Contents STGIPN3H60A

Contents

1	Internal	schematic diagram and pin configuration	3
2		al ratings	
	2.1	Absolute maximum ratings	6
	2.2	Thermal data	6
3	Electric	al characteristics	7
	3.1	Inverter part	7
	3.2	Control part	9
4	Applica	tion circuit example	11
	4.1	Guidelines	12
5	Packag	e information	13
	5.1	NDIP-26L type C package information	14
	5.2	NDIP-26L packing information	16
6	Revisio	n history	17

1 Internal schematic diagram and pin configuration

Pin 1 Pin 26 Пww GND GND OUT VCC W, OUT W NC HIN LVG LIN VBOOT HIN W Vboot W LIN W NC NV GND HVG OUT VCC NC V, OUT V HIN LVG LIN VBOOT HIN V LIN V Vboot V NC [ΠU Vcc U GND HIN U VCC OUT U,OUT U HIN LVG LIN VBOOT Vboot U Pin 16 Pin 17 AM09917v1

Figure 1: Internal schematic diagram

577

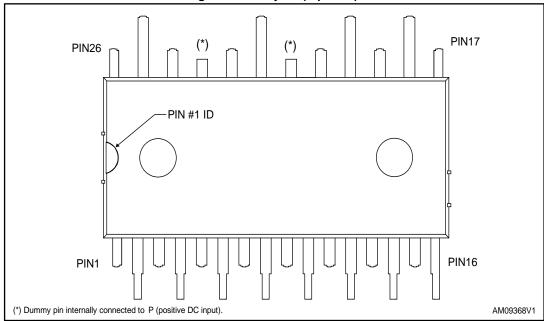

DocID018958 Rev 5

Table 2: Pin description

Pin	Symbol	Description
1	GND	Ground
2	NC	Not connected
3	Vcc W	Low voltage power supply W phase
4	HIN W	High side logic input for W phase
5	LIN W	Low side logic input for W phase
6	NC	Not connected
7	NC	Not connected
8	NC	Not connected
9	V _{CC} V	Low voltage power supply V phase
10	HIN V	High side logic input for V phase
11	LIN V	Low side logic input for V phase
12	NC	Not connected
13	Vcc U	Low voltage power supply for U phase
14	HIN U	High side logic input for U phase
15	NC	Not connected
16	LIN U	Low side logic input for U phase
17	V _{BOOT} U	Bootstrap voltage for U phase
18	Р	Positive DC input
19	U	U phase output
20	Nυ	Negative DC input for U phase
21	V _{BOOT} V	Bootstrap voltage for V phase
22	V	V phase output
23	N _V	Negative DC input for V phase
24	V _{BOOT} W	Bootstrap voltage for W phase
25	W	W phase output
26	Nw	Negative DC input for W phase

Figure 2: Pin layout (top view)

Electrical ratings STGIPN3H60A

2 Electrical ratings

2.1 Absolute maximum ratings

Table 3: Inverter part

Symbol	Parameter	Value	Unit
Vces	Each IGBT collector emitter voltage (V _{IN} ⁽¹⁾ = 0)	600	V
± Ic ⁽²⁾	Each IGBT continuous collector current at T _C = 25°C	3	Α
± I _{CP} (3)	Each IGBT pulsed collector current	18	Α
Ртот	Each IGBT total dissipation at T _C = 25°C	8	W

Notes:

$$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} * V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$

Table 4: Control part

Symbol	Parameter	Min.	Max.	Unit
Vouт	Output voltage applied between $\text{OUT}_{\text{U}},\text{OUT}_{\text{V}},\text{OUT}_{\text{W}}$ - GND	V _{boot} - 18	V _{boot} + 0.3	٧
Vcc	Low voltage power supply	- 0.3	18	V
V _{boot}	Bootstrap voltage	- 0.3	618	V
V _{IN}	Logic input voltage applied between HINi, LINi and G_{ND} for $i=U,V,W$	- 0.3	V _{CC} + 0.3	٧
$\Delta V_{OUT/dT}$	Allowed output slew rate		50	V/ns

Table 5: Total system

Symbol	Parameter	Value	Unit
Viso	Isolation withstand voltage applied between each pin and heatsink plate (AC voltage, t = 60 s.)	1000	V
Tj	Power chips operating junction temperature range	-40 to 150	°C
Tc	T _C Module operation case temperature range -40 to 125		°C

2.2 Thermal data

Table 6: Thermal data

Symbol	Parameter	Parameter Value	
R _{thJA}	Thermal resistance junction-ambient	50	°C/W

577

 $[\]ensuremath{^{(1)}}\!\text{Applied}$ between HINi, LINi and G_{ND} for i = U, V, W.

⁽²⁾Calculated according to the iterative formula:

⁽³⁾Pulse width limited by max junction temperature.

3 Electrical characteristics

3.1 Inverter part

 $T_J = 25$ °C unless otherwise specified.

Table 7: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V	Collector-emitter saturation voltage	$V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 \text{ to } 5 \text{ V},$ $I_{C} = 1 \text{ A}$	1	2.15	2.6	V
V _{CE(sat)}		$V_{CC} = V_{boot} = 15 \text{ V}, V_{IN}^{(1)} = 0 \text{ to } 5 \text{ V},$ $I_{C} = 1 \text{ A}, T_{J} = 125 \text{ °C}$	-	1.65		
Ices	Collector-cut off current (V _{IN} ⁽¹⁾ = 0 "logic state")	V _{CE} = 550 V, V _{CC} = V _{Boot} = 15 V	-		250	μΑ
VF	Diode forward voltage	$V_{IN}^{(1)} = 0$ "logic state", $I_C = 1$ A	-		1.7	V

Notes:

Table 8: Inductive load switching time and energy

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{on} (1)	Turn-on time		ı	275	-	
t _{c(on)} (1)	Crossover time (on)	V _{DD} = 300 V,	-	90	-	
t _{off} (1)	Turn-off time	$V_{CC} = V_{boot} = 15 \text{ V},$	-	890	-	ns
t _{c(off)} (1)	Crossover time (off)	$V_{IN}^{(2)} = 0 - 5 V,$	-	125	-	
t _{rr}	Reverse recovery time	Ic = 1 A (see Figure 4: "Switching time	-	50	-	
Eon	Turn-on switching energy	definition")	-	18	-	1
E _{off}	Turn-off switching energy		-	13	-	μJ

Notes:

 $^{^{(1)}}$ Applied between HIN_i, LIN_i and G_{ND} for i = U, V, W (LIN inputs are active-low).

 $^{^{(1)}}$ toN and toFF include the propagation delay time of the internal drive. tc(ON) and tc(OFF) are the switching time of IGBT itself under the internally given gate driving condition.

 $^{^{(2)}}$ Applied between HIN_i, LIN_i and G_{ND} for i = U, V, W (LIN inputs are active-low).

Figure 3: Switching time test circuit

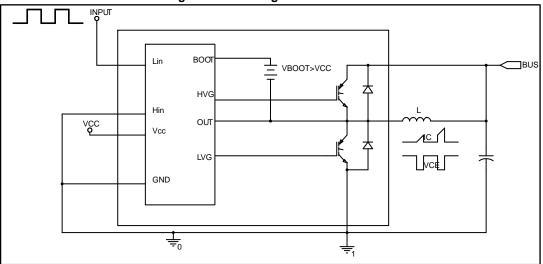
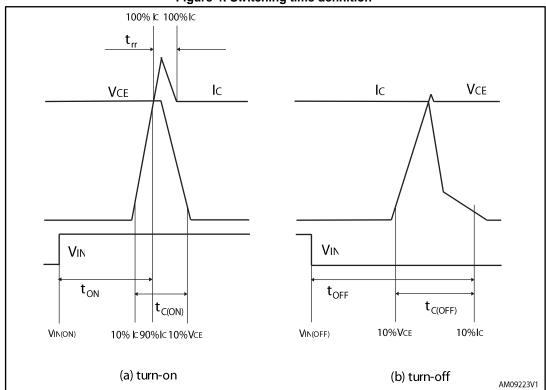



Figure 4: Switching time definition

3.2 Control part

Table 9: Low voltage power supply (V_{CC} = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vcc_thon	Undervoltage turn-on threshold		9.1	9.6	10.1	V
V _{CC_thOFF}	Undervoltage turn-off threshold		7.9	8.3	8.8	V
Vcc_hys	Undervoltage hystereses		0.9			V
I _{qccu}	Undervoltage quiescent supply current	Vcc < 7.9 V		250	330	μΑ
I _{qcc}	Quiescent current	Vcc = 15 V		350	450	μΑ

Table 10: Bootstrapped voltage (Vcc = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{boot_thON}	Undervoltage turn-on threshold		8.5	9.5	10.5	V
V_{boot_thOFF}	Undervoltage turn-off threshold		7.2	8.3	9.2	٧
V _{boothys}	Undervoltage hystereses		0.9			V
I _{qboot}	Quiescent current				250	μΑ
R _{DS(on)}	Bootstrap driver on-resistance	V _{CC} > 12.5 V		125		Ω

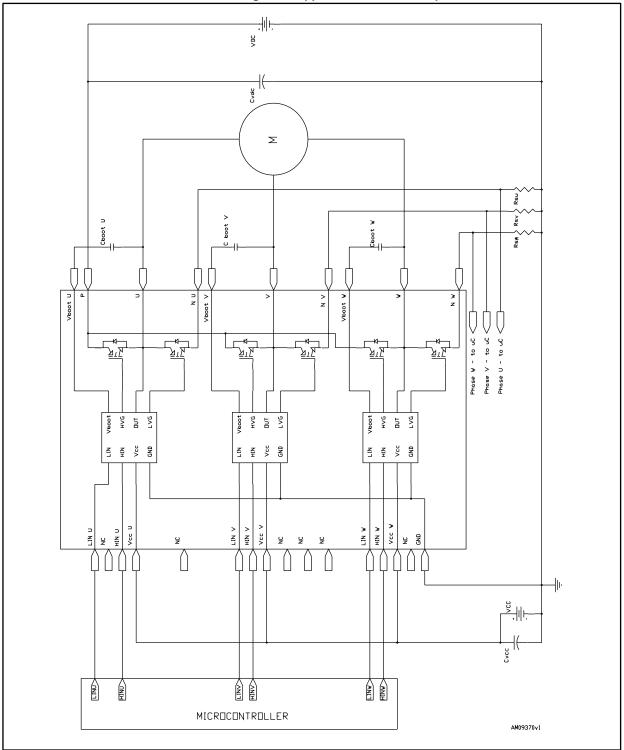
Table 11: Logic inputs (Vcc = 15 V unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vil	Low level logic input voltage				1.1	٧
V _{ih}	High level logic input voltage		1.8			\
lil	Low level logic input current (1)	$V_{IN} = 0 \ V^{(1)}$	-1			μΑ
lih	High level logic input current (1)	V _{IN} = 15 V ⁽¹⁾		20	70	μΑ
Dt	Dead time ⁽²⁾			320		ns

Notes:

 $^{^{(1)}}$ Applied between HIN_i, LIN_i and G_{ND} for i = U, V, W

⁽²⁾See Figure 5: "Dead time and interlocking definition"


LIN
HIN
LVG
HVG

AM03794v1

Figure 5: Dead time and interlocking definition

4 Application circuit example

Figure 6: Application circuit example

Application designers are free to use a different scheme according with the specifications of the device.

DocID018958 Rev 5

11/18

4.1 Guidelines

- Input signals HIN, LIN are active-high logic. A 500 k Ω (typ.) pull-down resistor is built-in for each high side input. If an external RC filter is used for noise immunity, attention should be given to the variation of the input signal level.
- To prevent input signal oscillation, the wiring of each input should be as short as possible.
- By integrating an application-specific type HVIC inside the module, direct coupling to the MCU terminals without an opto-coupler is possible.
- Each capacitor should be located as close as possible to the pins of the IPM.
- Low inductance shunt resistors should be used for phase leg current sensing.
- Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible. Additional high frequency ceramic capacitors mounted close to the module pins will further improve performance.

These guidelines are useful for application design to ensure the specifications of the device. For further details, please refer to the relevant application note AN4043.

Table 12: Recommended operating conditions

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{PN}	Supply voltage	Applied between P-Nu, Nv, Nw		300	500	V
Vcc	Control supply voltage	Applied between V _{CC} -GND	12	15	17	V
V _{BS}	High side bias voltage	Applied between VBOOTi-OUTi for i = U, V, W	11.5		17	V
t _{dead}	Blanking time to prevent Arm-short	For each input signal	1.5			μs
f _{PWM}	PWM input signal	-40°C < T _c < 100 °C -40°C < T _j < 125 °C			25	kHz
Tc	Case operation temperature				100	°C

STGIPN3H60A Package information

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

DocID018958 Rev 5

5.1 NDIP-26L type C package information

Figure 7: NDIP-26L type C package outline

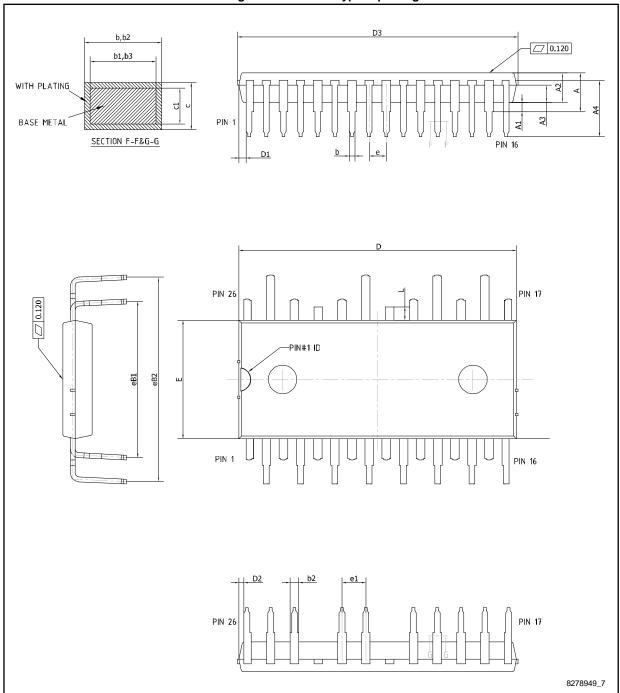


Table 13: NDIP-26L type C mechanical data

	rable 13. Non -20L type o mechanical data				
Dim.	mm				
	Min.	Тур.	Max.		
А			4.40		
A1	0.80	1.00	1.20		
A2	3.00	3.10	3.20		
A3	1.70	1.80	1.90		
A4	5.70	5.90	6.10		
b	0.53		0.72		
b1	0.52	0.60	0.68		
b2	0.83		1.02		
b3	0.82	0.90	0.98		
С	0.46		0.59		
c1	0.45	0.50	0.55		
D	29.05	29.15	29.25		
D1	0.50	0.77	1.00		
D2	0.35	0.53	0.70		
D3			29.55		
Е	12.35	12.45	12.55		
е	1.70	1.80	1.90		
e1	2.40	2.50	2.60		
eB1	16.10	16.40	16.70		
eB2	21.18	21.48	21.78		
L	1.24	1.39	1.54		

5.2 NDIP-26L packing information

Figure 8: NDIP-26L tube dimensions (dimensions are in mm)

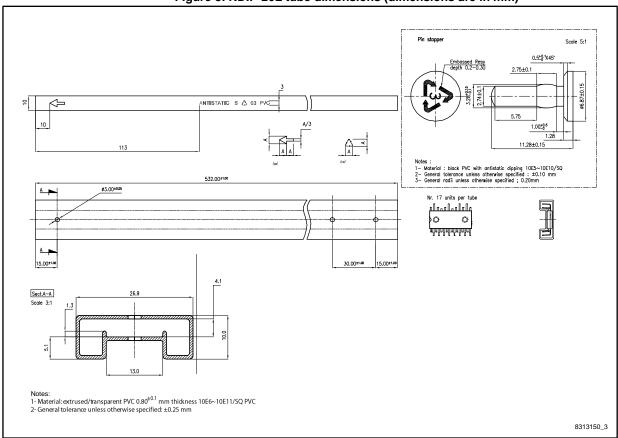


Table 14: Shipping details

Parameter	Value
Base quantity	17 pcs
Bulk quantity	476 pcs

STGIPN3H60A Revision history

6 Revision history

Table 15: Document revision history

Date	Revision	Changes	
23-Jun-2011	1	Initial release.	
09-Jan-2012	2	Document status promoted from preliminary data to datasheet. Added Figure 8 on page 15.	
03-Jul-2012	3	Modified: Min. and Max. value Table 4 on page 6. Added: <i>Table 11 on page 12</i> .	
14-Mar-2014	4	Updated Figure 3: Switching time test circuit. Updated Section 5: Package mechanical data.	
06-Sep-2016	5	Updated Section 5.1: "NDIP-26L type C package information" and Section 5.2: "NDIP-26L packing information" Minor text changes	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

