

BAV19 / 20 / 21

DO-35 Color Band Denotes Cathode

Small Signal Diode

Absolute Maximum Ratings*

 $T_A = 25$ °C unless otherwise noted

Symbol	Parameter	Value	Units
V_{RRM}	Maximum Repetitive Reverse Voltage BAV19 BAV20 BAV21	120 200 250	V V V
I _{F(AV)}	Average Rectified Forward Current	200	mA
I _{FSM}	Non-repetitive Peak Forward Surge Current Pulse Width = 1.0 second Pulse Width = 1.0 microsecond	1.0 4.0	A A
T _{stg}	Storage Temperature Range	-65 to +200	°C
T _J	Operating Junction Temperature	175	°C

 $^{{}^{\}bigstar} \text{These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.}$

Thermal Characteristics

Symbol	Parameter	Value	Units
P _D	Power Dissipation	500	mW
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	300	°C/W

Electrical Characteristics T₄ = 25°C unless otherwise noted

Symbol	Parameter		Test Conditions	Min	Max	Units
V_R	Breakdown Voltage	BAV19	$I_R = 100 \mu A$	120		V
		BAV20	$I_R = 100 \mu A$	200		V
		BAV21	I _R = 100 μA	250		V
V _F	Forward Voltage		$I_F = 100 \text{ mA}$		1.0	V
			$I_F = 200 \text{ mA}$		1.25	V
I _R	Reverse Current		V _R = 100 V		100	nA
		BAV19	$V_R = 100 \text{ V}, T_A = 150^{\circ}\text{C}$		100	μΑ
			$V_{R} = 150 \text{ V}$		100	nA
		BAV20	$V_R = 150 \text{ V}, T_A = 150^{\circ}\text{C}$		100	μΑ
			V _R = 200 V		100	nА
		BAV21	$V_R = 200 \text{ V}, T_A = 150^{\circ}\text{C}$		100	μΑ
C _T	Total Capacitance		$V_R = 0, f = 1.0 \text{ MHz}$		5.0	pF
t _{rr}	Reverse Recovery Time		$I_F = I_R = 30 \text{ mA}, I_{RR} = 3.0 \text{ mA},$		50	ns
	_		$R_L = 100\Omega$			

©2001 Fairchild Semiconductor Corporation

¹⁾ These ratings are based on a maximum junction temperature of 200 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Small Signal Diode

(continued)

Typical Characteristics

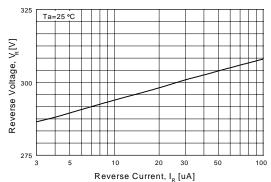
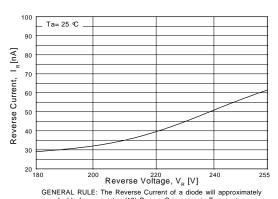



Figure 1. Reverse Voltage vs Reverse Current BV - 1.0 to 100uA

GENERAL RULE: The Reverse Current of a diode will approximately double for every ten (10) Degree C increase in Temperature

Figure 3. Reverse Current vs Reverse Roltage IR - 180 to 225 V

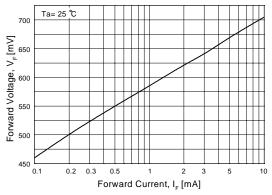


Figure 5. Forward Voltage vs Forward Current VF - 0.1 to 10mA

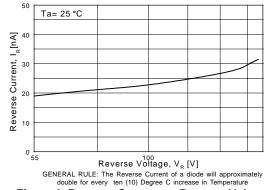


Figure 2. Reverse Current vs Reverse Voltage IR - 55 to 205 V

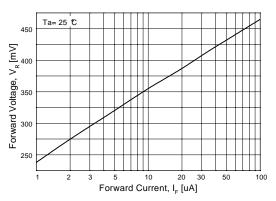


Figure 4. Forward Voltage vs Forward Current VF - 1.0 to 100uA

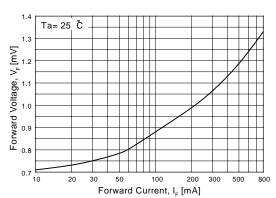


Figure 6. Forward Voltage vs Forward Current VF - 10 to 800mA

BAV19/20/21, Rev. C

Small Signal Diode

(continued)

Typical Characteristics (continued)

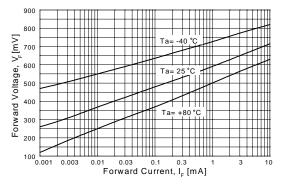


Figure 7. Forward Voltage vs Ambient Temperature VF - 1.0 uA - 10 mA (-40 to +80 Deg C)

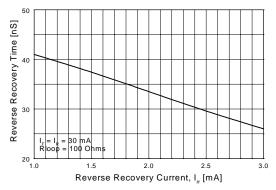


Figure 9. Reverse Recovery Time vs Reverse Recovery Current

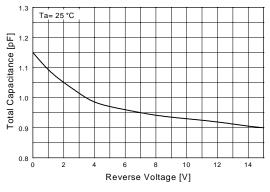


Figure 8. Total Capacitance

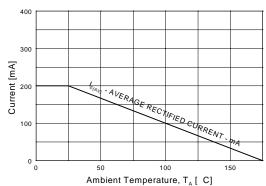


Figure 10. Average Rectified Current (I_{F(AV)}) versus Ambient Temperature (T_A)

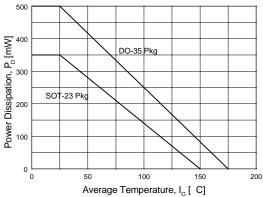


Figure 11. Power Derating Curve

BAV19/20/21, Rev. C

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SMART START™ VCX^{TM} FAST ® OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMAN™ SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $HiSeC^{TM}$ SuperSOT™-8 DOME™ PowerTrench® SyncFET™ EcoSPARK™ ISOPLANAR™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM} EnSigna™ MicroFET™ TruTranslation™ QT Optoelectronics™ MicroPak™ UHC™ FACT™ Quiet Series™

FACT Quiet Series MICROWIRE SILENT SWITCHER UltraFET

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Phone: 421 33 790 2910 **Japan Customer Focus Center**Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative