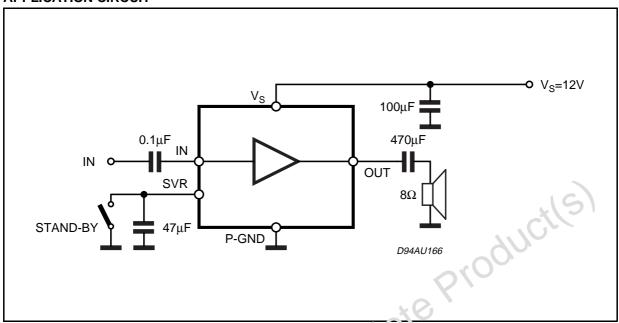

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_S	Operating Supply Voltage	18	V
Ιο	Output Put Peak Current	1.5	Α
T _{op}	Operating Temperature Range	0 to 70	°C
Tj	Junction Temperature	150	°C
T _{stq}	Storage Temperature Range	-40 to 125	°C

PIN CONNECTION (Top view)

THERMAL DATA


Symbol	Parameter	Value	Unit
R _{th j-amb}	Thermal Resistance Junction to ambient (on PCB)	80	°C/W
R _{th j-case}	Thermal Resistance Junction to case	15	°C/W

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C; V_S = 12V; R_L = 8 Ω ; f = 1KHz; unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage Range		4.5		18	V
Is	Quiescent Current			20	30	mA
I _{sb}	Stand-By Current	Pin 3 shorted to GND			0.3	mA
Vo	Quiescent Output Voltage			6		V
A _V	Voltage Gain			32		dB
R _{IN}	Input Impedance			100		ΚΩ
Po	Output Power	THD = 10%	1.8	2		W
THD	Distortion	$P_O = 1W$			1.0	%
SVR	Supply Voltage Rejection	V_{ripple} = 150mVrms; F_{ripple} = 1KHz		50		dB
Eı	Input Noise Voltage	Rg = $10K\Omega$; BW = $20Hz$ to $20KHz$		1.5	5	μV
V_{sb}	Stand-By Enable Voltage				1	V

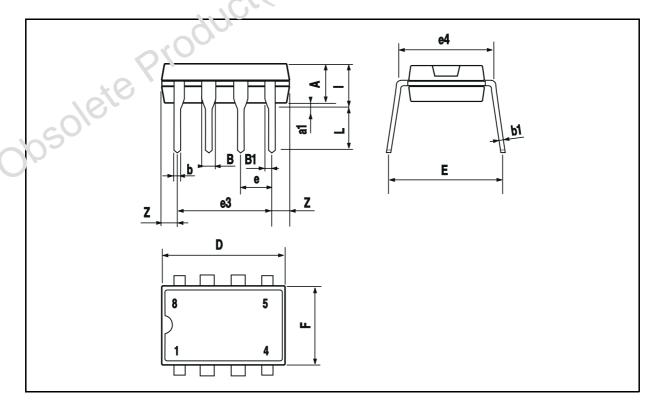
<u> 577</u>

APPLICATION CIRCUIT

APPLICATION HINTS:

For 12V supply and 8Ω speaker application, its maximum power dissipation is about 1W.

Assumming that max ambient temperature is 70°C. Required thermal resistance of the device and heat dissipating means must be equal to (150 - 70)/1 = 80°C/W.


Junction to pin thermal resistance of the package is about 15°C/W. That means external heat sink of about 65°C/W is required.

Cu ground plane of PCB can be used as heat dissipating means.

Stand-By switches must be able to discharge $C_{\mbox{\scriptsize svr}}$ current.

MINIDIP PACKAGE MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α		3.3			0.130		
a1	0.7			0.028			
В	1.39		1.65	0.055		0.065	
B1	0.91		1.04	0.036		0.041	
b		0.5			0.020		
b1	0.38		0.5	0.015		0.020	
D			9.8			0.386	
E		8.8			0.345		
е		2.54			L 100		
e3		7.62			0.300		
e4		7.62		10:10	0.300		
F			7.1	0/0		0.280	
I			7.0			0.189	
L		3.3			0.130		
Z	0.44		1.6	0.017		0.063	

4/5

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products

are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics – Printed in Italy – All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

57

5/5