

Pin		SCH	ntio	n
	DE	JUII	μιυ	

Pin No.	Pin Name	Pin Type	Description
1	Enable	I	Enables outputs when high and disables when low
2	NC	NA	Leave unconnected or grounded
3	NC	NA	Leave unconnected or grounded
4	GND	Power	Ground
5	FS0	Ι	Least significant bit for frequency selection
6	FS1	Ι	Middle bit for frequency selection
7	FS2	I	Most significant bit for frequency selection
8	Output1+	0	Positive HCSL Output 1
9	Output1-	0	Negative HCSL Output 1
10	Output 2-	0	Negative LVPECL Output 2
11	Output 2+	0	Positive LVPECL Output 2
12	VDD2	Power	Power Supply 2 for HCSL Output 2
13	VDD	Power	Power Supply
14	NC	NA	Leave unconnected or grounded

Operational Description

The DSC2042 is a dual oscillator with an HCSL output and an LVPECL output. The device consists of a MEMS resonator and a support PLL IC. The two outputs are generated through independent 8-bit programmable dividers from the output of the internal PLL. Two constraints are imposed on the output frequencies: 1) $f_2=M \times f_1/N$, where M and N are even integers between 4 and 254, 2) 1.2GHz < N x f_2 < 1.7GHz.

The actual frequencies output by the DSC2042 are controlled by an internal pre-programmed

memory (OTP). This memory stores all coefficients required by the PLL for up to eight different frequency combinations. Three control pins (FS0 – FS2) select the output frequency combination. Discera supports customer defined versions of the DSC2042. Standard frequency options are described in in the following sections.

When Enable (pin 1) is floated or connected to VDD, the DSC2042 is in operational mode. Driving Enable to ground will tri-state both output drivers (hi-impedance mode).

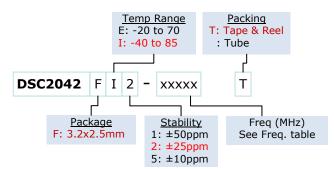
Output Clock Frequencies

Table 1 lists the standard frequency configurations and the associated ordering information to be used in conjunction with the ordering code. Customer defined combinations are available.

Table 1. The programmed pin selectable output nequency combinations									
Ordering Freq		Freq Select Bits [FS2, FS1, FS0] – Default is [111]							
Info (MHz)	000	001	010	011	100	101	110	111	
M0001	f _{OUT1}	156.25	0*	0*	0*	0*	0*	0*	100
M0001 f _{OUT2}	f _{OUT2}	125	0*	0*	0*	0*	0*	0*	156.25
MOOOD	f _{OUT1}	100	156.25	0*	0*	0*	0*	0*	0*
M0002 f _{out}	f _{OUT2}	100	156.25	0*	0*	0*	0*	0*	0*
мххххх	f _{OUT1}	Contact factory for additional configurations.							
МАЛЛА	f _{OUT2}								

 Table 1. Pre-programmed pin-selectable output frequency combinations

Frequency select bit are weakly tied high so if left unconnected the default setting will be [111] and the device will output the associated frequency highlighted in **Bold**.


0* – denotes invalid selection, output frequency is not specified.

Absolute Maximum Ratings

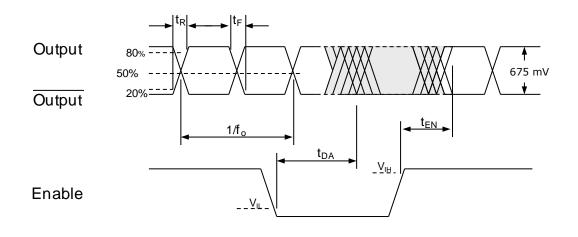
Item	Min	Max	Unit	Condition
Supply Voltage	-0.3	+4.0	V	
Input Voltage	-0.3	V _{DD} +0.3	V	
Junction Temp	-	+150	°C	
Storage Temp	-55	+150	°C	
Soldering Temp	-	+260	°C	40sec max.
ESD	-		V	
HBM		4000		
MM		400		
CDM		1500		

Note: 1000+ years of data retention on internal memory

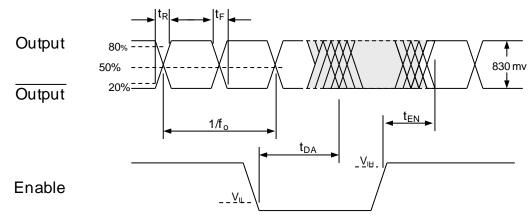
Ordering Code

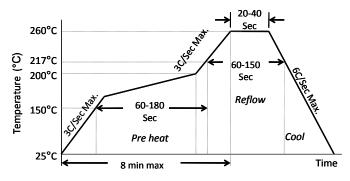
Specifications (Unless specified otherwise: T=25° C)

Parameter		Condition	Min.	Тур.	Max.	Unit
Supply Voltage ¹	V _{DD}		2.25		3.6	V
Supply Current	I _{DD}	EN pin low – outputs are disabled		21	23	mA
Supply Current ²	I _{DD}	EN pin high – outputs are enabled R_L =50 Ω , F_{01} = F_{02} =156.25 MHz		76		mA
Frequency Stability	Δf	Includes frequency variations due to initial tolerance, temp. and power supply voltage			±10 ±25 ±50	ppm
Aging	Δf	1 year @25°C			±5	ppm
Startup Time ³	t _{su}	T=25°C			5	ms
Input Logic Levels Input logic high Input logic low	V _{IH} V _{IL}		0.75xV _{DD} -		- 0.25xV _{DD}	V
Output Disable Time ⁴	t _{DA}				5	ns
Output Enable Time	t _{EN}				20	ns
Pull-Up Resistor ²		Pull-up exists on all digital IO		40		kΩ
		LVPECL Outputs	, ,			
Output Logic Levels Output logic high Output logic low	V _{OH} V _{OL}	$R_L = 50\Omega$	V _{DD} -1.08 -		- V _{DD} -1.55	v
Pk to Pk Output Swing		Single-Ended		800		mV
Output Transition time ⁴ Rise Time Fall Time	t _R t _F	20% to 80% $R_L=50\Omega$		250		ps
Frequency	f ₀	Single Frequency	2.3		460	MHz
Output Duty Cycle	SYM	Differential	48		52	%
Period Jitter ⁵	J _{PER}	F ₀₁ =125 MHz		2.5		ps _{RMS}
Integrated Phase Noise	J _{CC}	200kHz to 20MHz @156.25MHz 100kHz to 20MHz @156.25MHz 12kHz to 20MHz @156.25MHz		0.25 0.38 1.7	2	ps _{RMS}
		HCSL Outputs				
Output Logic Levels Output logic high Output logic low	V _{OH} V _{OL}	$R_L=50\Omega$	0.725		- 0.1	V
Pk to Pk Output Swing		Single-Ended		750		mV
Output Transition time ⁴ Rise Time Fall Time	t _R t _F	20% to 80% 200 R _L =50Ω, C _L = 2pF 200		400	ps	
Frequency	f ₀	Single Frequency	2.3		460	MHz
Output Duty Cycle	SYM	Differential	48		52	%
Period Jitter ⁵	J _{PER}	F ₀₁ =F ₀₂ =156.25 MHz		2.8		ps _{RMS}
Integrated Phase Noise	J _{PH}	200kHz to 20MHz @156.25MHz 100kHz to 20MHz @156.25MHz 12kHz to 20MHz @156.25MHz		0.25 0.37 1.7	2	ps _{RMS}

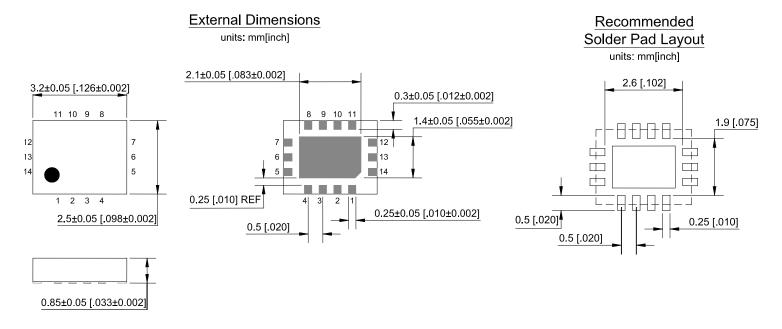

1. 2. 3. 4. 5.

Pin 4 V_{DD} should be filtered with 0.01uf capacitor. Output is enabled if Enable pad is floated or not connected. t_{su} is time to 100PPM stable output frequency after V_{DD} is applied and outputs are enabled. Output Waveform and Test Circuit figures below define the parameters. Period Jitter includes crosstalk from adjacent output.


Downloaded from Arrow.com.


Output Waveform: HCSL

Output Waveform: LVPECL


Solder Reflow Profile

MSL 1 @ 260°C refer to JSTD-020C					
Ramp-Up Rate (200°C to Peak Temp)	3°C/Sec Max.				
Preheat Time 150°C to 200°C	60-180 Sec				
Time maintained above 217°C	60-150 Sec				
Peak Temperature	255-260°C				
Time within 5°C of actual Peak	20-40 Sec				
Ramp-Down Rate	6°C/Sec Max.				
Time 25°C to Peak Temperature	8 min Max.				

Package Dimensions

3.2 x 2.5 mm 14 Lead Plastic Package

Disclaimer:

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

MICREL, Inc.	•	2180 Fortune Drive,	San Jose, California 95131	•	USA
Phone: +1 (408) 944-0800	•	Fax: +1 (408) 474-1000	 Email: hbwhelp@micrel.com 	•	www.micrel.com