ABSOLUTE MAXIMUM RATINGS | Lead Temp. (Soldering, 10 Seconds) | 300°C | |--------------------------------------|---------------| | Storage Temperature Range | 65° to +150°C | | Operating Junction Temperature Range | | | SPX1585 Control Section | 45°C +125°C | | SPX1585 Power Transistor | -45°C +150°C | **ELECTRICAL CHARACTERISTICS** (NOTE 1) at I_{OUT} = 10mA, T_A=25°C, unless otherwise specified. | PARAMETER | PARAMETER CONDITIONS Typ | Тур | SPX1585A | | SPX1585 | | UNITS | |---|---|-----------------|----------|-------|---------|-------|-------| | | | | Min | Max | Min | Max | - | | 1.5V Version | • | • | | | • | • | • | | Output Voltage (Note 2) | SPX1585-1.5V, 0 < I _{OUT} < 5A, 3.3V <v<sub>IN<10V</v<sub> | 1.5 | 1.485 | 1.515 | 1.47 | 1.53 | V | | | | | 1.47 | 1.53 | 1.455 | 1.545 | | | 2.5V Version | · | | | | | | | | Output Voltage (Note 2) | SPX1585-2.5V, 0 < I _{OUT} < 5A, 4.0V <v<sub>IN<10V</v<sub> | 2.5 | 2.475 | 2.525 | 2.45 | 2.55 | V | | | | | 2.45 | 2.55 | 2.425 | 2.575 | 1 | | 3.3V Version | • | • | | • | | • | • | | Output Voltage (Note 2) | SPX1585-3.3V, 0 < I _{OUT} < 5A, 4.8V <v<sub>IN<10V</v<sub> | 3.3 | 3.267 | 3.333 | 3.234 | 3.366 | V | | | | | 3.234 | 3.366 | 3.069 | 3.399 | All Voltage Options | | | | | | | | | Reference Voltage (Vref) | $V_{IN} \le 7V$, $P \le P_{MAX}$
1.5 $V \le (V_{IN} - V_{OUT}) \le 5.75V$, $10mA \le I_{OUT} \le 5A$ | 1.250 | 1.225 | 1.270 | 1.225 | 1.270 | V | | Min. Load Current (Note 3) | $1.5V \le (V_{IN} - V_{OUT}) \le 5.75V$ | 5 | | 10 | | 10 | V | | Line Regulation (ΔVref(Vin)) | 2.75 V≤V _{IN} ≤7V, Iout=10mA, T _J =25°C (Note 3) | 0.005 | | 0.2 | | 0.2 | % | | | V _{IN} ≤7V, I _{OUT} =0mA, T _J =25°C (Note 2) | 0.005 | | 0.2 | | 0.2 | 1 | | Load Regulation(ΔVref(Iout)) | 10mA≤I _{OUT} ≤5A, (V _{IN} -V _{OUT})=3V, T _J =25°C (Note 3) | 0.05 | | 0.3 | | 0.3 | % | | | $0 \le I_{OUT} \le 5A$, $V_{IN} = 7V$, $T_{J} = 25$ °C (Note 2) | 0.05 | | 0.3 | | 0.3 | | | Dropout Voltage | ΔV_{REF} =1% I_{OUT} = 5A (Note 3) I_{OUT} < 5A (Note 2) | 1.1 | | 1.2 | | 1.2 | | | Current Limit
Iout(MAX) | $V_{IN}=7V$ | 6 | 5.2 | | 5.2 | | A | | | $1.4V \le (V_{IN} - V_{OUT}) \text{ (Note3)}$ | | | | | | | | Long Term Stability | T _A =125°C, 1000 Hrs. | 0.3
(Note 2) | | 1 | | 1 | % | | Thermal Regulation (ΔVout(Pwr)) | T _A =25°C, 20 ms pulse | 0.01 | | 0.020 | | 0.020 | %/W | | Temperature Stability $(\Delta V out(T))$ | | 0.25 | | | | | % | | Output Noise, RMS | 10Hz to 10kHz T _A =25°C | 0.003 | | | | | % Vo | | Thermal Resistance | TO-220 Junction to Tab
Junction to Ambient | | | 3.0 | | 3.0 | °C/W | | | | | | 60 | | 60 | | | | DD Package Junction to Tab | | | 3.0 | | 3.0 | 1 | | | Junction to Ambient | | | 60 | | 60 | 1 | The Bold specifications apply to the full operating temperature range. Note 1: Changes in output voltage due to heating effects are covered under the specification for thermal regulation. Note 2: Fixed Version Only Note 3: Adjustable Version Only ## **APPLICATION HINTS** The SPX1585 incorporates protection against over-current faults, reversed load insertion, over temperature operation, and positive and negative transient voltages. However, the use of an output capacitor is required in order to insure the stability and the performance of the device. ## Stability The output capacitor is part of the regulator's frequency compensation system. Either a $22\mu F$ aluminum electrolytic capacitor or a $10\mu F$ solid tantalum capacitor between the output terminal and ground guarantees stable operation for all operating conditions. The recommended value for ESR is 0.50hms or less. However, in order to minimize overshoot and undershoot, and therefore optimize the design, please refer to the section 'Ripple Rejection'. ## **Ripple Rejection** Ripple rejection can be improved by adding a capacitor between the ADJ pin and ground. When ADJ pin bypassing is used, the value of the output capacitor required increases to its maximum (220 μ F for an aluminum electrolytic capacitor, or 47 μ F for a solid tantalum capacitor). If the ADJ pin is not bypassed, the value of the output capacitor can be lowered to 10 μ F for an electrolytic aluminum capacitor or 4.7 μ F for a solid tantalum capacitor. However the value of the ADJ-bypass capacitor should be chosen with respect to the following equation: $$C = 1 / (6.28 * F_R * R_1)$$ Where C = value of the capacitor in Farads (select an equal or larger standard value), F_R = ripple frequency in Hz, R_1 = value of resistor R_1 in Ohms. If an ADJ-bypass capacitor is used, the amplitude of the output ripple will be independent of the output voltage. If an ADJ-bypass capacitor is not used, the output ripple will be proportional to the ratio of the output voltage to the reference voltage: $$M = V_{OUT} / V_{REF}$$ Where M = multiplier for the ripple seen when the ADJ pin is optimally bypassed. $V_{REF} = Reference Voltage$ #### Reducing parasitic resistance and inductance One solution to minimize parasitic resistance and inductance is to connect in parallel capacitors. This arrangement will improve the transient response of the power supply if your system requires rapidly changing current load condition. #### **Thermal Consideration** Although the SPX1585 offers some limiting circuitry for overload conditions, it is necessary not to exceed the maximum junction temperature, and therefore to be careful about thermal resistance. The heat flow will follow the lowest resistance path, which is the Junction-to-case thermal resistance. In order to insure the best thermal flow of the component, a proper mounting is required. Note that the case of the device is electrically connected to the output. If the case must be electrically isolated, a thermally conductive spacer can be used. However do not forget to consider its contribution to thermal resistance. Assuming: $$V_{IN} = 10V$$, $V_{OUT} = 5V$, $I_{OUT} = 1.5A$, $T_A = 50$ °C/W, $\theta_{Heatsink\ Case} = 6$ °C/W, $\theta_{Heatsink\ Case} = 0.5$ °C/W, $\theta_{JC} = 3$ °C/W Power dissipation under this condition $$P_D = (V_{IN} - V_{OUT}) * I_{OUT} = 7.5W$$ Junction Temperature $$T_{J} = T_{A} + P_{D} * (\theta_{Case-HS} + \theta_{HS} \theta_{JC})$$ For the Control Section $$T_J = 50 + 7.5*(0.5 + 6=3) = 121.25$$ °C 121.25°C < T_{J (max)} for the Control & Power Sections. In both conditions, reliable operation is insured by adequate junction temperature. ### **Basic Adjustable Regulator** Fig.2 Basic Adjustable Regulator ### **Output Voltage** Consider Figure 2. The resistance R_1 generates a constant current flow, normally the specified load current of 10mA. This current will go through the resistance R_2 to set the overall output voltage. The current I_{ADJ} is very small and constant. Therefore its contribution to the overall output voltage is very small and can generally be ignored. Fig.3 Basic Adjustable Regulator #### **Load Regulation** Parasitic line resistance can degrade load regulation. In order not to affect the behavior of the regulator, it is best to connect directly the R_1 resistance from the resistor divider to the case, and not to the load. For the same reason, it is best to connect the resistor R_2 to the Negative side of the load. **Basic Fixed Regulator** ### **Output Voltage** The fixed voltage LDO voltage regulators are simple to use regulators since the V_{OUT} is preset to the specifications. It is important, however, to provide the proper output capacitance for stability and improvement. For most operating conditions a capacitance of 22uF tantalum or 100uF electrolytic will ensure stability and prevent oscillation. # TYPICAL APPLICATIONS V_{IN} O IN SPX1585 OUT R_1 C_2 $V_{\text{OUT}} = V_{\text{REF}} (1 + \underline{R_2}) + I_{\text{ADJ}} R_2$ R_2 Fig. 4 5A Current output Regulator Fig. 5 Typical Adjustable Regulator Fig.7 5V Regulator with Shutdown ## TYPICAL CHARACTERISTICS # TYPICAL PERFORMANCE CHARACTERISTICS ## ORDERING INFORMATION | Ordering No. | Precision | Output Voltage | Packages | | | | |---------------|-----------|-----------------------|-----------------|--|--|--| | SPX1585U | 2% | Adj | 3 Lead TO-220 | | | | | SPX1585U-1.5 | 2% | 1.5V | 3 Lead TO-220 | | | | | SPX1585U-2.5 | 2% | 2.5V | 3 Lead TO-220 | | | | | SPX1585U-3.3 | 2% | 3.3V | 3 Lead TO-220 | | | | | SPX1585AU | 1% | Adj | 3 Lead TO-220 | | | | | SPX1585AU-1.5 | 1% | 1.5V | 3 Lead TO-220 | | | | | SPX1585AU-2.5 | 1% | 2.5V | 3 Lead TO-220 | | | | | SPX1585AU-3.3 | 1% | 3.3V | 3 Lead TO-220 | | | | | SPX1585T | 2% | Adj | 3 Lead TO-263 | | | | | SPX1585T-1.5 | 2% | 1.5V | 3 Lead TO-263 | | | | | SPX1585T-2.5 | 2% | 2.5V | 3 Lead TO-263 | | | | | SPX1585T-3.3 | 2% | 3.3V | 3 Lead TO-263 | | | | | SPX1585AT | 1% | Adj | 3 Lead TO-263 | | | | | SPX1585AT-1.5 | 1% | 1.5V | 3 Lead TO-263 | | | | | SPX1585AT-2.5 | 1% | 2.5V | 3 Lead TO-263 | | | | | SPX1585AT-3.3 | 1% | 3.3V | 3 Lead TO-263 | | | | Available in Lead free packaging. To order add "-L" suffix to the part number. EXAMPLE: SPX1585U /ER = standard, SPX1585U /ER-L = lead free. SIGNAL PROCESSING EXCELLENCE # **Sipex Corporation** Headquarters and Main Offices: 22 Linnell Circle Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001 e-mail: sales@sipex.com 233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 935-7600 FAX: (408) 934-7500 Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.