Contents

1	Bloo	ck diagram and pin description
2	Elec	trical specification 9
	2.1	Absolute maximum ratings
	2.2	Thermal data
	2.3	Main electrical characteristics11
	2.4	Waveforms
	2.5	Electrical characteristics curves
3	Prot	ections
	3.1	Power limitation
	3.2	Thermal shutdown 29
	3.3	Current limitation
	3.4	Negative voltage clamp
4	Арр	lication information30
	4.1	GND protection network against reverse battery 30
		4.1.1 Diode (DGND) in the ground line
	4.2	Immunity against transient electrical disturbances
	4.3	MCU I/Os protection
	4.4	Multisense - analog current sense 32
		4.4.1 Principle of Multisense signal generation
		4.4.2 T _{CASE} and V _{CC} monitor
		4.4.3 Short to VCC and OFF-state open-load detection
	4.5	Maximum demagnetization energy (V _{CC} = 13.5 V)
5	Pacl	kage and PCB thermal data39
	5.1	PowerSSO-16 thermal data
	5.2	SO-8 thermal data 42
6	Pacl	kage information
	6.1	ECOPACK [®] 45
	6.2	PowerSSO-16 package information

DocID022406 Rev 8

2/54

Downloaded from Arrow.com.

VN/040	6.3 SO-8 package information		Contents
	6.3	SO-8 package information	47
	6.4	Packing information	49
7	Orde	er codes	50
8	Revi	sion history	51

List of tables

Table 1.	Pin functions	7
Table 2.	Suggested connections for unused and not connected pins	8
Table 3.	Absolute maximum ratings	
Table 4.	Thermal data	
Table 5.	Power section	11
Table 6.	Switching (V _{CC} = 13 V; -40°C < T _i < 150°C, unless otherwise specified)	12
Table 7.	Logic Inputs (7 V < V _{CC} < 28 V; -40°C < T _i < 150°C)	
Table 8.	Protections (7 V < V _{CC} < 18 V; -40°C < T _i < 150°C)	
Table 9.	MultiSense (7 V < V _{CC} < 18 V; -40°C < T _i < 150°C)	
Table 10.	Truth table	
Table 11.	MultiSense multiplexer addressing	22
Table 12.	ISO 7637-2 - electrical transient conduction along supply line	31
Table 13.	Multisense pin levels in off-state	36
Table 14.	PCB properties	39
Table 15.	Thermal parameters	41
Table 16.	PCB properties	
Table 17.	Thermal parameters	44
Table 18.	PowerSSO-16 mechanical data	46
Table 19.	SO-8 mechanical data	48
Table 20.	Device summary	50
Table 21	Document revision history	51

List of figures

Figure 1.	Block diagram	. 7
Figure 2.	Configuration diagram (top view)	. 8
Figure 3.	Current and voltage conventions	. 9
Figure 4.	I _{OUT} /I _{SENSE} versus I _{OUT}	18
Figure 5.	Current sense accuracy versus I _{OUT}	19
Figure 6.	Switching times and Pulse skew	19
Figure 7.	MultiSense timings (current sense mode)	20
Figure 8.	Multisense timings (chip temperature and VCC sense mode) (VN7040AJ-E only)	20
Figure 9.	T _{DSTKON}	
Figure 10.	Latch functionality - behavior in hard short circuit condition (T _{AMB} << T _{TSD})	22
Figure 11.	Latch functionality - behavior in hard short circuit condition	
Figure 12.	Latch functionality - behavior in hard short circuit condition (autorestart mode + latch off)	23
Figure 13.	Standby mode activation	24
Figure 14.	Standby state diagram	24
Figure 15.	OFF-state output current	25
Figure 16.	Standby current	25
Figure 17.	I _{GND(ON)} vs. I _{out}	25
Figure 18.	Logic Input high level voltage	
Figure 19.	Logic Input low level voltage	25
Figure 20.	High level logic input current	25
Figure 21.	Low level logic input current	26
Figure 22.	Logic Input hysteresis voltage	26
Figure 23.	FaultRST Input clamp voltage	26
Figure 24.	Undervoltage shutdown	26
Figure 25.	On-state resistance vs. T _{case}	26
Figure 26.	On-state resistance vs. V _{CC}	26
Figure 27.	Turn-on voltage slope	27
Figure 28.	Turn-off voltage slope	27
Figure 29.	Won vs. T _{case}	27
Figure 30.	Woff vs. T _{case}	
Figure 31.	I _{LIMH} vs. T _{case}	
Figure 32.	OFF-state open-load voltage detection threshold	27
Figure 33.	V _{sense} clamp vs. T _{case}	
Figure 34.	V _{senseh} vs. T _{case}	
Figure 35.	Application diagram	
Figure 36.	Simplified internal structure	
Figure 37.	Multisense and diagnostic – block diagram	
Figure 38.	Multisense block diagram	
Figure 39.	Analogue HSD – open-load detection in off-state	
Figure 40.	Open-load / short to VCC condition	
Figure 41.	GND voltage shift	
Figure 42.	Maximum turn off current versus inductance	
Figure 43.	PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)	
Figure 44.	PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)	
Figure 45.	PowerSSO-16 R _{thj-amb} vs PCB copper area in open box free air condition	
Figure 46.	PowerSSO-16 thermal impedance junction ambient single pulse	
Figure 47.	Thermal fitting model for PowerSSO-16	41
Figure 48.	SO-8 on two-layers PCB (2s0p to JEDEC JESD 51-5)	42

List of figures

VN7040AS-E, VN7040AJ-E

Figure 49.	SO-8 on four-layers PCB (2s2p to JEDEC JESD 51-7)	42
Figure 50.	SO-8 R _{thi-amb} vs PCB copper area in open box free air condition	43
Figure 51.	SO-8 thermal impedance junction ambient single pulse	43
Figure 52.	Thermal fitting model for SO-8	44
Figure 53.	PowerSSO-16 package dimensions	45
Figure 54.	SO-8 package dimensions	47
Figure 55.	SO-8 tube shipment (no suffix)	49
Figure 56.	SO-8 tape and reel shipment (suffix "TR")	49

1 Block diagram and pin description

Figure 1. Block diagram

Table 1. Pin functions

Name	Function		
V _{CC}	Battery connection.		
OUTPUT	Power output.		
GND	Ground connection. Must be reverse battery protected by an external diode/resistor network.		
INPUT	Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. It controls output switch state.		
MultiSense	Multiplexed analog sense output pin; it delivers a current proportional to the selected diagnostic: load current, supply voltage or chip temperature		
SEn	Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense diagnostic pin.		
SEL _{0,1}	Active high compatible with 3 V and 5 V CMOS outputs pin; they address the MultiSense multiplexer.		
FaultRST	Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart mode.		

PowerSSO-16 INPUT □ 16 OUTPUT FaultRST □ 2 15 🗀 OUTPUT 14 OUTPUT SEn □ 3 │ 13 🗀 OUTPUT SELO = 5 | 12 | N.C. SEL1 ☐ 6 11 □ N.C. 10 🗀 N.C. 9 □ N.C. N.C. □ 8 -TAB = V_{CC} **SO-8** 8 VCC 7 OUTPUT GND □ 3 6 □ OUTPUT MultiSense □ 5 □ VCC

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

Connection/pin	MultiSense	N.C.	Output	Input	S <u>En, SELx,</u> FaultRST
Floating	Not allowed	X ⁽¹⁾	Х	Х	Х
To ground	Through 1 kΩ resistor	Х	Not allowed	Through 15 kΩ resistor	Through 15 kΩ resistor

^{1.} X: do not care.

57/

2 Electrical specification

FaultRST OUTPUT SENSE VOUT SELO,1 SELO,1 VSENSE SENSE VOUT SENSE VSENSE SENSE VSENSE SENSE VSENSE SENSE SENSE SENSE VSENSE SENSE SEN

Figure 3. Current and voltage conventions

Note:

 $V_F = V_{OUT} - V_{CC}$ during reverse battery condition.

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 3* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

Symbol Parameter Value Unit 38 V_{CC} DC supply voltage -V_{CC} Reverse DC supply voltage 0.3 Maximum transient supply voltage (ISO 16750-2:2010 Test B ٧ 40 V_{CCPK} clamped to 40 V; $R_L = 4 \Omega$) Maximum jump start voltage for single pulse short circuit **V_{CCJS}** 28 protection -I_{GND} DC reverse ground pin current 200 mΑ **OUTPUT DC output current** Internally limited I_{OUT} Α Reverse DC output current -I_{OUT} INPUT DC input current I_{IN} SEn DC input current -1 to 10 I_{SEn} mΑ SEL_{0,1} DC input current I_{SEL} FaultRST DC input current -1 to 10 I_{FR} FaultRST DC input voltage 7.5 ٧ V_{FR}

Table 3. Absolute maximum ratings

Table 3. Absolute maximum ratings (continued)

Symbol	Parameter	Value	Unit	
I _{SENSE}	MultiSense pin DC output current ($V_{GND} = V_{CC}$ and $V_{SENSE} < 0 V$)	10	mA	
	MultiSense pin DC output current in reverse (V _{CC} < 0V)	-20		
E _{MAX}	Maximum switching energy (single pulse) T _{DEMAG} = 0.4 ms; T _{jstart} = 150 °C	36	mJ	
V _{ESD}	Electrostatic discharge (JEDEC 22A-114F) - INPUT - MultiSense - SEn, SEL _{0,1} , FaultRST - OUTPUT - V _{CC}	4000 2000 4000 4000 4000	< < < <	
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V	
T _j	Junction operating temperature	-40 to 150	°C	
T _{stg}	Storage temperature	-55 to 150		

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter		Typ. value		
Symbol	rarameter	SO-8	PSSO-16	Unit	
R _{thj-board}	Thermal resistance junction-board (JEDEC JESD 51-5/51-8) (1)	29	6.2		
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-5) (2)	67	57	°C/W	
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-7) (1)	45	23.5		

^{1.} Device mounted on four-layers 2s2p PCB.

57

^{2.} Device mounted on two-layers 2s0p PCB with 2 ${\rm cm}^2$ heatsink copper trace.

2.3 Main electrical characteristics

7 V < V $_{CC}$ < 28 V; -40 °C < T $_{j}$ < 150 °C, unless otherwise specified.

All typical values refer to V_{CC} = 13 V; T_j = 25°C, unless otherwise specified.

Table 5. Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		4	13	28	
V _{USD}	Undervoltage shutdown				4	
V _{USDReset}	Undervoltage shutdown reset				5	٧
V _{USDhyst}	Undervoltage shutdown hysteresis			0.3		
		I _{OUT} = 2.5 A; T _j = 25 °C		40		
R_{ON}	On-state resistance	I _{OUT} = 2.5 A; T _j = 150 °C			80	mΩ
		$I_{OUT} = 2.5 \text{ A}; V_{CC} = 4 \text{ V}; T_j = 25 \text{ °C}$			60	
٧.	Clamp voltage	$I_S = 20 \text{ mA}; T_j = -40 \text{ °C}$	38			V
V _{clamp}	Clamp voltage	$I_S = 20 \text{ mA}; 25^{\circ}\text{C} < T_j < 150^{\circ}\text{C}$	41	46	52	V
	Supply current in standby at $V_{CC} = 13 \ V^{(1)}$	$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{SEn} 0 \text{ V};$ $V_{FR} = V_{SEL0,1} = 0 \text{ V};$ $T_j = 25 \text{ °C}$			0.5	0.5 μA
I _{STBY}		$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{SEn} 0 \text{ V};$ $V_{FR} = V_{SEL0,1} = 0 \text{ V}; T_j = 85 ^{\circ}C^{(2)}$			0.5	
		$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{SEn} \text{ 0 V};$ $V_{FR} = V_{SEL0,1} = 0 \text{ V}; T_j = 125 \text{ °C};$			3	
t _{D_STBY}	Standby mode blanking time	$V_{CC} = 13 \text{ V};$ $V_{IN} = V_{OUT} = V_{FR} = V_{SEL0,1} = 0 \text{V};$ $V_{SEn} = 5 \text{ V to 0 V}$	60	300	550	μs
I _{S(ON)}	Supply current	$V_{CC} = 13 \text{ V}; V_{SEn} = 0 \text{ V}; V_{SEL0,1} = V_{FR} = 0 \text{ V}; V_{IN} = 5 \text{ V}; I_{OUT} = 0 \text{ A}$		3	5	mA
I _{GND(ON)}	Control stage current consumption in ON state. All channels active.	$V_{CC} = 13 \text{ V; } V_{SEn} = 5 \text{ V;}$ $V_{FR} = V_{SEL0,1} = 0 \text{ V; } V_{IN} = 5 \text{ V;}$ $I_{OUT} = 2.5 \text{ A}$			6	mA
1	Off-state output current	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 25 \text{ °C}$	0	0.01	0.5	- μΑ
I _{L(off)}	at V _{CC} = 13 V	$V_{IN} = V_{OUT} = 0 \text{ V; } V_{CC} = 13 \text{ V;}$ $T_j = 125 \text{ °C}$	0		3	
V _F	Output - V _{CC} diode voltage	I _{OUT} = -2.5 A; T _j = 150 °C			0.7	٧

^{1.} PowerMOS leakage included.

^{2.} Parameter specified by design; not subject to production test.

DocID022406 Rev 8

11/54

Table 6. Switching ($V_{CC} = 13 \text{ V}$; -40°C < $T_j < 150$ °C, unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} ⁽¹⁾	Turn-on delay time at $T_j = 25$ °C	$R_1 = 5.2 \Omega$	10	40	120	116
t _{d(off)} ⁽¹⁾	Turn-off delay time at $T_j = 25^{\circ}C$	11(3.2 32	10	35	100	μs
(dV _{OUT} /dt) _{on} ⁽¹⁾	Turn-on voltage slope at $T_j = 25$ °C	$R_1 = 5.2 \Omega$	0.1	0.24	0.7	V/µs
(dV _{OUT} /dt) _{off} ⁽¹⁾	Turn-off voltage slope at $T_j = 25$ °C	11(3.2 s2	0.1	0.28	0.7	ν/μ5
W _{ON}	Switching energy losses at turn-on (t_{won})	$R_L = 5.2 \Omega$	l	0.32	0.4 ⁽²⁾	mJ
W _{OFF}	Switching energy losses at turn-off (t_{woff})	$R_L = 5.2 \Omega$		0.33	0.4 ⁽²⁾	mJ
t _{SKEW} ⁽¹⁾	Differential Pulse skew (t _{PHL} - t _{PLH})	$R_L = 5.2 \Omega$	-40	10	60	μs

^{1.} See Figure 6: Switching times and Pulse skew.

Table 7. Logic Inputs (7 V < V_{CC} < 28 V; -40°C < T_j < 150°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
INPUT char	acteristics					
V _{IL}	Input low level voltage				0.9	V
I _{IL}	Low level input current	V _{IN} = 0.9 V	1			μΑ
V _{IH}	Input high level voltage		2.1			V
I _{IH}	High level input current	V _{IN} = 2.1 V			10	μΑ
V _{I(hyst)}	Input hysteresis voltage		0.2			V
M	lanut alama valta sa	I _{IN} = 1 mA	5.3		7.2	V
V_{ICL}	Input clamp voltage	I _{IN} = -1 mA		-0.7	\ \	V
FaultRST cl	haracteristics (VN7040AJ-E on	ly)	1	•	•	
V _{FRL}	Input low level voltage				0.9	V
I _{FRL}	Low level input current	V _{IN} = 0.9 V	1			μA
V _{FRH}	Input high level voltage		2.1			V
I _{FRH}	High level input current	V _{IN} = 2.1 V			10	μΑ
V _{FR(hyst)}	Input hysteresis voltage		0.2			V
1/	lanut alama valta sa	I _{IN} = 1 mA	5.3		7.5	V
V_{FRCL}	Input clamp voltage	I _{IN} = -1 mA		-0.3		- V
SEL _{0,1} char	acteristics (7 V < V _{CC} < 18 V) (VN7040AJ-E only)	•	•		
V _{SELL}	Input low level voltage				0.9	V
I _{SELL}	Low level input current	V _{IN} = 0.9 V	1			μΑ

^{2.} Parameter guaranteed by design and characterization; not subject to production test.

Table 7. Logic Inputs (7 V < V_{CC} < 28 V; -40°C < T_i < 150°C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit				
V _{SELH}	Input high level voltage		2.1			V				
I _{SELH}	High level input current	V _{IN} = 2.1 V			10	μΑ				
V _{SEL(hyst)}	Input hysteresis voltage		0.2			V				
V	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	V				
V _{SELCL}	input clamp voltage	I _{IN} = -1 mA		-0.7		V				
SEn charact	SEn characteristics (7 V < V _{CC} < 18 V)									
V _{SEnL}	Input low level voltage				0.9	V				
I _{SEnL}	Low level input current	V _{IN} = 0.9 V	1			μA				
V _{SEnH}	Input high level voltage		2.1			V				
I _{SEnH}	High level input current	V _{IN} = 2.1 V			10	μΑ				
V _{SEn(hyst)}	Input hysteresis voltage		0.2			V				
V	Input alama valtaga	I _{IN} = 1 mA	5.3		7.2	V				
V_{SEnCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		V				

Table 8. Protections (7 V < V_{CC} < 18 V; -40°C < T_j < 150°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	DC short circuit current	V _{CC} = 13 V	24	34	48	
ILIMH	DC Short circuit current	4 V < V _{CC} < 18 V ⁽¹⁾			48	Α
I _{LIML}	Short circuit current during thermal cycling	$V_{CC} = 13 \text{ V};$ $T_R < T_j < T_{TSD}$		13		
T _{TSD}	Shutdown temperature		150	175	200	
T _R	Reset temperature ⁽¹⁾		T _{RS} + 1	T _{RS} + 7		
T _{RS}	Thermal reset of fault diagnostic indication	$V_{FR} = 0 \text{ V};$ $V_{SEn} = 5 \text{ V};$	135			°C
T _{HYST}	Thermal hysteresis $(T_{TSD} - T_R)^{(1)}$			7		
$\Delta T_{ extsf{J}_{ extsf{SD}}}$	Dynamic temperature	$T_j = -40 ^{\circ}\text{C};$ $V_{CC} = 13 ^{\circ}\text{V}$		60		К
t _{LATCH_RST}	Fault reset time for output unlatch ⁽¹⁾ (VN7040AJ-E only)	$V_{FR} = 5 \text{ V to 0 V};$ $V_{SEn} = 5 \text{ V; } V_{IN} = 5 \text{ V;}$ $V_{SEL0,1} = 0 \text{ V}$	3	10	20	μs
V	Turn-off output voltage	$I_{OUT} = 2 \text{ A}; L = 6 \text{ mH};$ $T_j = -40 \text{ °C}$	V _{CC} - 38			\ \
V _{DEMAG}	clamp	$I_{OUT} = 2 \text{ A}; L = 6 \text{ mH};$ $T_j = 25 \text{ °C to +150 °C}$	V _{CC} - 41	V _{CC} - 46	V _{CC} - 52	V
V _{ON}	Output voltage drop limitation	I _{OUT} = 0.25 A		20		mV

^{1.} Parameter guaranteed by design and characterization; not subject to production test.

Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_j < 150°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V	MultiSense clamp	V _{SEn} = 0 V; I _{SENSE} = 1 mA	-17		-12	V
V _{SENSE_CL}	voltage	$V_{SEn} = 0 \text{ V}; I_{SENSE} = -1 \text{ mA}$		7		
Current Sense of	characteristics					
K _{OL}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.01 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	530			
dK _{cal} /K _{cal} ⁽¹⁾⁽²⁾	Current sense ratio drift at calibration point	$I_{OUT} = 0.01 \text{ A to } 0.05 \text{ A};$ $I_{cal} = 30 \text{ mA};$ $V_{SENSE} = 0.5 \text{ V}; V_{SEn} = 5 \text{ V}$	-30		30	%
K _{LED}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	900	1800	2650	
$dK_{LED}/K_{LED}^{(1)(2)}$	Current sense ratio drift	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-25		25	%
К ₀	I _{OUT} /I _{SENSE}	I _{OUT} = 0.25 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	940	1550	2200	
$dK_0/K_0^{(1)(2)}$	Current sense ratio drift	I _{OUT} = 0.25 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-20		20	%
K ₁	I _{OUT} /I _{SENSE}	I _{OUT} = 0.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	1000	1400	1920	
dK ₁ /K ₁ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 0.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-15		15	%
K ₂	I _{OUT} /I _{SENSE}	I _{OUT} = 1.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	1140	1350	1710	
dK ₂ /K ₂ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 1.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-10		10	%
К ₃	I _{OUT} /I _{SENSE}	I _{OUT} = 4.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	1200	1340	1470	
dK ₃ /K ₃ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 4.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-5		5	%

47/

Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_{j} < 150°C) (continued)

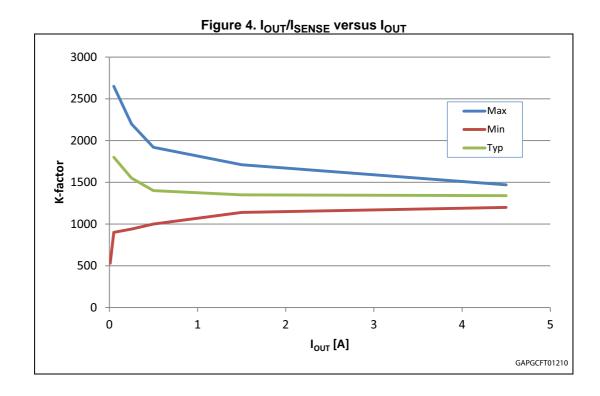
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		MultiSense disabled: V _{SEn} = 0 V;	0		0.5	
		MultiSense disabled: -1 V < V _{SENSE} < 5 V ⁽¹⁾	-0.5		0.5	
I _{SENSE0}	MultiSense leakage current	$\begin{split} &\text{MultiSense enabled:} \\ &\text{V}_{\text{SEn}} = 5 \text{ V} \\ &\text{Channel ON; I}_{\text{OUT}} = 0 \text{ A;} \\ &\text{Diagnostic selected;} \\ &\text{V}_{\text{IN}} = 5 \text{ V; V}_{\text{SEL0}} = 0 \text{ V;} \\ &\text{V}_{\text{SEL1}} = 0 \text{ V; I}_{\text{OUT}} = 0 \text{ A;} \end{split}$	0		2	μΑ
		MultiSense enabled: $V_{SEn} = 5 \text{ V}$ Channel OFF; Diagnostic selected: $V_{IN} = 0 \text{ V}; V_{SEL0} = 0 \text{ V};$ $V_{SEL1} = 0 \text{ V}$	0		2	
V _{OUT_MSD} ⁽¹⁾	Output Voltage for MultiSense shutdown	$\begin{aligned} & V_{SEn} = 5 \text{ V;} \\ & R_{SENSE} = 2.7 \text{ k}\Omega; V_{IN} = 5 \text{ V;} \\ & V_{SEL0} = 0 \text{ V;} V_{SEL1} = 0 \text{ V;} \\ & I_{OUT} = 2.5 \text{ A} \end{aligned}$		5		V
V _{SENSE_SAT}	Multisense saturation voltage	$\begin{split} &V_{CC} = 7 \text{ V;} \\ &R_{SENSE} = 2.7 \text{ k}\Omega; \\ &V_{SEn} = 5 \text{ V;} \text{ V}_{IN} = 5 \text{ V;} \\ &V_{SEL0} = 0 \text{ V;} \text{ V}_{SEL1} = 0 \text{ V;} \\ &I_{OUT} = 4.5 \text{ A;} \text{ T}_j = 150 ^{\circ}\text{C} \end{split}$	5			V
I _{SENSE_SAT} (1)	CS saturation current	$V_{CC} = 7 \text{ V; } V_{SENSE} = 4 \text{ V; } V_{IN} = 5 \text{ V; } V_{SEn} = 5 \text{ V; } V_{SEL0} = 0 \text{ V; } V_{SEL1} = 0 \text{ V; } T_j = 150^{\circ}\text{C}$	4			mA
I _{OUT_SAT} ⁽¹⁾	Output saturation current	$\begin{aligned} & V_{CC} = 7 \text{ V; } V_{SENSE} = 4 \text{ V;} \\ & V_{IN} = 5 \text{ V; } V_{SEn} = 5 \text{ V;} \\ & V_{SEL0} = 0 \text{ V; } V_{SEL1} = 0 \text{ V;} \\ & T_j = 150 ^{\circ}\text{C} \end{aligned}$	6			А
OFF-state diagnostic						
V _{OL}	OFF-state open-load voltage detection threshold	V _{IN} = 0 V; V _{SEn} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 0 V;	2	3	4	٧
I _{L(off2)}	OFF-state output sink current	$V_{IN} = 0 \text{ V}; V_{OUT} = V_{OL};$ $T_j = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	-100		-15	μΑ
t _{DSTKON}	OFF-state diagnostic delay time from falling edge of INPUT (see Figure 9)	V _{IN} = 5 V to 0 V; V _{SEn} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 0 V; I _{OUT} = 0 A; V _{OUT} = 4 V	100	350	700	μs

Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_{j} < 150°C) (continued)

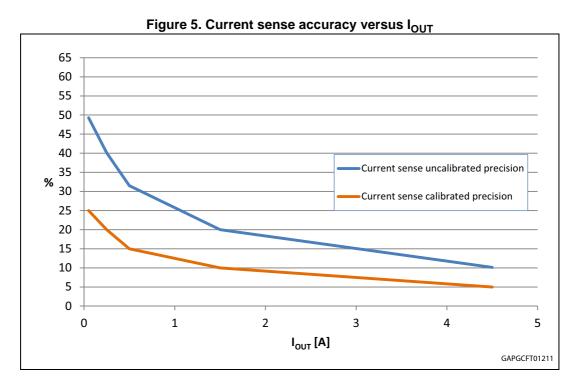
Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Settling time for valid OFF-state open load diagnostic indication from rising edge of SEn	$V_{IN} = 0 \text{ V}; V_{FR} = 0 \text{ V};$ $V_{SEL0} = 0 \text{ V}; V_{SEL1} = 0 \text{ V};$ $V_{OUT} = 4 \text{ V}; V_{SEn} = 0 \text{ V to}$ 5 V			60	μs	
OFF-state diagnostic delay time from rising edge of V _{OUT}	$V_{IN} = 0 \text{ V}; V_{SEn} = 5 \text{ V};$ $V_{SEL0} = 0 \text{ V}; V_{SEL1} = 0 \text{ V};$ $V_{OUT} = 0 \text{ V to 4 V}$		5	30	μs	
re analog feedback (VI	N7040AJ-E only)					
	$V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V}; \ V_{SEL1} = 5 \text{ V}; V_{IN} = 0 \text{ V}; \ R_{SENSE} = 1 \text{ K}\Omega; T_j = -40 \text{ °C}$	2.325	2.41	2.495	٧	
MultiSense output voltage proportional to chip temperature	$\begin{split} &V_{SEn} = 5 \text{ V; } V_{SEL0} = 0 \text{ V;} \\ &V_{SEL1} = 5 \text{ V; } V_{IN} = 0 \text{ V;} \\ &R_{SENSE} = 1 K\Omega; T_j = 25 ^{\circ}\text{C} \end{split}$	1.985	2.07	2.155	٧	
	$\begin{split} &V_{SEn} = 5 \text{ V; } V_{SEL0} = 0 \text{ V;} \\ &V_{SEL1} = 5 \text{ V; } V_{IN} = 0 \text{ V;} \\ &R_{SENSE} = 1 \text{ K}\Omega; T_j = 125 \text{ °C} \end{split}$	1.435	1.52	1.605	٧	
Temperature coefficient	$T_j = -40 ^{\circ}\text{C} \text{ to } 150 ^{\circ}\text{C}$		-5.5		mV/K	
	$V_{SENSE_TC}(T) = V_{SENSE_TC}(T_0) + dV_{SENSE_TC} / dT * (T - T_0)$					
age analog feedback (/N7040AJ-E only)					
MultiSense output voltage proportional to V _{CC} supply voltage	$V_{CC} = 13 \text{ V}; V_{SEn} = 5 \text{ V}; \\ V_{SEL0} = 5 \text{ V}; V_{SEL1} = 5 \text{ V}; \\ V_{IN} = 0 \text{ V}; R_{SENSE} = 1 \text{ K}\Omega$	3.16	3.23	3.3	V	
(3)	V _{SENSE_VCC} = V _{CC} / 4					
feedback (see <i>Table</i>	<i>10</i>)					
MultiSense output voltage in fault condition	$\begin{split} &V_{CC} = 13 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega; \\ &V_{SEn} = 5 \text{ V; } V_{IN} = 0 \text{ V;} \\ &V_{SEL0} = 0 \text{ V; } V_{SEL1} = 0 \text{ V;} \\ &I_{OUT} = 0 \text{ A; } V_{OUT} = 4 \text{ V} \end{split}$	5		6.6	V	
MultiSense output current in fault condition	V _{CC} = 13 V; V _{SENSE} = 5 V	7	20	30	mA	
ngs (current sense mo	de - see <i>Figure 7</i>)					
Current sense settling time from rising edge of SEn	$V_{IN} = 5 \text{ V}; V_{SEn} = 0 \text{ V to 5 V};$ $R_{SENSE} = 1 \text{ k}\Omega; R_L = 5.2 \Omega$			60	μs	
Current sense disable delay time from falling edge of SEn	$V_{IN} = 5 \text{ V}; V_{SEn} = 5 \text{ V to 0 V};$ $R_{SENSE} = 1 \text{ k}\Omega; R_L = 5.2 \Omega$		5	20	μs	
	Settling time for valid OFF-state open load diagnostic indication from rising edge of SEn OFF-state diagnostic delay time from rising edge of V _{OUT} Te analog feedback (VI) MultiSense output voltage proportional to chip temperature coefficient Temperature coefficient Temperature coefficient Age analog feedback (VI) MultiSense output voltage proportional to V _{CC} supply voltage (3) Feedback (see Table 1) MultiSense output voltage in fault condition MultiSense output current in fault condition MultiSense output current in fault condition MultiSense output current sense mo Current sense settling time from rising edge of SEn Current sense disable delay time from falling	Settling time for valid OFF-state open load diagnostic indication from rising edge of SEn OFF-state diagnostic delay time from rising edge of Vout $V_{N} = 0 \text{ V}; V_{SEn} = 0 \text{ V}$	Settling time for valid OFF-state open load diagnostic indication from rising edge of SEn OFF-state diagnostic delay time from rising edge of V _{OUT} = $4 \text{ V; V}_{SEL0} = 0 \text{ V; V}_{SEL1} = 0 \text{ V; V}_{OUT} = 4 \text{ V; V}_{SEL1} = 0 \text{ V; V}_{OUT} = 0 \text{ V; V}_{SEL1} = 0 \text{ V; V}_{OUT} = 0 \text{ V; V}_{SEL1} = 0 \text{ V; V}_{SEL1} = 0 \text{ V; V}_{OUT} = 0 \text{ V; V}_{SEL1} = 0 \text{ V; V}_{SEL1} = 0 \text{ V; V}_{SEL0} = 0 \text{ V; V}_{SEL1} = 0 \text{ V; V}_{OUT} = 0 \text{ V; DOUT} = 0 \text{ V; V}_{SEL1} = 5 \text{ V; V}_{IN} = 0 \text{ V; V}_{SEL1} = 5 \text{ V; V}_{IN} = 0 \text{ V; V}_{SEL1} = 5 \text{ V; V}_{IN} = 0 \text{ V; V}_{SEL1} = 5 \text{ V; V}_{IN} = 0 \text{ V; V}_{SEL1} = 5 \text{ V; V}_{IN} = 0 \text{ V; V}_{SEL1} = 5 \text{ V; V}_{IN} = 0 \text{ V; V}_{SEL1} = 5 \text{ V; V}_{IN} = 0 \text{ V; V}_{SEL1} = 5 \text{ V; V}_{IN} = 0 \text{ V; V}_{SEL1} = 5 \text{ V; V}_{IN} = 0 \text{ V; V}_{SEL1} = 5 \text{ V; V}_{IN} = 0 \text{ V; V}_{SEL1} = 5 \text{ V; V}_{IN} = 0 \text{ V; V}_{SEL1} = 5 \text{ V; V}_{IN} = 0 \text{ V; V}_{SEL1} = 5 \text{ V; V}_{SENSE} = 1 \text{ K}\Omega; T_{j} = 125 \text{ °C} $ Temperature coefficient T _j = -40 °C to 150 °C Temperature coefficient V _{SENSE_TC} (T) = V _{SENSE_TC} (T ₀) + d' _{T₀} 1.435 age analog feedback (VN7040AJ-E only) MultiSense output voltage V _{SENSE_TC} (T) = V _{SENSE_TC} (T ₀) + d' _{T₀} 1.435 Teedback (see Table 10) MultiSense output voltage V _{SENSE_VCC} = V _{CC} / 4 Teedback (see Table 10) MultiSense output voltage in fault condition V _{CC} = 13 V; R _{SENSE} = 1 kΩ; V _{SENSE} = 1 kΩ; V _{SEN} = 5 V; V	Settling time for valid OFF-state open load diagnostic indication from rising edge of SEn OFF-state diagnostic delay time from rising edge of V _{OUT} = 4 V; V _{SEn} = 5 V; V _{SEL1} = 0 V; V _{SEL1} = 5 V; V _{SEL1} = 0 V; V _{SEL1} = 5 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SEL1} = 5 V; V _{SEL0} = 0 V; V _{SENSE} = 1 KΩ; T _j = 125 °C Temperature coefficient T _j = -40 °C to 150 °C -5.5 **VSENSE_TC**(T) = VSENSE_TC**(T ₀) + dVSENSE of the total to t	Settling time for valid OFF-state open load diagnostic indication from rising edge of SEn	

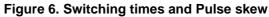
Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_{j} < 150°C) (continued)

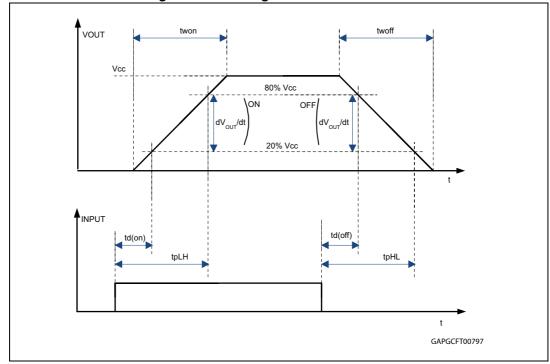
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
^t DSENSE2H	Current sense settling time from rising edge of INPUT	$V_{IN} = 0 \text{ V to 5 V}; V_{SEn} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega; R_L = 5.2 \Omega$		100	250	μs
$\Delta t_{ extsf{DSENSE2H}}$	Current sense settling time from rising edge of I _{OUT} (dynamic response to a step change of I _{OUT})	$V_{\text{IN}} = 5 \text{ V}; V_{\text{SEn}} = 5 \text{ V};$ $R_{\text{SENSE}} = 1 \text{ k}\Omega;$ $I_{\text{SENSE}} = 90 \text{ % of }$ $I_{\text{SENSEMAX}}; R_{\text{L}} = 5.2 \Omega$			100	μs
t _{DSENSE2L}	Current sense turn-off delay time from falling edge of INPUT	V_{IN} = 5 V to 0 V; V_{SEn} = 5 V; R_{SENSE} = 1 k Ω ; R_L = 5.2 Ω		50	250	μs
MultiSense timi	ngs (chip temperature	sense mode - see Figure 8)	(VN704	0AJ-E	only)	
^t DSENSE3H	V _{SENSE_TC} settling time from rising edge of SEn	$V_{SEn} = 0 \text{ V to 5 V};$ $V_{SEL0} = 0 \text{ V; } V_{SEL1} = 5 \text{ V;}$ $R_{SENSE} = 1 \text{ k}\Omega$			60	μs
t _{DSENSE3L}	V _{SENSE_TC} disable delay time from falling edge of SEn	$V_{SEn} = 5 \text{ V to 0 V};$ $V_{SEL0} = 0 \text{ V};$ $V_{SEL1} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs
MultiSense timi	ngs (V _{CC} voltage sens	e mode - see <i>Figure 8</i>) (VN70)40AJ-E	E only)		
^t DSENSE4H	V _{SENSE_VCC} settling time from rising edge of SEn	$V_{SEn} = 0 \text{ V to 5 V};$ $V_{SEL0} = 5 \text{ V};$ $V_{SEL1} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega$			60	μs
t _{DSENSE4L}	V _{SENSE_VCC} disable delay time from falling edge of SEn	$V_{SEn} = 5 \text{ V to } 0 \text{ V};$ $V_{SEL0} = 5 \text{ V}; V_{SEL1} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs
MultiSense timi	ngs (Multiplexer transi	tion times) ⁽⁴⁾ (VN7040AJ-E o	nly)			
t _{D_CStoTC}	MultiSense transition delay from current sense to T _C sense	$V_{IN} = 5 \text{ V}; V_{SEn} = 5 \text{ V};$ $V_{SEL0} = 0 \text{ V};$ $V_{SEL1} = 0 \text{ V to 5 V};$ $I_{OUT} = 1.25 \text{ A};$ $R_{SENSE} = 1 \text{ k}\Omega$			60	μs
t _{D_} TCtoCS	MultiSense transition delay from T _C sense to current sense	$V_{IN} = 5 \text{ V}; V_{SEn} = 5 \text{ V};$ $V_{SEL0} = 0 \text{ V};$ $V_{SEL1} = 5 \text{ V to } 0 \text{ V};$ $I_{OUT} = 1.25 \text{ A};$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs
t _{D_CSto} VCC	MultiSense transition delay from current sense to V _{CC} sense	$V_{IN} = 5 \text{ V}; V_{SEn} = 5 \text{ V};$ $V_{SEL0} = 5 \text{ V};$ $V_{SEL1} = 0 \text{ V to 5 V};$ $I_{OUT} = 1.25 \text{ A};$ $R_{SENSE} = 1 \text{ k}\Omega$			60	μs



Unit **Symbol Parameter Test conditions** Min. Тур. Max. $V_{IN} = 5 \text{ V}; V_{SEn} = 5 \text{ V};$ $V_{SEL0} = 5 \text{ V};$ MultiSense transition delay from V_{CC} sense $V_{SEL1} = 5 V to 0 V;$ 20 μs t_{D_VCCtoCS} $I_{OUT} = 1.25 A;$ to current sense $R_{SENSE} = 1 k\Omega$ $V_{CC} = 13 \text{ V}; T_j = 125 \text{ °C};$ MultiSense transition $V_{SEn} = 5 \text{ V}; V_{SEL1} = 5 \text{ V}; V_{SEL0} = 0 \text{ V to 5 V};$ delay from T_C sense 20 μs t_{D_TCtoVCC} to V_{CC} sense $R_{SENSE} = 1 k\Omega$ $V_{CC} = 13 \text{ V}; T_j = 125 \text{ °C};$ MultiSense transition $V_{SEn} = 5 \text{ V}; V_{SEL1} = 5 \text{ V};$ delay from V_{CC} sense 20 μs t_{D_VCCtoTC} $V_{SEL0} = 5 \text{ V to 0 V};$ to T_C sense


 $R_{SENSE} = 1 k\Omega$


Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_j < 150°C) (continued)


- 1. Parameter specified by design; not subject to production test.
- 2. All values refer to V_{CC} = 13 V; T_i = 25°C, unless otherwise specified.
- 3. V_{CC} sensing and T_{C} are referred to GND potential.
- 4. Transition delay are measured up to +/- 10% of final conditions.

57

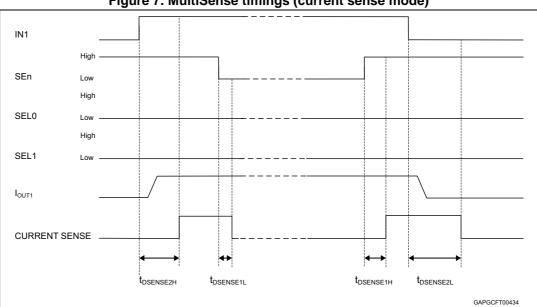
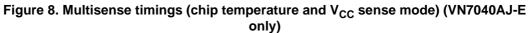
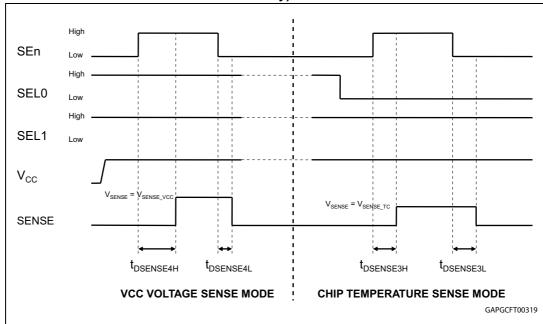




Figure 7. MultiSense timings (current sense mode)

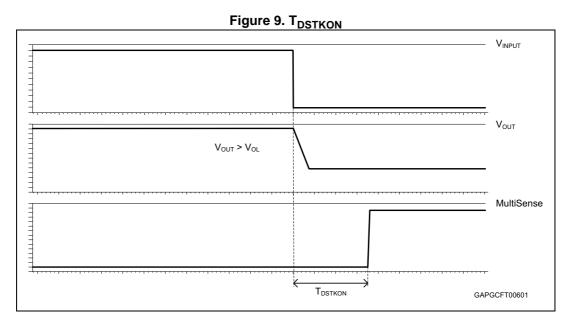
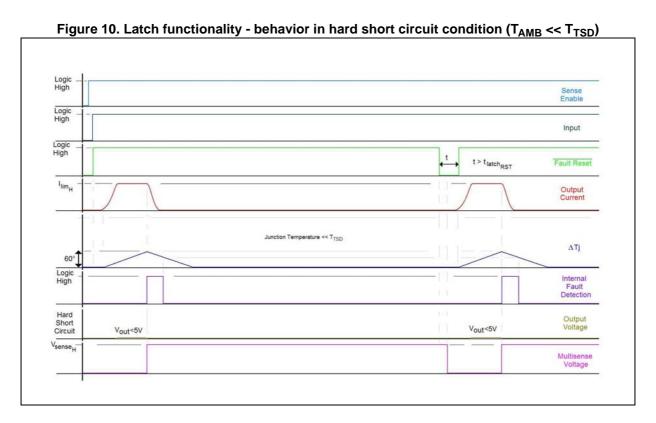


Table 10. Truth table

Mode	Conditions	IN _X	FR (1)	SEn	SEL _X	OUT _X	MultiSense	Comments				
Standby	All logic inputs low	L	L	L	L	L	Hi-Z	Low quiescent current consumption				
		L	Х			L						
Normal	Nominal load connected;	Н	L		fer to	Н	Refer to Table 11	Outputs configured for auto-restart				
	T _j < 150°C	Н	Н			Н		Outputs configured for Latch-off ⁽¹⁾				
	Overload or	L	Х			L						
Overload	short to GND causing:	causing:	causing:	causing:		Н	L		fer to ole 11	Н	Refer to Table 11	Output cycles with temperature hysteresis
	$\Delta T_j > \Delta T_{j_SD}$	Н	Н	1		L		Output latches-off ⁽¹⁾				
Undervoltage	V _{CC} < V _{USD} (falling)	Х	х	Х	Х	L L	Hi-Z Hi-Z	Re-start when V _{CC} > V _{USD} + V _{USDhyst} (rising)				
OFF-state	Short to V _{CC}	L	Х	Refer to Table 11		Н	Refer to					
diagnostics	Open-load	L	Х			Н	Table 11	External pull-up				
Negative output voltage	Inductive loads turn-off	L	Х		fer to ole 11	< 0 V	Refer to Table 11					


^{1.} VN7040AJ only

MultiSense output MUX **SEn** SEL₁ SEL₀ **OFF-state** Negative channel Nomal mode **Overload** diag.(1) output **SO-8** Hi-Z n.a. n.a. n.a. Channel $I_{SENSE} = 1/K * I_{OUT}$ V_{SENSE} = $V_{SENSE} =$ Н Hi-Z n.a. n.a. diagnostic V_{SENSEH} V_{SENSEH} PowerSSO-16 Channel $V_{SENSE} =$ I_{SENSE} = 1/K * I_{OUT} V_{SENSE} = Н L Hi-Z L diagnostic V_{SENSEH} V_{SENSEH} Channel V_{SENSE} = I_{SENSE} = $V_{SENSE} =$ Hi-Z Η 1/K * I_{OUT} diagnostic V_{SENSEH} V_{SENSEH} T_{CHIP} Sense Н Н L $V_{SENSE} = V_{SENSE_TC}$ V_{CC} Sense Н Н Н $V_{SENSE} = V_{SENSE_VCC}$

Table 11. MultiSense multiplexer addressing

2.4 Waveforms

22/54 DocID022406 Rev 8

Downloaded from Arrow.com.

I. In case the output channel corresponding to the selected MUX channel is latched off while the relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic. Example 1: FR = 1; IN $_0$ = 0; OUT $_0$ = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0 Example 2: FR = 1; IN $_0$ = 0; OUT $_0$ = latched, V $_{OUT0}$ > V $_{OL}$; MUX channel = channel 0 diagnostic; Mutisense = V $_{SENSEH}$

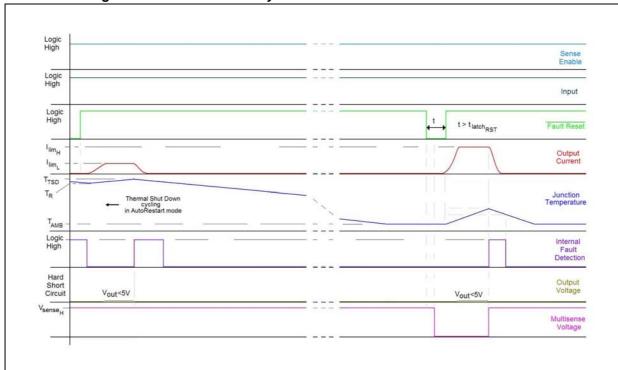
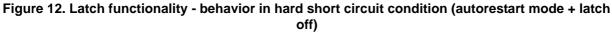
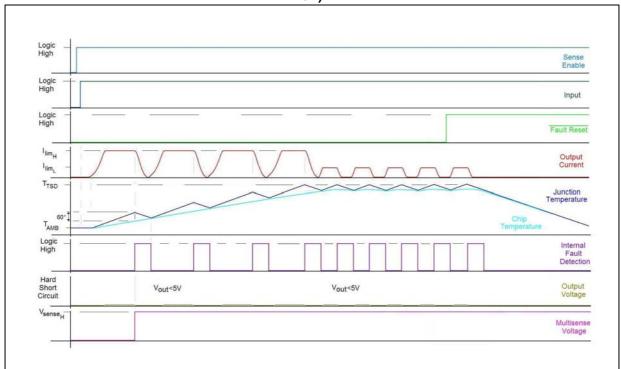
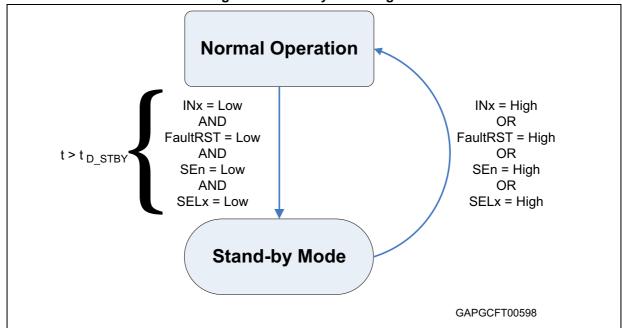
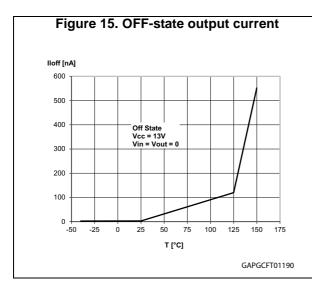
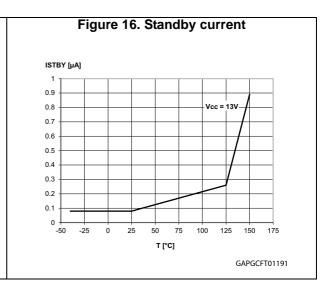
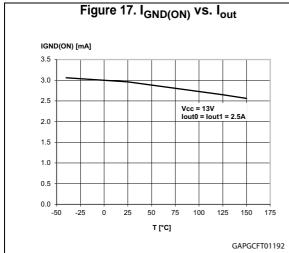



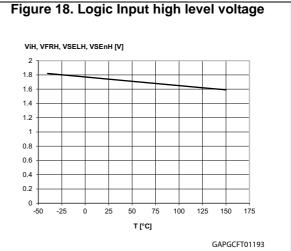
Figure 11. Latch functionality - behavior in hard short circuit condition

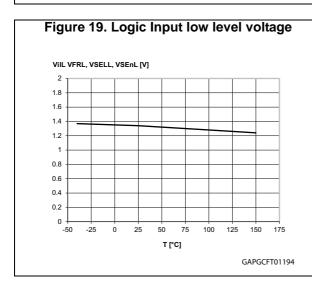



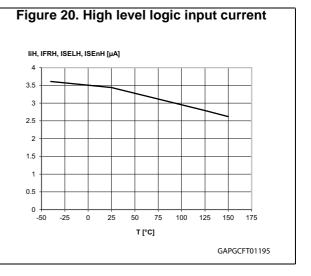


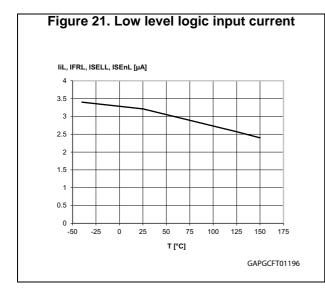

Figure 13. Standby mode activation

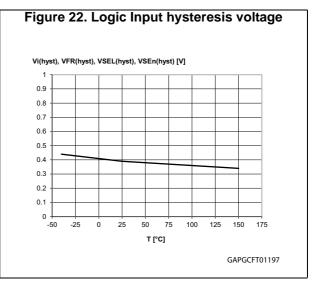


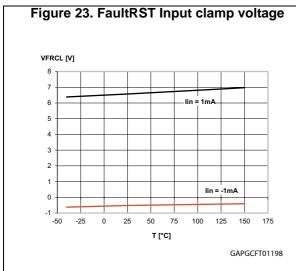


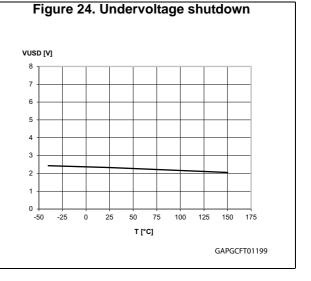

2.5 Electrical characteristics curves

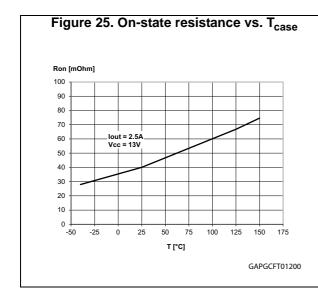


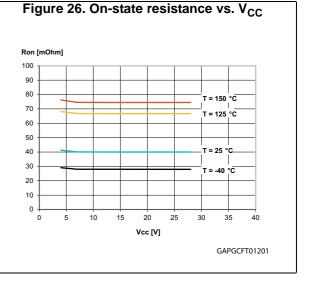


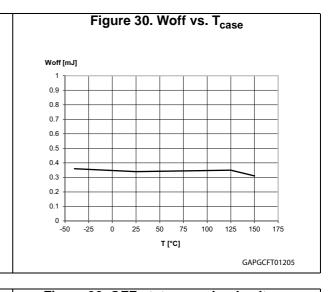


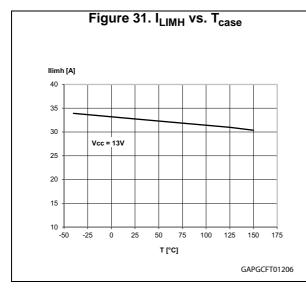

5/

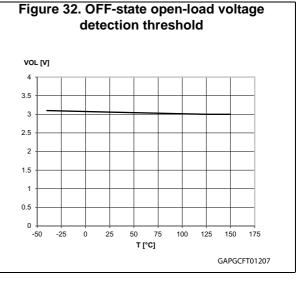

DocID022406 Rev 8


25/54



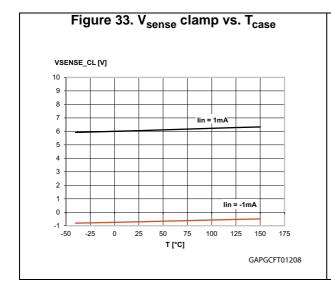


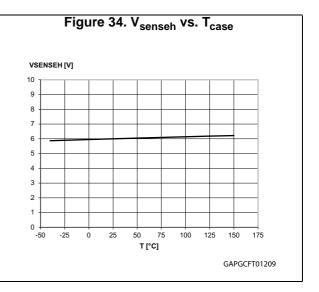




| Control | Con

Figure 28. Turn-off voltage slope (dVout/dt)Off [V/µs] 0.9 0.8 Vcc = 13V RI = 5.2Ω 0.7 0.6 0.3 0.2 0.1 -50 0 50 75 100 125 T [°C] GAPGCFT01203





DocID022406 Rev 8

27/54

577

3 Protections

3.1 Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue.

3.2 Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FaultRST pin, the device switches on again as soon as its junction temperature drops to T_R (see *Table 8*, FaultRST = Low) or remains off (FaultRST = High).

3.3 Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, I_{LIMH}, by operating the output power MOSFET in the active region.

3.4 Negative voltage clamp

In case the device drives inductive load, the output voltage reaches negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG} (see *Table 8*), allowing the inductor energy to be dissipated without damaging the device.

4 Application information

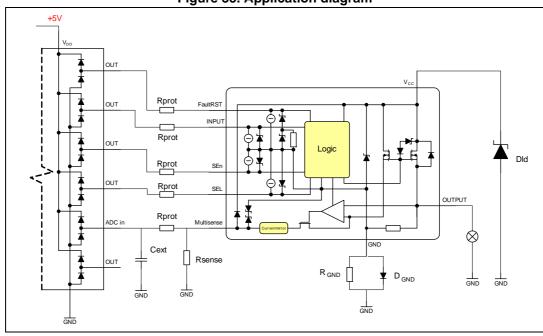


Figure 35. Application diagram

4.1 GND protection network against reverse battery

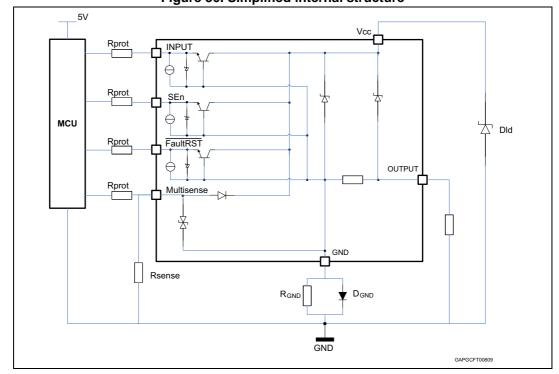


Figure 36. Simplified internal structure

577

30/54

4.1.1 Diode (D_{GND}) in the ground line

A resistor (typ. R_{GND} = 4.7 $k\Omega$) should be inserted in parallel to D_{GND} if the device drives an inductive load.

This small signal diode can be safely shared amongst several different HSDs. Also in this case, the presence of the ground network produces a shift (\approx 600 mV) in the input threshold and in the status output values if the microprocessor ground is not common to the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network.

4.2 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V_{CC} pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in *Table 12*.

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through $V_{\rm CC}$ and GND terminals.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Ta	ble 12.	ISO 7	7637-2 - el	ectrical transien	t conduction alon	g supply line
	_					

Test Pulse 2011(E)	Test pulse severity level with Status II functional performance status		Minimum Burst cycle / repetition pulses or test time		•	Pulse duration and pulse generator internal impedance		
	Level	U _S ⁽¹⁾	unie	min max				
1	III	-112V	500 pulses	0,5 s		2ms, 10Ω		
2a	III	+55V	500 pulses	0,2 s	5 s	50μs, 2Ω		
3a	IV	-220V	1h	90 ms	100 ms	0.1μs, 50Ω		
3b	IV	+150V	1h	90 ms	100 ms	0.1μs, 50Ω		
4 ⁽²⁾	IV	-7V	1 pulse			100ms, 0.01Ω		
Load dump according to ISO 16750-2:2010								
Test B ⁽³⁾		40V	5 pulse	1 min		400ms, 2Ω		

- 1. U_S is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.
- 2. Test pulse from ISO 7637-2:2004(E).
- 3. With 40 V external suppressor referred to ground (-40°C < T_i < 150°C).

4.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line both to prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

Equation 1

 $V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$

Calculation example:

For V_{CCpeak} = -150 V; $I_{latchup} \ge 20 mA$; $V_{OH\mu C} \ge 4.5 V$

 $7.5~k\Omega \leq R_{prot} \leq 140~k\Omega.$

Recommended values: $R_{prot} = 15 \text{ k}\Omega$

4.4 Multisense - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (Multisense) delivering the following signals:

- Current monitor: current mirror of channel output current
- V_{CC} monitor: voltage propotional to V_{CC}
- T_{CASE}: voltage propotional to chip temperature

Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in *Table 11*.

577

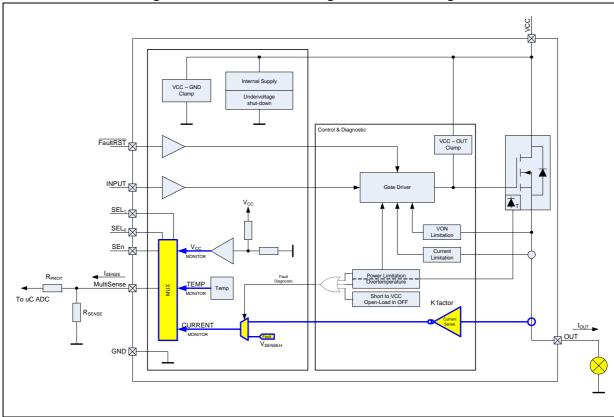


Figure 37. Multisense and diagnostic – block diagram

4.4.1 Principle of Multisense signal generation

Voc

Sense MOS

Main MOS

Vost Monitor

Temperature monitor

Multisense Switch Block

Fault

Multisense Switch Block

GAPGCFT01040

Figure 38. Multisense block diagram

Current monitor

When current mode is selected in the Multisense, this output is capable to provide:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage V_{SENSEH}

The current delivered by the current sense circuit, I_{SENSE} , can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE} , allowing continuous load monitoring and abnormal condition detection.

Normal operation (channel ON, no fault, SEn active)

While device is operating in normal conditions (no fault intervention), V_{SENSE} calculation can be done using simple equations

Current provided by Multisense output: I_{SENSE} = I_{OUT}/K

Voltage on R_{SENSE}: V_{SENSE} = R_{SENSE} · I_{SENSE} = R_{SENSE} · I_{OUT}/K

57

Where:

- V_{SENSE} is voltage measurable on R_{SENSE} resistor
- I_{SENSE} is current provided from Multisense pin in current output mode
- I_{OUT} is current flowing through output
- K factor represent the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying ratio between I_{OUT} and I_{SENSE}.

Failure flag indication

In case of power limitation/overtemperature, the fault is indicated by the Multisense pin which is switched to a "current limited" voltage source, V_{SENSEH} (see *Table 9*).

In any case, the current sourced by the Multisense in this condition is limited to I_{SENSEH} (see *Table 9*).

The typical behavior in case of overload or hard short circuit is shown in *Table 8*, *Table 9* and *Table 10*.

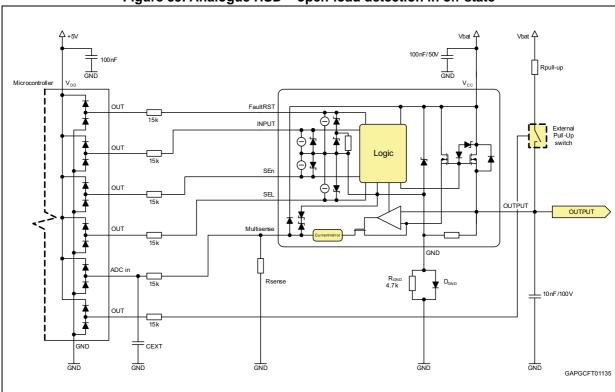


Figure 39. Analogue HSD - open-load detection in off-state

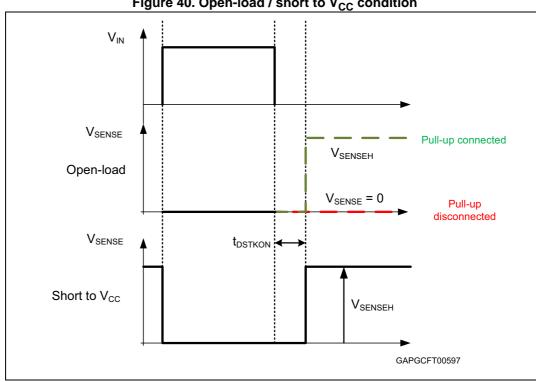


Figure 40. Open-load / short to $V_{\mbox{\footnotesize CC}}$ condition

Table 13. Multisense pin levels in off-state

Condition	Output	Multisense	SEn
	V> V	Hi-Z	L
Open-load	V _{OUT} > V _{OL}	V _{SENSEH}	Н
Орен-юай	V V .	Hi-Z	L
	V _{OUT} < V _{OL}	0	Н
Short to V	V V .	Hi-Z	L
Short to V _{CC}	V _{OUT} > V _{OL}	V _{SENSEH}	Н
Nominal	V _{OUT} < V _{OL}	Hi-Z	L
	VOUI < VOL	0	Н

4.4.2 T_{CASE} and V_{CC} monitor

In this case, MultiSense output operates in voltage mode and output level is referred to device GND. Care must be taken in case a GND network protection is used, because of a voltage shift is generated between device GND and the microcontroller input GND reference.

Figure 41 shows link between $V_{\mbox{\scriptsize MEASURED}}$ and real $V_{\mbox{\scriptsize SENSE}}$ signal.

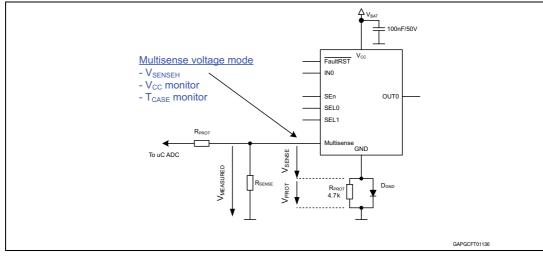


Figure 41. GND voltage shift

V_{CC} monitor

Battery monitoring channel provides V_{SENSE} = V_{CC} / 4.

Case temperature monitor

Case temperature monitor is capable to provide information about actual device temperature. Since diode is used for temperature sensing, following equation describe link between temperature and output V_{SENSE} level:

$$V_{SENSE_TC}(T) = V_{SENSE_TC}(T_0) + dV_{SENSE_TC} / dT * (T - T_0)$$

where dV_{SENSE} TC / $dT \sim typically -5.5$ mV/K (for temperature range (-40°C to +150°C).

4.4.3 Short to V_{CC} and OFF-state open-load detection

Short to V_{CC}

A short circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit.

OFF-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU} .

It is preferable V_{PU} to be switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected.

 R_{PU} must be selected in order to ensure $V_{OUT} > V_{OLmax}$ in accordance with to following equation:

Equation 2

$$R_{PU} < \frac{V_{PU} - 4}{I_{L(off2)min @ 4V}}$$

DocID022406 Rev 8

37/54

4.5 Maximum demagnetization energy (V_{CC} = 13.5 V)

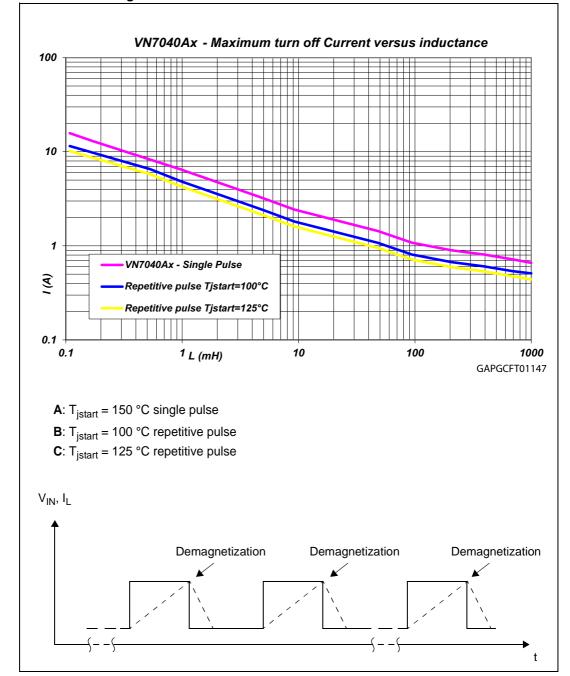


Figure 42. Maximum turn off current versus inductance

Note:

Values are generated with $R_L = 0 \Omega$.

In case of repetitive pulses, T_{jstart} (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

A7/

5 Package and PCB thermal data

5.1 PowerSSO-16 thermal data

Figure 43. PowerSSO-16 on two-layers PCB (2s0p to JEDEC JESD 51-5)

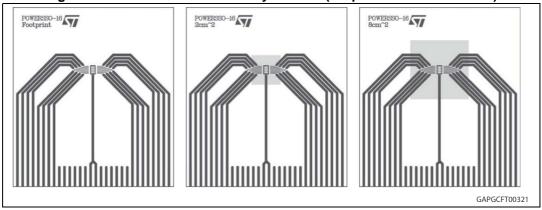


Figure 44. PowerSSO-16 on four-layers PCB (2s2p to JEDEC JESD 51-7)

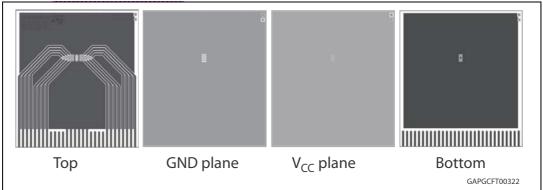


Table 14. PCB properties

Dimension	Value
Board finish thickness	1.6 mm +/- 10%
Board dimension	77 mm x 86 mm
Board Material	FR4
Copper thickness (top and bottom layers)	0.070 mm
Copper thickness (inner layers)	0.035 mm
Thermal vias separation 1.2 mm	
Thermal via diameter 0.3 mm +/- 0.08 mm	
Copper thickness on vias	0.025 mm
Footprint dimension (top layer)	2.2 mm x 3.9 mm
Heatsink copper area dimension (bottom layer) Footprint, 2 cm ² or 8 cm ²	

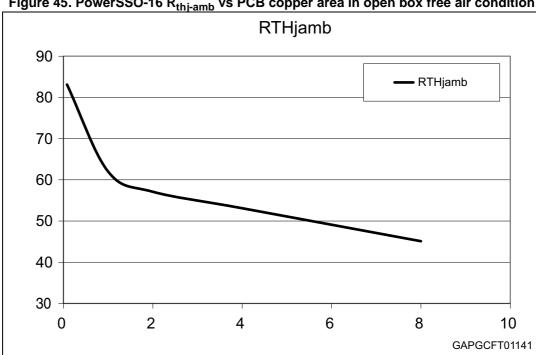
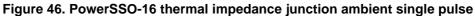
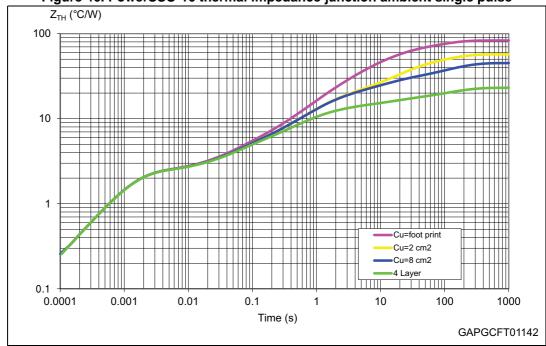




Figure 45. PowerSSO-16 $R_{thi-amb}$ vs PCB copper area in open box free air condition

Equation 3: pulse calculation formula

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$

where $\delta = t_P/T$

Figure 47. Thermal fitting model for PowerSSO-16

Note:

The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Table 15. Thermal parameters

Area/island (cm ²)	Footprint	2	8	4L
R1 (°C/W)	2.3			
R2 (°C/W)	1.8			
R3 (°C/W)	7	7	7	5
R4 (°C/W)	14	6	6	4
R5 (°C/W)	30	20	10	3
R6 (°C/W)	26	20	18	7
C1 (W.s/°C)	0.00045			
C2 (W.s/°C)	0.03			
C3 (W.s/°C)	0.1			
C4 (W.s/°C)	0.2	0.3	0.3	0.4
C5 (W.s/°C)	0.4	1	1	4
C6 (W.s/°C)	3	5	7	18

5.2 SO-8 thermal data

Figure 48. SO-8 on two-layers PCB (2s0p to JEDEC JESD 51-5)

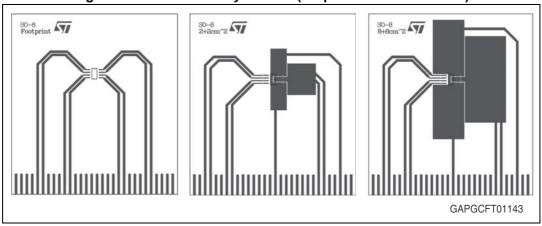
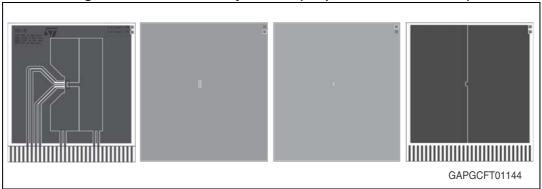



Figure 49. SO-8 on four-layers PCB (2s2p to JEDEC JESD 51-7)

Table 16. PCB properties

Dimension	Value
Board finish thickness	1.6 mm +/- 10%
Board dimension	77 mm x 86 mm
Board Material	FR4
Copper thickness (top and bottom layers)	0.070 mm
Copper thickness (inner layers)	0.035 mm
Thermal vias separation	1.2 mm
Thermal via diameter	0.3 mm +/- 0.08 mm
Copper thickness on vias	0.025 mm
Footprint dimension (top layer)	2.2 mm x 3.9 mm
Heatsink copper area dimension (bottom layer)	Footprint, 2 + 2 cm ² or 8 + 8 cm ²

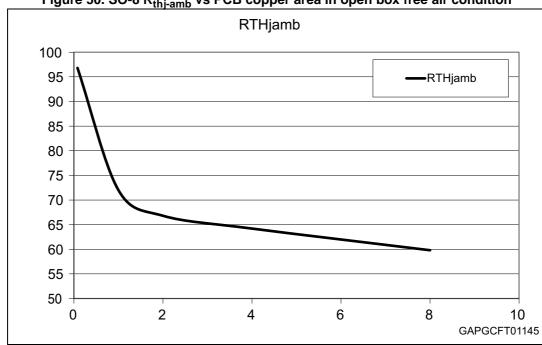
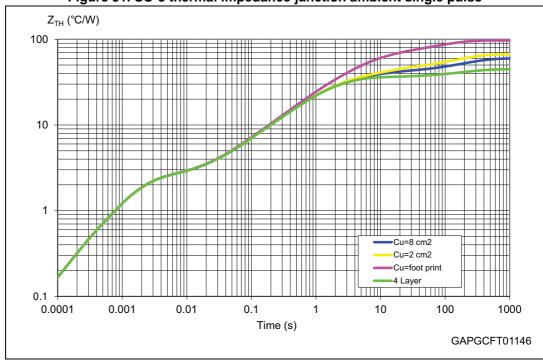



Figure 50. SO-8 R_{thi-amb} vs PCB copper area in open box free air condition

Equation 4: pulse calculation formula

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$

where $\delta = t_P/T$

577

DocID022406 Rev 8

43/54

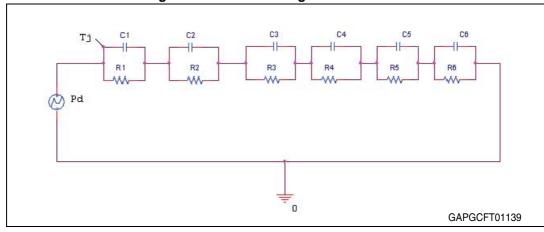


Figure 52. Thermal fitting model for SO-8

Note:

The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Table 17. Thermal parameters

Area/island (cm ²)	Footprint	2	8	4L
R1 (°C/W)	2.3			
R2 (°C/W)	2.5			
R3 (°C/W)	10			
R4 (°C/W)	28	17	17	17
R5 (°C/W)	24	12	9	4
R6 (°C/W)	30	23	19	9
C1 (W.s/°C)	0.0006			
C2 (W.s/°C)	0.03			
C3 (W.s/°C)	0.05			
C4 (W.s/°C)	0.1			
C5 (W.s/°C)	0.4	0.8	0.8	0.8
C6 (W.s/°C)	3	7	11	22

6 Package information

6.1 ECOPACK®

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

6.2 PowerSSO-16 package information

Figure 53. PowerSSO-16 package dimensions 8017965 Ф 999 W CA-ВD BOTTOM VIEW Ф999 MCA-BD SECTION A-A E2 <u>∧</u> ∧ //eeeC - OcccC SEATING PLANE b ⊕ada@CD SECTION B-B <u>/7\/8\</u> _ (b) _ ⅓ ⇗ BASE METAL ⇗ TOP VIEW GAPG1605141159CFT

Table 18. PowerSSO-16 mechanical data

		Millimeters	
Symbol	Min.	Тур.	Max.
Θ	0°		8°
Θ1	0°		
Θ2	5°		15°
Θ3	5°		15°
А			1.70
A1	0.00		0.10
A2	1.10		1.60
b	0.20		0.30
b1	0.20	0.25	0.28
С	0.19		0.25
c1	0.19	0.20	0.23
D		4.90 BSC	
D1	2.90		3.50
е		0.50 BSC	
Е	6.00 BSC		
E1	3.90 BSC		
E2	2.20		2.80
h	0.25		0.50
L	0.40	0.60	0.85
L1		1.00 REF	
N		16	
R	0.07		
R1	0.07		
S	0.20		
	Tolerance of fo	orm and position	
aaa		0.10	
bbb		0.10	
ccc	0.08		
ddd	0.08		
eee		0.10	
fff	0.10		
999		0.15	

6.3 SO-8 package information

A1 SEE VIEW "C"

SEE VIEW "C"

GAPG1605141113CFT

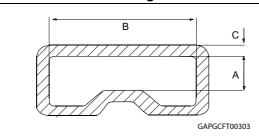
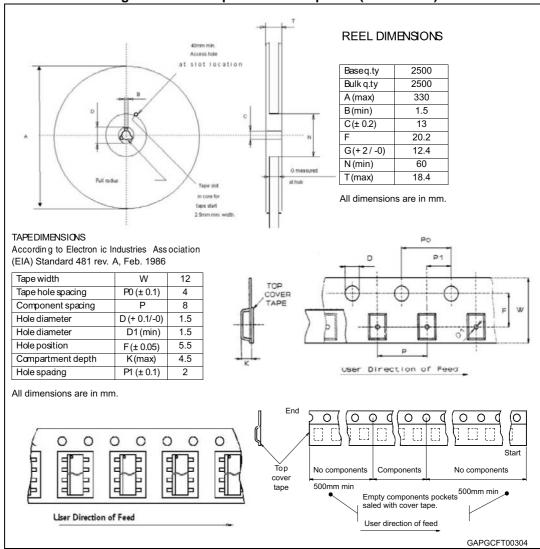

Figure 54. SO-8 package dimensions

Table 19. SO-8 mechanical data

Dim.	mm.		
Dilli.	Min.	Тур.	Max.
А			1.75
A1	0.10		0.25
A2	1.25		
b	0.28		0.48
С	0.17		0.23
D	4.80	4.90	5.00
Е	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27	
h	0.25		0.50
L	0.40		1.27
L1		1.04	
k	0°		8°
ccc			0.10

6.4 Packing information


Figure 55. SO-8 tube shipment (no suffix)

Daga a tu	100
Base q.ty	100
Bulk q.ty	2000
Tube length (± 0.5)	532
Α	3.2
В	6
C (± 0.1)	0.6

All dimensions are in mm

Figure 56. SO-8 tape and reel shipment (suffix "TR")

7 Order codes

Table 20. Device summary

Package	Order codes	
Fackage	Tube	Tape and reel
PowerSSO-16	VN7040AJ-E	VN7040AJTR-E
SO-8	VN7040AS-E	VN7040ASTR-E

57

8 Revision history

Table 21. Document revision history

Date	Revision	Changes
26-Oct-2011	1	Initial release
03-Oct-2012	2	Updated <i>Features</i> list Updated <i>Table 1: Pin functions Table 3: Absolute maximum ratings:</i> - V _{CCPK} , -I _{OUT} , I _{SENSE} , V _{ESD} : updated values - V _{CCJS} : added row - V _{SENSE} : removed row <i>Table 5: Power section:</i> - V _{USDReset} , I _{GND(ON)} : added row - V _{clamp} : updated test conditions and values <i>Table 8: Protections (7 V < V_{CC} < 18 V; -40°C < T_j < 150°C):</i> - I _{LIM} , T _R : added note <i>Table 9: MultiSense (7 V < V_{CC} < 18 V; -40°C < T_j < 150°C):</i> - V _{SENSE} , C _L , K _{OL} , K _{LED} , dK _{LED} , K _O , dK _O /K _O , K ₁ , dK ₁ /K ₁ , K ₂ , dK ₂ /K ₂ , K ₃ , dK ₃ /K ₃ , I _{SENSED} , I _{L(off2)} , V _{SENSE} , T _C , V _{SENSE_VCC} , V _{SENSEH} , I _{SENSEH} ,: updated test condiions and values; - t _{DSENSEH} , I _{SENSEH} ,: t _{DSENSE2H} , t _{DSENSE2L} , Δt _{DSENSE2H} , t _{DSENSE3L} , t _{DSENSE3H} , t _{DSENSE3H} , t _{DSENSE4L} , t _D _{CStoTC} , t _D _C -CtoVCC, t _D -VCCtoCs, t _D -TCtoVCC, t _D -VCCtoTC: updated test condiions - V _{OUT_MSD} , V _{SENSE_SAT} , I _{SENSE_SAT} , I _{OUT_SAT} , t _{D_OL_V} : added rows Updated <i>Figure 6: Switching times and Pulse skew Figure 9: T_{DSTKON}</i> Uploaded <i>Table 10: Truth table</i> : - Overload conditions updated <i>Table 11: MultiSense multiplexer addressing</i> : - Added note Updated <i>Section 2.4: Waveforms</i> Added <i>Chapter 3: Protections</i> and <i>Chapter 4: Application information Figure 39: Analogue HSD – open-load detection in off-state</i> : - X, Y: updated min and max values

Table 21. Document revision history (continued)

Date	Revision	Changes
06-Feb-2013	3	Updated Table 2: Suggested connections for unused and not connected pins Table 3: Absolute maximum ratings: - I _{SENSE} : updated value Updated Table 4: Thermal data Table 6: Switching (V _{CC} = 13 V; -40°C < T _j < 150°C, unless otherwise specified): - t _{d(on)} : updated min value Table 9: MultiSense (7 V < V _{CC} < 18 V; -40°C < T _j < 150°C): - dK _{cal} /K _{cal} : added row - V _{SENSE} _CL, V _{SENSE} _VCC: updated test conditions - K _{LED} , K ₀ , K ₁ , K ₂ , K ₃ , V _{SENSE} _H: updated values - t _{DSTKON} : updated parameter - V _{SENSE} _TC, V _{SENSE} _VCC: updated test conditions and values Updated Table 11: MultiSense multiplexer addressing Removed following tables: Table: Electrical transient requirements (part 1/3) Table: Electrical transient requirements (part 2/3) Table: Electrical transient requirements (part 3/3) Updated Section 3.2: Thermal shutdown, Section 3.4: Negative voltage clamp and Section 4.1.1: Diode (DGND) in the ground line Removed Section: Load dump protection Added Section 4.2: Immunity against transient electrical disturbances and Section 4.5: Maximum demagnetization energy (V _{CC} = 13.5 V) Updated Figure 39: Analogue HSD – open-load detection in off-state and Figure 41: GND voltage shift Updated Chapter 5: Package and PCB thermal data
15-Feb-2013	4	Table 6: Switching ($V_{CC} = 13 \ V$; -40°C < T_j < 150°C, unless otherwise specified): - W_{ON} , W_{OFF} : updated typical and maximum value
15-Mar-2013	5	Table 3: Absolute maximum ratings: - V _{CCPK} : updated parameter I _{OUT} : updated value - E _{MAX} : updated parameter and value Table 6: Switching (V _{CC} = 13 V; -40°C < T _j < 150°C, unless otherwise specified): - W _{ON} , W _{OFF} : updated typical and maximum values Table 9: MultiSense (7 V < V _{CC} < 18 V; -40°C < T _j < 150°C): - K _{OL} , K _{LED} , K ₁ , K ₂ , K ₃ : updated value Added Figure 4: I _{OUT} /I _{SENSE} versus I _{OUT} and Figure 5: Current sense accuracy versus I _{OUT} Added Section 2.5: Electrical characteristics curves Updated Figure 42: Maximum turn off current versus inductance Updated Section 6.2: PowerSSO-16 package information
18-Sep-2013	6	Updated disclaimer.

Table 21. Document revision history (continued)

Date	Revision	Changes
26-May-2014	7	Updated Section 6.2: PowerSSO-16 package information and Section 6.3: SO-8 package information
13-Oct-2014	8	Updated Figure 13: Standby mode activation Updated Table 18: PowerSSO-16 mechanical data

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved

57

54/54