 25 pF

Table 27. MII Rx Signal Timing

Sym	Description	Min	Max	Unit	SpecID
t ₁	RXD[3:0], RX_DV, RX_ER to RX_CLK setup	5	_	ns	A11.1
t ₂	RX_CLK to RXD[3:0], RX_DV, RX_ER hold	5	_	ns	A11.2
t ₃	RX_CLK pulse width high	35%	65%	RX_CLK period ¹	A11.3
t ₄	RX_CLK pulse width low	35%	65%	RX_CLK period ¹	A11.4

MPC5125 Microcontroller Data Sheet, Rev. 4

NOTES:

1 RX_CLK shall have a frequency of 25% of the data rate of the received signal. See the IEEE 802.3 specification.

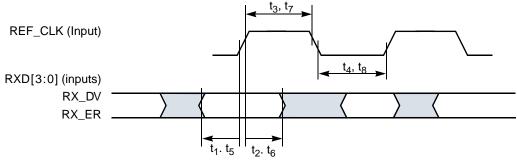


Table 28	. RMII I	Rx Signal	Timina
----------	----------	-----------	--------

Sym	Description	Min	Max	Unit	SpecID
t ₅	RXD[1:0], RX_DV, RX_ER to TX_CLK setup	4	_	ns	A11.5
t ₆	TX_CLK to RXD[1:0], RX_DV, RX_ER hold	2	_	ns	A11.6
t ₇	TX_CLK pulse width high	35%	65%	TX_CLK period ¹	A11.7
t ₈	TX_CLK pulse width low	35%	65%	TX_CLK period ¹	A11.8

NOTES:

¹ TX_CLK frequency shall be 50 MHz regardless of the data rate. See the RMII specification.

REF_CLK is TX_CLK in RMII mode, and is RX_CLK in non-RMII mode

Figure 27. Ethernet Timing Diagram — MII and RMII Rx Signal

Table 29. MII Tx Signal Timing

Sym	Description	Min	Max	Unit	SpecID
t ₉	TX_CLK rising edge to TXD[3:0], TX_EN, TX_ER invalid	3	_	ns	A11.9
t ₁₀	TX_CLK rising edge to TXD[3:0], TX_EN, TX_ER valid	_	25	ns	A11.10
t ₁₁	TX_CLK pulse width high	35%	65%	TX_CLK Period ¹	A11.11
t ₁₂	TX_CLK pulse width low	35%	65%	TX_CLK Period ¹	A11.12

NOTES:

Table 30. RMII Tx Signal Timing

Sym	Description	Min	Max	Unit	SpecID
t ₁₃	TX_CLK rising edge to TXD[1:0], TX_EN, TX_ER invalid	3	_	ns	A11.13
t ₁₄	TX_CLK rising edge to TXD[1:0], TX_EN, TX_ER valid	_	14	ns	A11.14
t ₁₅	TX_CLK pulse width high	35%	65%	TX_CLK Period ¹	A11.15
t ₁₆	TX_CLK pulse width low	35%	65%	TX_CLK Period ¹	A11.16

NOTES:

MPC5125 Microcontroller Data Sheet, Rev. 4

The TX_CLK frequency shall be 25% of the nominal transmit frequency, for example, a PHY operating at 100 Mb/s must provide a TX_CLK frequency of 25 MHz and a PHY operating at 10 Mb/s must provide a TX_CLK frequency of 2.5 MHz. See the IEEE 802.3 specification.

TX_CLK frequency shall be 50 MHz regardless of the data rate. See the RMII specification.

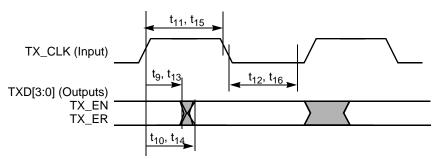


Figure 28. Ethernet Timing Diagram — MII Tx Signal

Table 31. MII Async Signal Timing

Sym	Description	Min	Max	Unit	SpecID
t ₁₇	CRS, COL minimum pulse width	1 . 5		TX_CLK Period	A11.17

Figure 29. Ethernet Timing Diagram — MII Async

Table 32. MII Serial Management Channel Signal Timing

Sym	Description	Min	Max	Unit	SpecID
t ₁₈	MDC falling edge to MDIO output delay	0	25	ns	A11.18
t ₁₉	MDIO (input) to MDC rising edge setup	10	_	ns	A11.19
t ₂₀	MDIO (input) to MDC rising edge hold	0	_	ns	A11.20
t ₂₁	MDC pulse width high ¹	160	_	ns	A11.21
t ₂₂	MDC pulse width low ¹	160	_	ns	A11.22
t ₂₃	MDC period ²	400	_	ns	A11.23

NOTES:

MPC5125 Microcontroller Data Sheet, Rev. 4

MDC is generated by the MPC5125 with a duty cycle of 50% except when MII_SPEED in the FEC MII_SPEED control register is changed during operation. See the MPC5125 Reference Manual (MPC5125RM).

² The MDC period must be set to a value of less than or equal to 2.5 MHz (to be compliant with the IEEE MII characteristic) by programming the FEC MII_SPEED control register. See the *MPC5125 Reference Manual (MPC5125RM*).

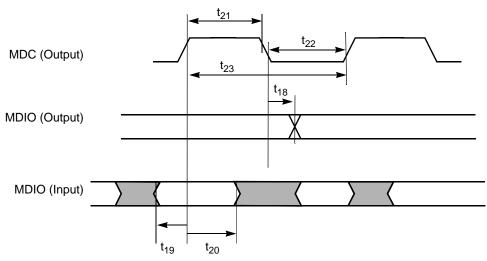


Figure 30. Ethernet Timing Diagram — MII Serial Management

4.3.9 **USB ULPI**

This section specifies the USB ULPI timing.

For more information refer to UTMI+ Low Pin Interface (ULPI) Specification, Revision 1.1, October 20, 2004.

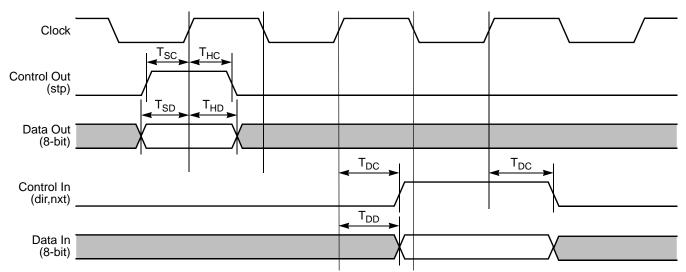


Figure 31. ULPI Timing Diagram

Table 33. Timing Specifications — USB Output Line ¹

Sym	Description	Min	Max	Units	SpecID
T _{CK}	Clock period	15	_	ns	A12.1
T_{SC}, T_{SD}	Setup time (control in, 8-bit data in)	_	6.0	ns	A12.2
T _{HC} , T _{HD}	Hold time (control in, 8-bit data in)	0.0	_	ns	A12.3
T_{DC}, T_{DD}	Output delay (control out, 8-bit data out)	_	9.0	ns	A12.4

NOTES:

MPC5125 Microcontroller Data Sheet, Rev. 4

Output timing is specified at a nominal 50 pF load.

4.3.10 MMC/SD/SDIO Card Host Controller (SDHC)

Figure 32 depicts the timings of the SDHC.

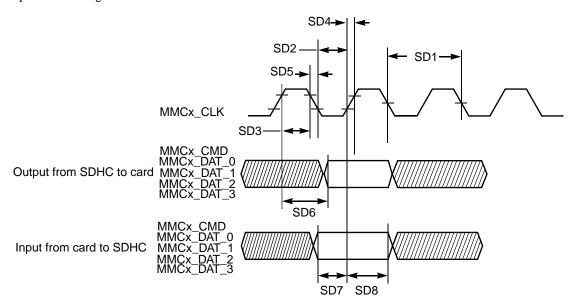


Figure 32. SDHC Timing Diagram

Table 34 lists the timing parameters.

Table 34. MMC/SD Interface Timing Parameters

ID	Parameter	Symbols	Min	Max	Unit	SpecID		
Card Input Clock								
SD1	Clock frequency (low speed)	f _{PP} ¹	0	400	kHz	A14.1		
	Clock frequency (SD/SDIO full speed/high speed)	f_{PP}^2	0	25/50	MHz	A14.2		
	Clock frequency (MMC full speed/high speed)	f _{PP} ³	0	20/52	MHz	A14.3		
	Clock frequency (identification mode)	f _{OD} ⁴	100	400	kHz	A14.4		
SD2	Clock low time (full speed/high speed)	t _{WL}	10/7		ns	A14.5		
SD3	Clock high time (full speed/high speed)	t _{WH}	10/7		ns	A14.6		
SD4	Clock rise time (full speed/high speed)	t _{TLH}		10/3	ns	A14.7		
SD5	Clock fall time (full speed/high speed)	t _{THL}		10/3	ns	A14.8		
	SDHC Output / Card Inputs CMD), DAT (Referen	ce to CLK)					
SD6	SDHC output delay	t _{OD}	TH – 3 ⁵	TH + 3	ns	A14.9		
SDHC Input / Card Outputs CMD, DAT (Reference to CLK)								
SD7	SDHC input setup time	t _{ISU}	2.5		ns	A14.10		
SD8	SDHC input hold time	t _{IH}	2.5		ns	A14.11		

NOTES:

MPC5125 Microcontroller Data Sheet, Rev. 4

In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.

² In normal data transfer mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz.

³ In normal data transfer mode for MMC card, clock frequency can be any value between 0–20 MHz.

⁴ In card identification mode, card clock must be 100 kHz ~ 400 kHz, voltage ranges from 2.7 to 3.6 V.

4.3.11 DIU

The DIU is a display controller designed to manage the TFT LCD display.

4.3.11.1 Interface to TFT LCD Panels, Functional Description

Figure 33 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure signals are shown with positive polarity. The sequence of events for active matrix interface timing is:

- DIU_CLK latches data into the panel on its positive edge (when positive polarity is selected). In active mode, DIU_CLK runs continuously. This signal frequency could be from 5 to 66 MHz depending on the panel type.
- DIU_HSYNC causes the panel to start a new line. It always encompasses at least one DIU_CLK pulse.
- DIU_VSYNC causes the panel to start a new frame. It always encompasses at least one DIU_HSYNC pulse.
- DIU_DE acts like an output enable signal to the LCD panel. This output enables the data to be shifted onto the display. When disabled, the data is invalid and the trace is off.

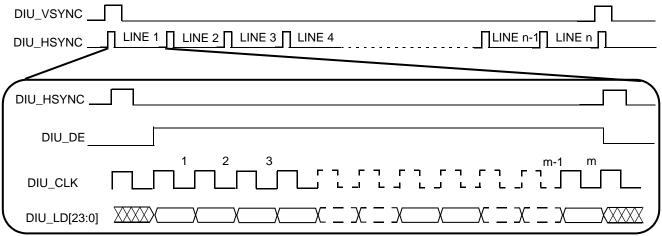


Figure 33. Interface Timing Diagram for TFT LCD Panels

4.3.11.2 Interface to TFT LCD Panels, Electrical Characteristics

Figure 34 depicts the horizontal timing (timing of one line), including the horizontal sync pulse and the data. All parameters shown in the diagram are programmable. This timing diagram corresponds to positive polarity of the DIU_CLK signal (meaning the data and sync signals change at its rising edge) and active-high polarity of the DIU_HSYNC, DIU_VSYNC, and DIU_DE signal. Signal polarity of DIU_HSYNC and DIU_VSYNC are selectable via the SYN_POL register, whether active-high or active-low. The default is active-high. The DIU_DE signal is always active-high. Also, pixel clock inversion and a flexible programmable pixel clock delay are also supported, programmed via the DIU Clock Config register (DCCR) in the system clock module.

MPC5125 Microcontroller Data Sheet, Rev. 4

⁵ Suggested Clock Period = T, CLK_DIVIDER (in SDHC Clock Rate register) = D, then TH = [(D + 1)/2] / (D + 1) x T where [] is round.

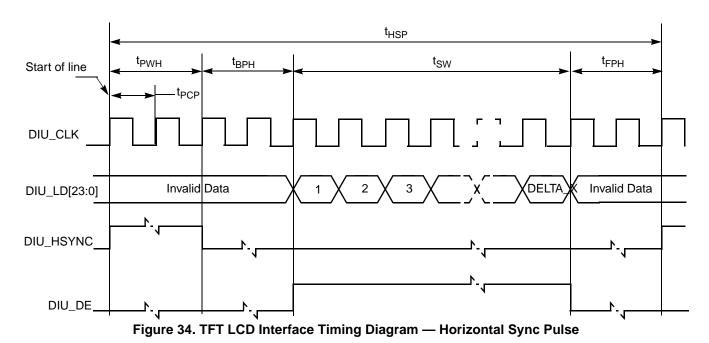


Figure 35 depicts the vertical timing (timing of one frame), including the vertical sync pulse and the data. All parameters shown in the diagram are programmable.

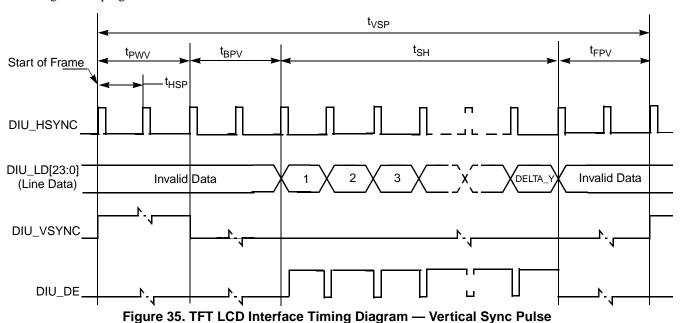


Table 35 shows timing parameters of signals.

Table 35. LCD Interface Timing Parameters — Pixel Level

Sym	Description	Value	Unit	SpecID
t _{PCP}	Display Pixel Clock Period	15 ¹	ns	A15.1
t _{PWH}	HSYNC Pulse Width	$PW_H \times t_{PCP}$	ns	A15.2
t _{BPH}	HSYNC Back Porch Width	$BP_H \times t_{PCP}$	ns	A15.3

MPC5125 Microcontroller Data Sheet, Rev. 4

Table 35. L	CD Interface	Timing Parameters -	— Pixel Level
-------------	--------------	---------------------	---------------

Sym	Description	Value	Unit	SpecID
t _{FPH}	HSYNC Front Porch Width	$FP_H \times t_{PCP}$	ns	A15.4
t _{SW}	Screen Width	DELTA_X × t _{PCP}	ns	A15.5
t _{HSP}	HSYNC (Line) Period	$(PW_H + BP_H + DELTA_X + FP_H) \times t_{PCP}$	ns	A15.6
t _{PWV}	VSYNC Pulse Width	$PW_V \times t_{HSP}$	ns	A15.7
t _{BPV}	VSYNC Back Porch Width	$BP_V \times t_{HSP}$	ns	A15.8
t _{FPV}	VSYNC Front Porch Width	$FP_V \times t_{HSP}$	ns	A15.9
t _{SH}	Screen Height	DELTA_Y × t _{HSP}	ns	A15.10
t _{VSP}	VSYNC (Frame) Period	$(PW_V + BP_V + DELTA_Y + FP_H) \times t_{HSP}$	ns	A15.11

NOTES:

The DELTA_X and DELTA_Y parameters are programmed via the DISP_SIZE register; The PW_H, BP_H, and FP_H parameters are programmed via the HSYN_PARA register; and the PW_V, BP_V, and FP_V parameters are programmed via the VSYN_PARA register. See appropriate section in the reference manual for detailed descriptions of these parameters.

Figure 36 depicts the synchronous display interface timing for access level, and Table 36 lists the timing parameters.

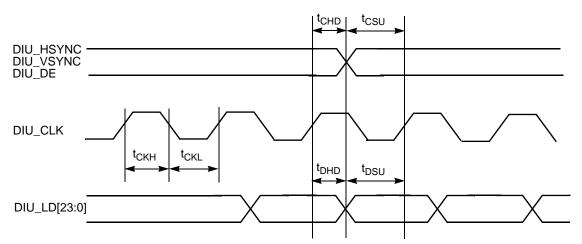


Figure 36. LCD Interface Timing Diagram — Access Level

Table 36. LCD Interface Timing Parameters — Access Level

Parameter	Description	Min	Тур	Max	Unit	SpecID
t _{CKH}	LCD interface pixel clock high time	$t_{PCP} \times 0.4$	$t_{PCP} \times 0.5$	$t_{\text{PCP}} \times 0.6$	ns	A15.12
t _{CKL}	LCD interface pixel clock low time	$t_{PCP} \times 0.4$	$t_{PCP} \times 0.5$	$t_{PCP} \times 0.6$	ns	A15.13
t _{DSU}	LCD interface data setup time	5.0	_	_	ns	A15.14
t _{DHD}	LCD interface data hold time	6.0	_	_	ns	A15.15
t _{CSU}	LCD interface control signal setup time	5.0	_	_	ns	A15.16
t _{CHD}	LCD interface control signal hold time	6.0	_	_	ns	A15.17

MPC5125 Microcontroller Data Sheet, Rev. 4

Display interface pixel clock period immediate value (in nanoseconds).

4.3.12 CAN

The CAN functions are available as TX pins at normal IO pads and as RX pins at the VBAT domain. There is no filter for the wakeup dominant pulse. Any high-to-low edge can cause wakeup, if configured.

4.3.13 I^2C

This section specifies the timing parameters of the inter-integrated circuit (I^2C) interface. Refer to the I^2C bus specification.

Table 37. I²C Input Timing Specifications — SCL and SDA

Sym	Description		Max	Units	SpecID
1	Start condition hold time	2	_	IP bus cycle ¹	A18.1
2	Clock low time	8	_	IP bus cycle ¹	A18.2
4	Data hold time	0.0	_	ns	A18.3
6	Clock high time	4	_	IP bus cycle ¹	A18.4
7	Data setup time	0.0	_	ns	A18.5
8	Start condition setup time (for repeated start condition only)	2	_	IP bus cycle ¹	A18.6
9	Stop condition setup time	2	_	IP bus cycle ¹	A18.7

NOTES:

Table 38. I²C Output Timing Specifications — SCL and SDA ¹

Sym	Description	Min	Max	Units	SpecID
1 ²	Start condition hold time	6	_	IP bus cycle ³	A18.8
2 ²	Clock low time	10	_	IP bus cycle ³	A18.9
3 ⁴	SCL/SDA rise time	_	7.9	ns	A18.10
4 ²	Data hold time	7	_	IP bus cycle ³	A18.11
5 ²	SCL/SDA fall time	_	7.9	ns	A18.12
6 ²	Clock high time	10	_	IP bus cycle ³	A18.13
7 ²	Data setup time	2	_	IP bus cycle ³	A18.14
8 ²	Start condition setup time (for repeated start condition only)	20	_	IP bus cycle ³	A18.15
9 ²	Stop condition setup time	10	_	IP bus cycle ³	A18.16

NOTES:

MPC5125 Microcontroller Data Sheet, Rev. 4

¹ Inter-peripheral clock is defined in the MPC5125 Reference Manual (MPC5125RM)

Output timing is specified at a nominal 50 pF load.

Programming IFDR with the maximum frequency results in the minimum output timings listed. The I²C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed in IFDR.

Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time that SCL or SDA takes to reach a high level depends on external signal capacitance and pullup resistor values.

⁴ Inter -peripheral Clock is defined in the MPC5125 Reference Manual (MPC5125RM).

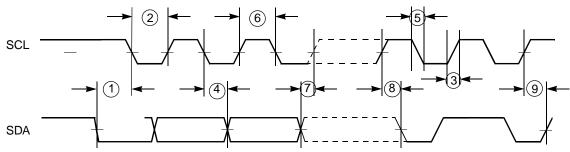


Figure 37. Timing Diagram — I²C Input/Output

4.3.14 J1850

See the MPC5125 Reference Manual (MPC5125RM).

4.3.15 PSC

The programmable serial controllers (PSC) support different modes of operation (UART, codec, AC97, SPI). All the timing numbers specified for different PSC modes are design targets.

4.3.15.1 Codec Mode (8-, 16-, 24-, and 32-Bit) / I²S Mode

Table 39. Timing Specifications — 8-, 16-, 24-, and 32-Bit CODEC/I²S Master Mode¹

Sym	Description	Min	Тур	Max	Units	SpecID
1	Bit clock cycle time, programmed in CCS register	40.0	_	_	ns	A20.1
2	Clock duty cycle	45	50	55	% ²	A20.2
3	Bit clock fall time	_	_	7.9	ns	A20.3
4	Bit clock rise time	_	_	7.9	ns	A20.4
5	FrameSync valid after clock edge	_	_	8.4	ns	A20.5
6	FrameSync invalid after clock edge	_	_	8.4	ns	A20.6
7	Output data valid after clock edge	_	_	9.3	ns	A20.7
8	Input data setup time	6.0	_	_	ns	A20.8

NOTES:

¹ Output timing is specified at a nominal 50 pF load.

² Bit clock cycle time.

Figure 38. Timing Diagram — 8-,16-, 24-, and 32-bit CODEC/I²S Master Mode

Table 40. Timing Specifications — 8-,16-, 24-, and 32-bit CODEC/I²S Slave Mode ¹

Sym	Description	Min	Тур	Max	Units	SpecID
1	Bit clock cycle time	40.0	_	_	ns	A20.9
2	Clock duty cycle	_	50	_	% ²	A20.10
3	Frame sync setup time	1.0	_	_	ns	A20.11
4	Output data valid after clock edge	_	_	14.0	ns	A20.12
5	Input data setup time	1.0	_	_	ns	A20.13
6	Input data hold time	1.0	_	_	ns	A20.14

NOTES:

MPC5125 Microcontroller Data Sheet, Rev. 4

¹ Output timing is specified at a nominal 50 pF load.

² Bit clock cycle time.

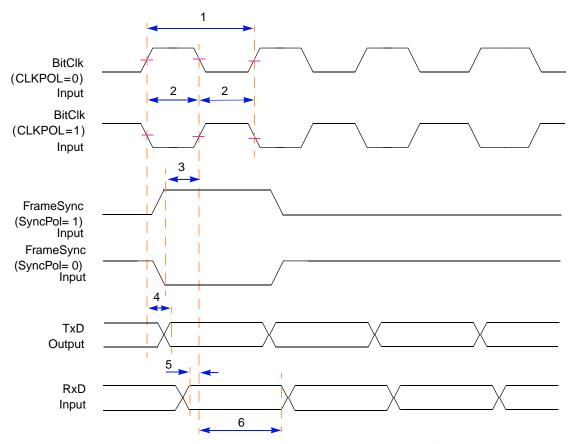


Figure 39. Timing Diagram — 8-,16-, 24-, and 32-bit CODEC/I²S Slave Mode

4.3.15.2 AC97 Mode

Table 41. Timing Specifications — AC97 Mode ¹

Sym	Description	Min	Тур	Max	Units	SpecID
1	Bit clock cycle time	_	81.4	_	ns	A20.15
2	Clock pulse high time	_	40.7	_	ns	A20.16
3	Clock pulse low time	_	40.7	_	ns	A20.17
4	Frame sync valid after rising clock edge	_	_	13.0	ns	A20.18
5	Output data valid after rising clock edge	_	_	14.0	ns	A20.19
6	Input data setup time	1.0	_	_	ns	A20.20
7	Input data hold time	1.0	_	_	ns	A20.21

NOTES:

¹ Output timing is specified at a nominal 50 pF load.

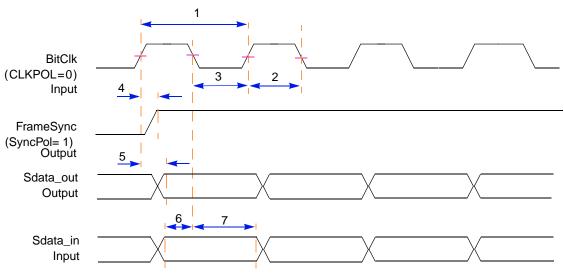


Figure 40. Timing Diagram — AC97 Mode

4.3.15.3 **SPI Mode**

Table 42. Timing Specifications — SPI Master Mode, Format 0 (CPHA = 0) 1

Sym	Description	Min	Max	Units	SpecID
1	SCK cycle time, programable in the PSC CCS register	30.0	_	ns	A20.26
2	SCK pulse width, 50% SCK duty cycle	15.0	_	ns	A20.27
3	Slave select clock delay, programable in the PSC CCS register	30.0	_	ns	A20.28
4	Output data valid after slave select (SS)	_	8.9	ns	A20.29
5	Output data valid after SCK	_	8.9	ns	A20.30
6	Input data setup time	6.0	_	ns	A20.31
7	Input data hold time	1.0	_	ns	A20.32
8	Slave disable lag time	_	TSCK	ns	A20.33
9	Sequential transfer delay, programable in the PSC CTUR / CTLR register	15.0	_	ns	A20.34
10	Clock falling time	_	7.9	ns	A20.35
11	Clock rising time	_	7.9	ns	A20.36

NOTES:

Output timing is specified at a nominal 50 pF load.

Figure 41. Timing Diagram — SPI Master Mode, Format 0 (CPHA = 0)

Table 43. Timing Specifications — SPI Slave Mode, Format 0 (CPHA = 0) ¹

Sym	Description	Min	Max	Units	SpecID
1	SCK cycle time, programable in the PSC CCS register	30.0	_	ns	A20.37
2	SCK pulse width, 50% SCK duty cycle	15.0	_	ns	A20.38
3	Slave select clock delay	1.0	_	ns	A20.39
4	Input data setup time	1.0	_	ns	A20.40
5	Input data hold time	1.0	_	ns	A20.41
6	Output data valid after SS	_	14.0	ns	A20.42
7	Output data valid after SCK	_	14.0	ns	A20.43
8	Slave disable lag time	0.0	_	ns	A20.44
9	Minimum sequential transfer delay = 2 × IP bus clock cycle time	30.0	_	_	A20.45

NOTES:

Output timing is specified at a nominal 50 pF load.

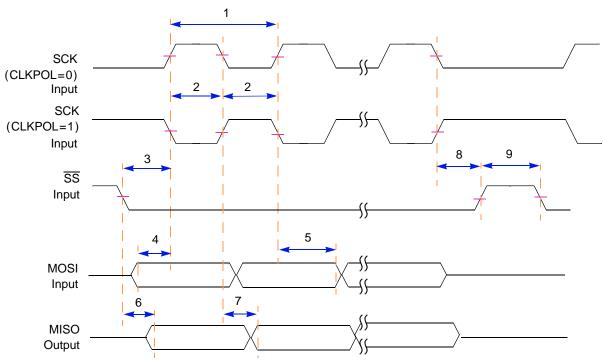


Figure 42. Timing Diagram — SPI Slave Mode, Format 0 (CPHA = 0)

Table 44. Timing Specifications — SPI Master Mode, Format 1 (CPHA = 1) ¹

Sym	Description	Min	Max	Units	SpecID
1	SCK cycle time, programable in the PSC CCS register	30.0	_	ns	A20.46
2	SCK pulse width, 50% SCK duty cycle	15.0	_	ns	A20.47
3	Slave select clock delay, programmable in the PSC CCS register	30.0	_	ns	A20.48
4	Output data valid	_	8.9	ns	A20.49
5	Input data setup time	6.0	_	ns	A20.50
6	Input data hold time	1.0	_	ns	A20.51
7	Slave disable lag time	_	TSCK	ns	A20.52
8	Sequential transfer delay, programable in the PSC CTUR / CTLR register	15.0	_	ns	A20.53
9	Clock falling time	_	7.9	ns	A20.54
10	Clock rising time	_	7.9	ns	A20.55

NOTES:

Output timing is specified at a nominal 50 pF load.

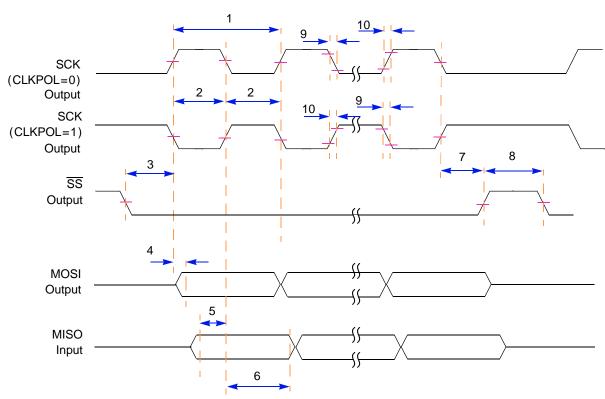


Figure 43. Timing Diagram — SPI Master Mode, Format 1 (CPHA = 1)

Table 45. Timing Specifications — SPI Slave Mode, Format 1 (CPHA = 1) ¹

Sym	Description	Min	Max	Units	SpecID
1	SCK cycle time, programmable in the PSC CCS register	30.0	_	ns	A20.56
2	SCK pulse width, 50% SCK duty cycle	15.0	_	ns	A20.57
3	Slave select clock delay	0.0	_	ns	A20.58
4	Output data valid	_	14.0	ns	A20.59
5	Input data setup time	2.0	_	ns	A20.60
6	Input data hold time	1.0	_	ns	A20.61
7	Slave disable lag time	0.0	_	ns	A20.62
8	Minimum sequential transfer delay = 2 × IP bus clock cycle time	30.0	_	ns	A20.63

NOTES:

Output timing is specified at a nominal 50 pF load.

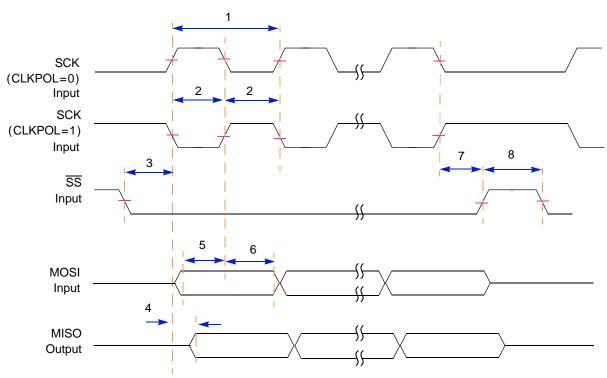


Figure 44. Timing Diagram — SPI Slave Mode, Format 1 (CPHA = 1)

4.3.16 GPIOs and Timers

The MPC5125 contains several sets of I/Os that do not require special setup, hold, or valid requirements. The external events (GPIO or timer inputs) are asynchronous to the system clock. The inputs must be valid for at least t_{IOWID} to ensure proper capture by the internal IP clock.

Table 46. GPIO/Timers Input AC Timing Specifications

Symbol	Description	Min	Unit	SpecID
t _{IOWID}	GPIO/Timers inputs — minimum pulse width	2T ¹	ns	A21.1

NOTES:

4.3.17 Fusebox

Table 47 gives the Fusebox timing specification.

Table 47. Fusebox Timing Characteristics

Sym	Description	Min	Max	Units	SpecID
t _{FUSEWR}	Program time ¹ for fuse	62.5	_	μS	A22.1
I _{FUSEWR}	Program current to program one fuse bit	_	10	mA	A22.2

NOTES:

MPC5125 Microcontroller Data Sheet, Rev. 4

 $^{^{\}rm I}$ T is the IP bus clock cycle. T = 15 ns is the minimum value (for the maximum IP bus frequency of 66 MHz).

¹ The program length is defined by the value defined in the EPM_PGM_LENGTH bits of the IIM module.

4.3.18 IEEE 1149.1 (JTAG)

Table 48. JTAG Timing Specification

Sym	Characteristic	Min	Max	Unit	SpecID
_	TCK frequency of operation	0	25	MHz	A23.1
1	TCK cycle time	40	_	ns	A23.2
2	TCK clock pulse width measured at 1.5 V	1.08	_	ns	A23.3
3	TCK rise and fall times	0	3	ns	A23.4
4	TRST setup time to TCK falling edge ¹	10	_	ns	A23.5
5	TRST assert time	5	_	ns	A23.6
6	Input data setup time ²	5	_	ns	A23.7
7	Input data hold time ²	15	_	ns	A23.8
8	TCK to output data valid ³	0	30	ns	A23.9
9	TCK to output high impedance ³	0	30	ns	A23.10
10	TMS, TDI data setup time	5	_	ns	A23.11
11	TMS, TDI data hold time	4.5	_	ns	A23.12
12	TCK to TDO data valid	0	15	ns	A23.13
13	TCK to TDO high impedance	0	15	ns	A23.14

NOTES:

³ Non-test, other than TDO, signal output timing with respect to TCK.

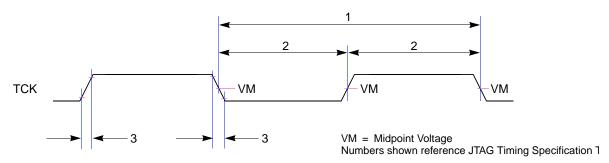


Figure 45. Timing Diagram — JTAG Clock Input

TRST is an asynchronous signal. The setup time is for test purposes only.

 $^{^{2}\,}$ Non-test, other than TDI and TMS, signal input timing with respect to TCK.

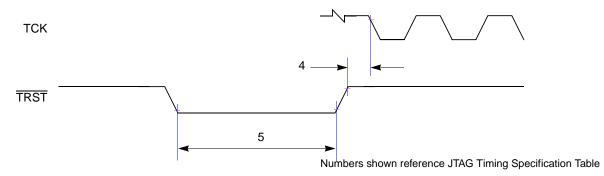


Figure 46. Timing Diagram — JTAG TRST

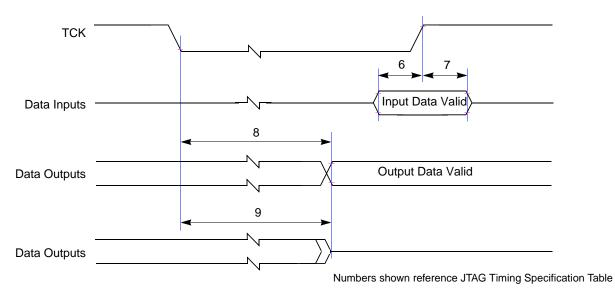


Figure 47. Timing Diagram — JTAG Boundary Scan

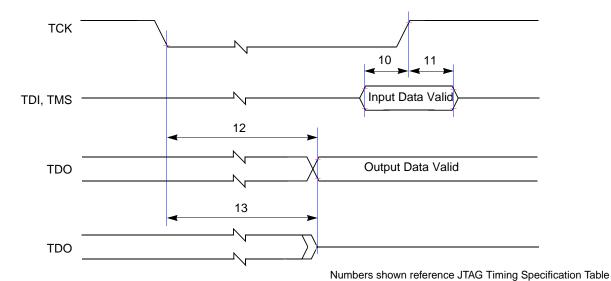


Figure 48. Timing Diagram — Test Access Port

MPC5125 Microcontroller Data Sheet, Rev. 4

5 System Design Information

5.1 Power Up/Down Sequencing

Power sequencing between the 1.4 V power supply V_{DD} and the remaining supplies is required to prevent excessive current during power-up phase.

The required power sequence is as follows:

- Use 12 V/ms or slower time for all supplies.
- Power up V_{DD_IO}, AV_{DD_PLL}s, V_{BAT} (if not applied permanently), and V_{DD_IO_MEM} supplies first in any order, and then power up V_{DD}. If required AV_{DD_FUSEWR} should be powered up afterwards.
- All the supplies must reach the specified operating conditions before the PORESET can be released.
- For power down, drop AV_{DD} FUSEWR to 0 V first, drop V_{DD} to 0 V, and then drop all other supplies.
- V_{DD} should not exceed V_{DD_IO}, V_{DD_IO_MEM}, V_{BAT}, or AV_{DD_PLL}s by more than 0.4 V at any time, including power-up.

5.2 System and CPU Core AV_{DD} Power Supply Filtering

Each of the independent PLL power supplies require filtering external to the device. Figure 49 shows a recommendation for the required filter circuit.

Each circuit should be placed as close as possible to the specific AV_{DD} pin being supplied to minimize noise coupled from nearby circuits.

All traces should be as low impedance as possible, especially ground pins to the ground plane.

The filter for system/core PLLVDD to V_{SS} should be connected to the power and ground planes, respectively, not fingers of the planes.

In addition to keeping the filter components for system/core PLLVDD as close as practical to the body of the MPC5125 as previously mentioned, special care should be taken to avoid coupling switching power supply noise or digital switching noise onto the portion of that supply between the filter and the MPC5125.

The capacitors for C2 in the figure below should be rated X5R or better due to temperature performance. It is recommended to add a bypass capacitance of at least 1 μ F for the VBAT pin.

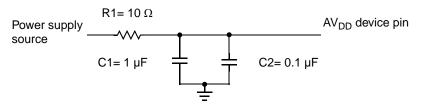


Figure 49. Power Supply Filtering

5.3 Connection Recommendations

To ensure reliable operation, connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to V_{DD_IO} . Unused active high inputs should be connected to V_{SS} . All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} and V_{SS} pins of the MPC5125.

The unused AV_{DD FUSEWR} power should be connected to V_{SS} directly or via a resistor.

For DDR or LPDDR modes, the unused pins VTT[3:0] for DDR2 termination voltage can be unconnected.

MPC5125 Microcontroller Data Sheet, Rev. 4

System Design Information

5.4 Pullup/Pulldown Resistor Requirements

The MPC5125 requires external pullup or pulldown resistors on certain pins.

5.4.1 Pulldown Resistor Requirements for TEST Pin

The MPC5125 requires a pulldown resistor on the test pin TEST.

5.5 JTAG

The MPC5125 has an IEEE 1149.1 JTAG interface to facilitate board/system testing. It also provides a common on-chip processor (COP) interface, which shares the IEEE 1149.1 JTAG port.

The COP interface provides access to the MPC5125's embedded e300 processor and to other on-chip resources. This interface provides a means for executing test routines and for performing software development and debug functions.

5.5.1 JTAG_TRST

Boundary scan testing is enabled through the JTAG interface signals. The JTAG_TRST signal is optional in the IEEE 1149.1 specification but is provided on all processors that implement the Power Architecture. To obtain a reliable power-on reset performance, the JTAG_TRST signal must be asserted during power-on reset.

5.5.1.1 TRST and PORESET

The JTAG interface can control the direction of the MPC5125 I/O pads via the boundary scan chain. The JTAG module must be reset before the MPC5125 comes out of power-on reset; do this by asserting TRST before PORESET is released.

For more details, see the Reset and JTAG Timing Specification.

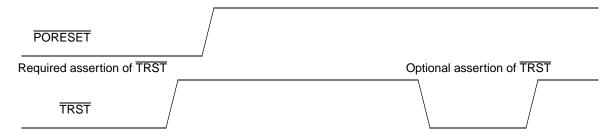


Figure 50. PORESET vs. TRST

5.5.2 e300 COP/BDM Interface

There are two possibilities to connect the JTAG interface: using it with a COP connector and without a COP connector.

5.5.2.1 Boards Interfacing the JTAG Port via a COP Connector

The MPC5125 functional pin interface and internal logic provides access to the embedded e300 processor core through the Freescale standard COP/BDM interface. Table 49 gives the COP/BDM interface signals. The pin order shown reflects only the COP/BDM connector order.

MPC5125 Microcontroller Data Sheet, Rev. 4

Table 49. COP/BDM Interface Signals

BDM Pin #	I/O Pin	BDM Connector	Internal Pullup/Pulldown	External Pullup/Pulldown	I/O ¹
16	_	GND	_	_	_
15	CKSTP_OUT	ckstp_out	_	10 kΩ Pullup	I
14	_	KEY	_	_	_
13	HRESET	hreset	Pullup	10 kΩ Pullup	0
12	_	GND	_	_	_
11	SRESET	sreset	Pullup	10 kΩ Pullup	0
10	_	N/C	_	_	_
9	TMS	tms	Pullup	10 kΩ Pullup	0
8	CKSTP_IN	ckstp_in	_	10 kΩ Pullup	0
7	TCK	tck	Pullup	10 kΩ Pullup	0
6	_	VDD ²	_	_	_
5	See Note ³	halted ³	_	_	I
4	TRST	trst	Pullup	10 kΩ Pullup	0
3	TDI	tdi	Pullup	10 kΩ Pullup	0
2	See Note ^{pci_frame}	qack ⁴	_	_	0
1	TDO	tdo	_	_	I

NOTES:

For a board with a COP (common on-chip processor) connector that accesses the JTAG interface and needs to reset the JTAG module, it is not recommended to wire only $\overline{\text{TRST}}$ and $\overline{\text{PORESET}}$.

To reset the MPC5125 via the COP connector, the $\overline{\text{HRESET}}$ pin of the COP should be connected to the $\overline{\text{HRESET}}$ pin of the MPC5125. The circuitry shown in Figure 51 allows the COP to assert $\overline{\text{HRESET}}$ or $\overline{\text{TRST}}$ separately, while any other board sources can drive $\overline{\text{PORESET}}$.

With respect to the emulator tool's perspective: Input is really an output from the embedded e300 core. Output is really an input to the core.

² From the board under test, power sense for chip power.

³ HALTED is not available from e300 core.

System Design Information

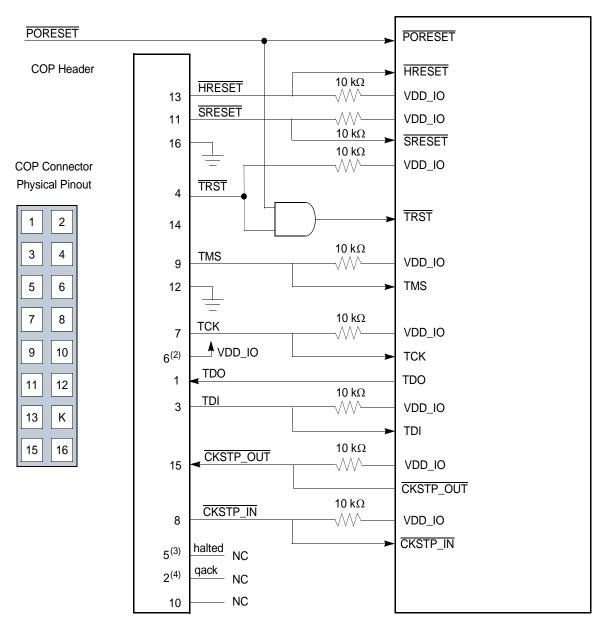


Figure 51. COP Connector Diagram

5.5.2.2 Boards Without COP Connector

If the JTAG interface is not used, \overline{TRST} should be tied to $\overline{PORESET}$, so that it is asserted when the system reset signal ($\overline{PORESET}$) is asserted. This ensures that the JTAG scan chain is initialized during power on. Figure 52 shows the connection of the JTAG interface without COP connector.

MPC5125 Microcontroller Data Sheet, Rev. 4

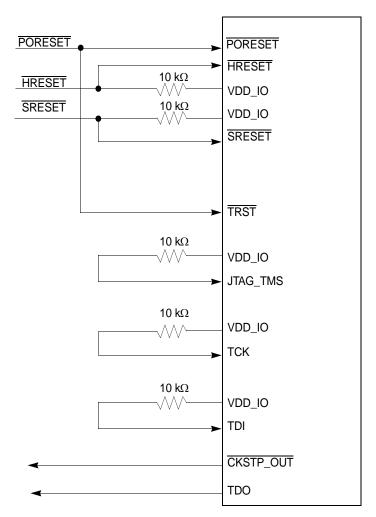


Figure 52. TRST Wiring for Boards without COP Connector

Package Information

6 Package Information

This section details package parameters and dimensions. The MPC5125 is available in a thermally enhanced plastic ball grid array (TEPBGA). Section 6.1, "Package Parameters," and Section 6.2, "Mechanical Dimensions," provide information on the TEPBGA.

6.1 Package Parameters

Table 50. TEPBGA Parameters

Package outline	23 mm × 23 mm
Interconnects	324
Pitch	1.00 mm
Module height (typical)	2.25 mm
Solder balls	96.5 Sn/3.5Ag (VN <i>package</i>)
Ball diameter (typical)	0.6 mm

6.2 Mechanical Dimensions

Figure 3 shows the mechanical dimensions and bottom surface nomenclature of the MPC5125 324 TEPBGA package.

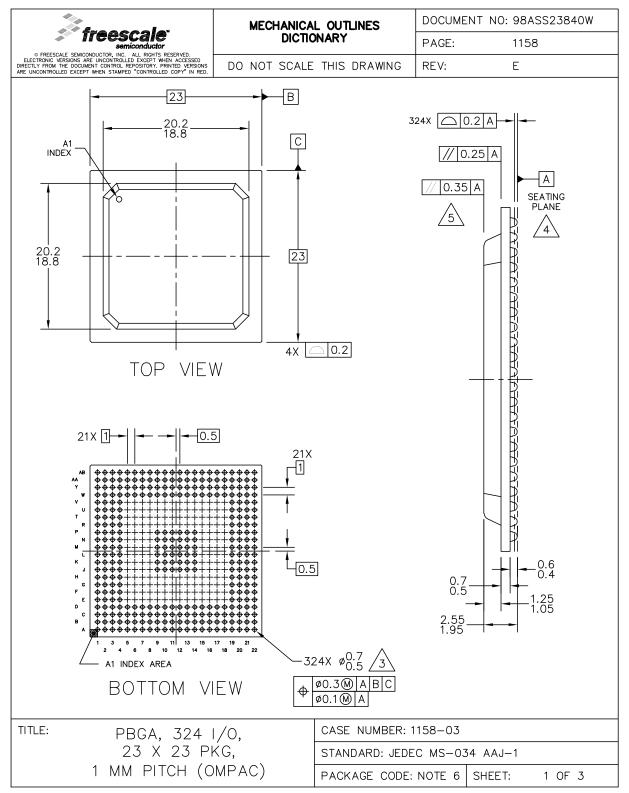


Figure 53. Mechanical Drawing of MPC5125 PBGA (1 of 3)

MPC5125 Microcontroller Data Sheet, Rev. 4

Package Information

Ave e e e e e e	MECHANICAL OUTLINES	DOCUMENT NO: 98ASS23840W		
freescale* semiconductor	DICTIONARY	PAGE:	1158	
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE THIS DRAWING	REV:	Е	

NOTES:

1. ALL DIMENSIONS IN MILLIMETERS.

2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

3.

MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

4.

DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

6. PACKAGE CODES:

5241: 2 LAYER 324 PBGA

5366: 4 LAYER 324 TEPBGA PGE

TITLE: PBGA, 324 I/O,
23 X 23 PKG,
1 MM PITCH (OMPAC)

CASE NUMBER: 1158-03

STANDARD: JEDEC MS-034 AAJ-1

PACKAGE CODE: NOTE 6 SHEET: 2

Figure 54. Mechanical Drawing of MPC5125 PBGA (2 of 3)

MPC5125 Microcontroller Data Sheet, Rev. 4

		_				DOCUMENT NO: 98ASS23840W				
Ireescale semiconductor o Freescale Semiconductor, Inc. All Rights reserved. ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSTORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.			REVISION HISTORY		PAGE:					
					REV:					
LTR	ORIGINATOR		REVIS	I ONS		DRAFTER		DAT	E	
D	J. BAKER	UPDATE DOCUMENTATION FORMAT				KP	26	APR	2006	
Е	Wh TAN	ADDED NOTE 6				WMS	25	JAN	2007	
TITLE:	PBG 23	A, 324 I X 23 Pk	/0, <g< td=""><td>CASE NUMBER: STANDARD: JED</td><td></td><td>4 ΔΔ.I_1</td><td></td><td></td><td></td></g<>	CASE NUMBER: STANDARD: JED		4 ΔΔ.I_1				

Figure 55. Mechanical Drawing of MPC5125 PBGA (3 of 3)

PACKAGE CODE: NOTE 6 | SHEET:

1 MM PITCH (OMPAC)

MPC5125 Microcontroller Data Sheet, Rev. 4

7 Product Documentation

This data sheet is labeled as a particular type: Product Preview, Advance Information, or Technical Data. Definitions of these types are available at: http://www.freescale.com .

The following documents are required for a complete description of the device and are necessary to design properly with the parts:

- MPC5125 Microprocessor Reference Manual (document number MPC5125RM)
- MPC5125 (0M01S) Errata (document number MSE5125_0M01S)

8 Revision History

Table 51 describes the changes made to this document between revisions.

Table 51. Revision History

Revision	Date	Description
1	October 2008	Initial public release, NDA required, Advance Information.
2	October 2009	Public release, Technical Data. — Updated specifications according to characterized data. — Updated Table 1, orderable part numbers. — Updated Table 2, pin multiplexing. — Editorial updates.
3	November 2009	Public release, Technical Data. — Corrected part number.
4	August 2011	Public release, Technical Data. —Incorporated TKT052929. Updated Table 2, "pin multiplexing".FEC1_TX_CLK I/O direction changed from O to I. —Incorporated TKT052932. Updated Table 2, "pin multiplexing". NFC_R/B changed to NFC_R/B0 for ALT0 of NFC_RB; the ALT2 function of the PSC1_3 signal lists NFC_R/B2 signal direction changed as an input; the ALT2 function of the J1850_RX signal lists NFC_R/B3 signal direction changed as an input. —Incorporated TKT068361.Updated Table 2, "pin multiplexing". FEC1_TX_ER I/O direction changed from I to O, FEC1_MDC I/O direction changed from I to O,FEC2_TX_ER changed from I to O,FEC2_MDC I/O direction changed from I to O. —Updated Table 2, "pin multiplexing". "ALT3" replaced with "ALT2" for "RST_CONF" (reset configuration);FEC1_MDIO/RMII_MDIO I/O direction changed from I to I/O; FEC_TX_EN I/O direction changed to O from I;USB1_DATA1and USB1_NEXT I/O direction changed to O from I —Updated Table 6, "DC Electrical Specifications".The unit of "RODT" changed to 'ohm' from 'W'.

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC5125

Rev. 4 09/2011 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008–2011. All rights reserved.

