SP510

ULTRA HIGH SPEED MULTIPROTOCOL TRANSCEIVER

REV. 1.0.1

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Supply Voltage (Vcc)+ 7.0V
$Logic\text{-Interface Voltage }(V_L)V_L \leq Vcc$
Input voltage at TTL input pins 0.3V to $V_L + 0.5 V_L$
Receiver Input voltage±15.5V
Driver output (from Ground)7.5V to +12.5V
Short Circuit Duration, TxOUT to GND, Continuous

Continuous Power Dissi	pation at Ta = +70° C
100-Pin QFP	1520 mW
(derate 19.0 mW / °C ab	ove 70° C)
⊕JA 5	52.7 °C/W, ⊚JC 6.5 °C/W
Storage Temperature	65°C to +150°C
Lead Temperature (sold	ering, 10s) 300° C

RECOMMENDED OPERATING CONDITIONS

Supply Voltage (Vcc) 4.75V to 5.25V								
Logic-Interface 5.25V	Supply	Voltage	(V _L)1.65V	to				
Operating Temp	oerature F	Range	40° C to +85°	С				

TABLE 1: DC ELECTRICAL CHARACTERISTICS

PARAMETERS	SYMBOL	TEST CONDITIONS	MIN.	TYP	MAX	Unit
Vcc Supply Voltage	V _{CC}		4.75		5.25	V
Logic Interface Voltage	V _L	$V_{CC} \ge V_L$	1.65		5.25	V
I _{CC} Shutdown	I _{CCSD}			200		μΑ
I _{CC} Supply Current	I _{CC}				300	mA
	DRIV	ER INPUT AND LOGIC INPUT PINS	<u>'</u>			
Logic Input High	V _{IH}		2.0			V
Logic Input Low	V _{IL}				0.4	V
		RECEIVER OUTPUTS	<u>'</u>			
Receiver Logic Output Low	V _{OL}	I _{OUT} = -3.2 mA			0.4	V
Receiver Logic Output High	V _{OH}	I _{OUT} = 1 mA	I _{OUT} = 1 mA		V _L + 0.3	V
Receiver Output Short-Circuit Current	I _{OSS}	0V < V _O < V _{CC}		±20	±60	mA
Receiver Output Leakage Cur- rent	I _{OZ}	Receivers disabled. 0.4V < V _O < 5.25V		±0.05	±1	μΑ
	l	V.28 / RS-232 DRIVERS				
Output Voltage Swing	V _T	Output load = $3k\Omega$ to GND Fig. 3	±5.0	±6.0	±15.0	V
	V _{oc}	Output load = Open Circuit Fig.2			±15.0	V
Short Circuit Current	I _{SC}	V _{OUT} = 0V, Fig 5			±100	mA
Power-Off Impedance		Fig. 6	300			Ω
	'	V.28 / RS-232 RECEIVERS	- '		<u>'</u>	
Input Voltage Range			-15		15	V
Input Threshold Low			0.8	1.2		V
Input Threshold High				1.7	3.0	V
Input Hysteresis				500		mV
Input Resistance		Fig. 8	3	5	7	kΩ
Open Circuit Bias	V _{oc}	Fig. 9			±2.0	V

REV. 1.0.1

DC ELECTRICAL CHARACTERISTICS

PARAMETERS	SYMBOL	TEST CONDITIONS	Min.	Түр	Max	Unit
		V.10 / RS-423 DRIVERS				
Open Circuit Voltage	V _{OC}	Fig.10	±4.0		±6.0	V
Test Terminated Voltage	V _T	Fig. 11	0.9 V _{OC}			V
Short Circuit Current	I _{SC}	Fig. 12			±150	mA
Power-Off Current		Fig. 13			±100	μΑ
	,	V.10 / RS-423 RECEIVERS	l l		<u> </u>	
Input Current	I _{IA}	Fig. 15 and 16	-3.25		+3.25	mA
Input Impedance			4	15		kΩ
Sensitivity					±0.2	V
		V.11 / RS-422 DRIVERS				
Open Circuit Voltage	V _{OC} , V _{OCA} , V _{OCB}	Fig. 17			±6.0	V
Test Terminated Voltage	V _T	Fig. 18	±2.0			V
Balance	ΔV_{T}	Fig. 18			±0.4	V
Driver DC Offset	V _{OS}	Fig. 18			+3.0	V
Offset Balance	ΔV _{OS}	Fig. 18			±0.4	V
Short Circuit Output Current	I _{SA,} I _{SB}	Fig. 19			±150	mA
Power-Off Current		Fig. 20			±100	μΑ
	,	V.11 / RS-422 RECEIVERS				
Receiver Input Range	V _{CM}		-7		+7	V
Input Current	$I_{IA,}I_{IB}$	Fig. 21 and 23			±3.25	mV
Input Current with Termination	I _{IA,} I _{IB}	Fig. 24 and 25			±60.75	mA
Receiver Input Impedance	R _{IN}	-10V ≤ V _{CM} ≤ +10V	4	15		kΩ
Receiver Sensitivity	V _{TH}				±200	mV
Receiver Input Hysteresis	ΔV_{TH}	V _{CM} = 0 V		15		mV
V.3	5 DRIVERS (AL	L VALUES MEASURE WITH TERM	_OFF = '0')		<u>'</u>	
Test Terminated Voltage	V _T	Fig. 26	±0.44		±0.66	V
Offset	V _{OS}	Fig. 26			±0.6	V
Output Overshoot		Fig. 26, V _{ST} = Steady State Voltage	-0.2V _{ST}		+0.2V _{ST}	V
Source Impedance		Fig. 29, $Z_S = V_2 / V_1 \times 50\Omega$	50		150	Ω

PARAMETERS	SYMBOL	TEST CONDITIONS	MIN.	Түр	MAX	Unit
Short Circuit Impedance		Fig. 28	135		165	Ω
V.35 I	RECEIVERS (A	LL VALUES MEASURE WITH TERM	_OFF = '0	')		
Sensitivity				±100	±200	mV
Source Impedance		Fig. 30, $Z_S = V_2 / V_1 \times 50\Omega$	90		110	Ω
Short-Circuit Impedance		Fig. 31	135		165	Ω
	Tra	NSCEIVER LEAKAGE CURRENT				
Driver Output 3-state Current		Drivers disabled, per Fig. 32		500		μΑ
Receiver Output 3-state Current		Tx and Rx Disabled, 0.4V - Vo - 2.4V		1	10	μΑ

TABLE 2: AC TIMING CHARACTERISTICS

TIMING CHARACTERISTICS

 V_{CC} = +4.75 to 5.25V, C1-C4 = 1µF; T_{AMB} = T_{MIN} to T_{MAX} , unless noted. Typical values are at T_{AMB} = +25°C.

PARAMETERS	SYMBOL	TEST CONDITIONS	MIN.	ТҮР	Max	Unit
		V.28 / RS-232				
Maximum Transmission Rate		Fig. 7	250			kbps
Driver Propagation Delay	t _{DPHL} , t _{DPLH}		0.5	1	5	μs
Transition Time		+3V to -3V, -3V to +3V per Fig. 7	0.2		1.5	μs
Instantaneous Slew Rate		+3V to -3V, -3V to +3V per Fig. 4	4		30	V/µs
Driver Skew		t _{DPHL} - t _{DPLH} at zero crossing		100	800	ns
Driver Channel to Channel Skew				20		ns
Driver Output Enable Time Tri-state to output Low	t _{ZL}	C _L = 100 pF, Fig. 34 and 40, S1 closed			2.0	μs
Driver Output Enable Time Tri-state to output High	t _{ZH}	C _L = 100 pF, Fig. 34 and 40, S2 closed			2.0	μs
Driver Output Disable Time Output Low to Tri-state	t _{LZ}	C _L = 15 pF, Fig. 34 and 40, S1 closed			2.0	μs
Driver Output Disable Time Output High to Tri-state	t _{HZ}	C _L = 15 pF, Fig. 34 and 40, S2 closed			20	μs
Receiver Propagation Delay	t _{PHL} , t _{PLH}	R_IN to R_OUT, $C_L = 15 pF$	50	100	500	ns
Receiver Skew		t _{PHL} - t _{PLH} at 1.5V		50		ns
Receiver Output Rise / Fall Time	t _R , t _F	C _L = 15 pF		15		ns
Receiver Output Enable Time Tri-state to output Low	t _{ZL}	C _L = 100 pF, Fig. 35 and 40, S1 closed			2.0	μs
Receiver Output Enable Time Tri-state to output High	t _{ZH}	C _L = 100 pF, Fig. 35 and 40, S2 closed			2.0	μs
Receiver Output Disable Time Output Low to Tri-state	t _{LZ}	C _L = 15 pF, Fig. 35 and 40, S1 closed			2.0	μs
Receiver Output Disable Time Output High to Tri-state	t _{HZ}	C _L = 15 pF, Fig. 35 and 40, S2 closed			2.0	μs
Charge Pump Rise Time		Shutdown to normal operation			2	ms
		V.10 / RS-423				
Maximum Transmission Rate			250			kbps

REV. 1.0.1

TIMING CHARACTERISTICS

 V_{CC} = +4.75 to 5.25V, C1-C4 = 1 μ F; T_{AMB} = T_{MIN} to T_{MAX} , unless noted. Typical values are at T_{AMB} = +25°C.

PARAMETERS	SYMBOL	TEST CONDITIONS	MIN.	Түр	Max	Unit
Driver Propagation Delay	t _{PHL} , t _{PLH}		30	150	500	ns
Driver Rise / Fall Time	t _R , t _F	10% to 90% - Fig. 14			500	ns
Driver Skew		t _{DPHL} - t _{DPLH} at zero crossing			100	ns
Driver Output Enable Time Tri-state to Output Low	t _{ZL}	C _L = 100 pF, Fig. 34 and 40, S1 closed			2	μs
Driver Output Enable Time Tri-state to Output High	t _{ZH}	C _L = 100 pF, Fig. 34 and 40, S2 closed			2	μs
Driver Output Disable Time Output Low to Tri-state	t _{LZ}	C _L = 15 pF, Fig. 34 and 40, S1 closed			2	μs
Driver Output Disable Time Output High to Tri-state	t _{HZ}	C _L = 15 pF, Fig. 34 and 40, S2 closed			2	μs
Receiver Propagation Delay	t _{PHL} , t _{PLH}			100	500	ns
Receiver Output Enable Time Tri-state to output Low	t _{ZL}	C _L = 100 pF, Fig. 35 and 40, S1 closed			2	μs
Receiver Output Enable Time Tri-state to output High	t _{ZH}	C _L = 100 pF, Fig. 35 and 40, S2 closed			2	μs
Receiver Output Disable Time Output Low to Tri-state	t _{LZ}	C _L = 15 pF, Fig. 35 and 40, S1 closed			2	μs
Receiver Output Disable Time Output High to Tri-state	t _{HZ}	C _L = 15 pF, Fig. 35 and 40, S1 closed				
Receiver Output Rise / Fall Time	t _R , t _F	C _L = 15 pF		15		ns
Receiver Skew		t _{PHL} - t _{PLH} at 1.5V		5		ns
High S	PEED V.11 / R	S-422 (DRIVERS 1, 2 & 3, RECEIV	ERS 1, 2	& 3)		l
Maximum Bit Rate		NRZI Encoding	52			Mbps
Driver Rise and Fall Time	t _R , t _F	Fig. 22 and 36, 10-90%	0.5		6	ns
Propagation Delay Time	t _{DPHL} , t _{DPLH}	Fig. 33 and 36, C _L = 50 pF		5	25	ns
Differential Skew		t _{DPHL} - t _{DPLH}			3.8	ns
Driver Output Enable Time Tri-state to Output Low	t _{ZL}	C _L = 100 pF, Fig. 34 and 37, S1 closed			100	ns
Driver Output Enable Time Tri-state to Output High	t _{ZH}	C _L = 100 pF, Fig. 34 and 37, S2 closed			100	ns
Driver Output Disable Time Output Low to Tri-state	t _{LZ}	C _L = 15 pF, Fig. 34 and 37, S1 closed			100	ns

REV. 1.0.1

TIMING CHARACTERISTICS

V_{CC} = +4.75 to 5.25V, C1-C4 = 1 μ l	ı	1	values ar	1		I
PARAMETERS	SYMBOL	TEST CONDITIONS	Min.	ТҮР	MAX	Unit
Driver Output Disable Time Output High to Tri-state	t _{HZ}	C _L = 15 pF, Fig. 34 and 37, S2 closed			100	ns
Receiver Propagation Delay	t _{PHL} , t _{PLH}	Fig. 33, 36 C _L = 50 pF		20	50	ns
Receiver Skew		t _{PHL} - t _{PLH} Fig. 33, 36 C _L = 50 pF			3.8	ns
Receiver Output Enable Time Tri-state to Output Low	t _{ZL}	C _L = 100 pF, Fig. 35 and 39, S1 closed			100	ns
Receiver Output Enable Time Tri-state to Output High	t _{ZH}	C _L = 100 pF, Fig. 35 and 39, S2 closed			100	ns
Receiver Output Disable Time Output Low to Tri-state	t _{LZ}	C _L = 15 pF, Fig. 35 and 39, S1 closed			100	ns
Receiver Output Disable Time Output High to Tri-state	t _{HZ}	C _L = 15 pF, Fig. 35 and 39, S2 closed			100	ns
Receiver Output Rise / Fall Time	t _R , t _F	$3.0 \text{ V} < \text{V}_{\text{L}} < 5.5 \text{V}$ $1.65 \text{ V} < \text{V}_{\text{L}} < 3.0 \text{V}$ $C_{\text{L}} = 50 \text{ pF}$	0.5		6	ns
Channel to channel Skew				2		ns
V.11 / RS-4	22 Handshak	E SIGNALS (DRIVERS 4, 5 & 6, RI	ECEIVERS 4	4, 5 & 6)		l
Maximum Transmission Rate		Fig. 33	10			Mbps
Driver Rise and Fall Time	t _R , t _F	Fig. 22 and 36		2	10	ns
Propagation Delay Time	t _{DPHL} , t _{DPLH}	Fig. 33 and 36, C _L = 50 pF		20	50	ns
Driver Propagation Delay Skew		t _{DPHL} - t _{DPLH}			10	ns
Driver Channel to Channel Skew				2		ns
Driver Output Enable Time Tri-state to Output Low	t _{ZL}	C _L = 100 pF, Fig. 34 and 37, S1 closed			100	ns
Driver Output Enable Time Tri-state to Output High	t _{ZH}	C _L = 100 pF, Fig. 34 and 37, S2 closed			100	ns
Driver Output Disable Time Output Low to Tri-state	t _{LZ}	C _L = 15 pF, Fig. 34 and 37, S1 closed			100	ns
Driver Output Disable Time Output High to Tri-state	t _{HZ}	C _L = 15 pF, Fig. 34 and 37, S2 closed			100	ns
Receiver Propagation Delay	t _{PHL} , t _{PLH}	Fig. 33, 36 C _L = 50 pF		20	50	ns

TIMING CHARACTERISTICS

 V_{CC} = +4.75 to 5.25V, C1-C4 = 1µF; T_{AMB} = T_{MIN} to T_{MAX} , unless noted. Typical values are at T_{AMB} = +25°C.

PARAMETERS	ERS SYMBOL TEST CONDITIONS		MIN.	ТҮР	Max	Unit
Receiver Skew		t _{PHL} - t _{PLH} Fig. 33, 36 C _L = 50 pF			10	ns
Receiver Output Enable Time Tri-state to Output Low	t _{ZL}	C _L = 100 pF, Fig. 35 and 39, S1 closed			100	ns
Receiver Output Enable Time Tri-state to Output High	t _{ZH}	C _L = 100 pF, Fig. 35 and 39, S2 closed			100	ns
Receiver Output Disable Time Output Low to Tri-state	t_{LZ}	C _L = 15 pF, Fig. 35 and 39, S1 closed			100	ns
Receiver Output Disable Time Output Low to Tri-state	t _{HZ}	C _L = 15 pF, Fig. 35 and 39, S2 closed			100	ns
Receiver Output Rise / Fall Time	t _R , t _F		1		20	ns
Channel to Channel Skew				2		ns
	V.35 (DRI	L VERS 1, 2 & 3, RECEIVERS 1, 2 &	3)	<u> </u>	<u> </u>	
Maximum Transmission Rate		Fig. 33, f _{MAX} = 20 MHz	40			Mbps
Driver Rise and Fall Time	t _R , t _F	Fig. 29			10	ns
Propagation Delay Time	t _{DPHL} , t _{DPLH}	Fig. 33 and 36, C _L = 50 pF		20	50	ns
Driver Differential Skew		t _{DPHL} - t _{DPLH} Fig. 33 and 36			5.0	ns
Driver Channel to Channel Skew				2		ns
Driver Output Enable Time Tri-state to Output Low	t _{ZL}	C _L = 100 pF, Fig. 34 and 37, S1 closed			200	ns
Driver Output Enable Time Tri-state to Output High	t _{ZH}	C _L = 100 pF, Fig. 34 and 37, S2 closed			200	ns
Driver Output Disable Time Output Low to Tri-state	t _{LZ}	C _L = 15 pF, Fig. 34 and 37, S1 closed			200	ns
Driver Output Disable Time Output High to Tri-state	t _{HZ}	C _L = 15 pF, Fig. 34 and 37, S2 closed			200	ns
Receiver Propagation Delay	t _{PHL} , t _{PLH}	Fig. 33, 38 C _L = 50 pF		18	30	ns
Receiver Skew		t _{PHL} - t _{PLH} Fig. 33 and 38 C _L = 50 pF		5.0	ns	
Receiver Output Enable Time Tri-state to Output Low	t _{ZL}	C _L = 100 pF, Fig. 35 and 39, S1 closed			200	ns

SP510

ULTRA HIGH SPEED MULTIPROTOCOL TRANSCEIVER

REV. 1.0.1

TIMING CHARACTERISTICS

 V_{CC} = +4.75 to 5.25V, C1-C4 = 1 μ F; T_{AMB} = T_{MIN} to T_{MAX} , unless noted. Typical values are at T_{AMB} = +25°C.

PARAMETERS	SYMBOL	TEST CONDITIONS	MIN.	Түр	Max	Unit
Receiver Output Enable Time Tri-state to Output High	t _{ZH}	C _L = 100 pF, Fig. 35 and 39, S2 closed			200	ns
Receiver Output Disable Time Output Low to Tri-state	t _{LZ}	C _L = 15 pF, Fig. 35 and 39, S1 closed			200	ns
Receiver Output Disable Time Output High to Tri-state	t _{HZ}	C _L = 15 pF, Fig. 35 and 39, S2 closed			200	ns

FIGURE 1. PIN OUT DIAGRAM

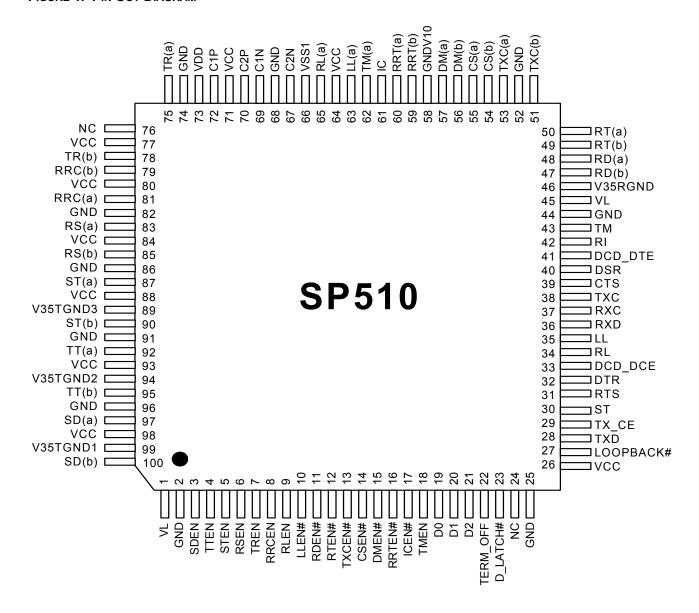


TABLE 3: PIN DESCRIPTIONS BY FUNCTION

Pin Name	Pin Number	I/O		DESCRIPTION					
DIFFERENTIAL DRIVERS									
TxD	28	I	TTL	TxD Driver Input					
SD(b) / SD(a)	100, 97	0	TTL	Differential Transmit data non-inverting (b) and inverting (a) outputs					
V35TGND1	99	I		SD Termination Reference					
SDEN	3	I	TTL	TxD Driver Enable					
TxCE	29	I	TTL	TxCE Driver Input					
TT(b) / TT(a)	95, 92	0	TTL	Differential TxCE non-inverting (b) and inverting (a) outputs					
V35TGND2	94	I		TT Termination Reference					
TTEN	4	I	TTL	TxCE Driver Enable					
ST	30	I	TTL	ST Driver Input					
ST(b) / ST(a)	90, 87	0	TTL	Differential ST non-inverting (b) and inverting (a) outputs					
V35TGND3	89	I		ST Termination Reference					
STEN	5	I	TTL	ST Driver Enable					
RTS	31	I	TTL	RTS Driver Input					
RS(b) / RS(a)	85, 83	0	TTL	Differential RTS non-inverting (b) and inverting (a) outputs					
RSEN	6	I	TTL	RTS Driver Enable					
DTR	32	I	TTL	DTR Driver Input					
TR(b) / TR(a)	78, 75	0	TTL	Differential DTR non-inverting (b) and inverting (a) outputs					
TREN	7	I	TTL	DTR Driver Enable					
DCD_DCE	33	I	TTL	DCD_DCE Driver Input					
RRC(b) / RRC(a)	79, 81	0	TTL	Differential DCD non-inverting (b) and inverting (a) outputs					
RRCEN	8	I	TTL	DCD Driver Enable					
			SINGLE END	DED DRIVERS					
RL	34	I	TTL	RL Driver Input					
RL(a)	65	0	TTL	RL Driver Output					
RLEN	9	I	TTL	RL Driver Enable					
LL	35	I	TTL	LL Driver Input					
LL(a)	63	0	TTL	LL Driver Output					
LLEN#	10	I	TTL	LL Driver Enable, active low					

Pin Name	Pin Number	I/O		DESCRIPTION
			DIFFERENTIAL	RECEIVERS
RxD	36	0	TTL	RxD Receiver Output
RD(b) / RD(a)	47, 48	I	TTL	Differential RXD non-inverting (b) and inverting (a) inputs
RDEN#	11	I	TTL	RxD Receiver Enable, active low
RxC	37	0	TTL	RxC Receiver Output
RT(b) / RT(a)	49, 50	I	TTL	Differential RXC non-inverting (b) and inverting (a) inputs
RTEN#	12	I	TTL	RxC Receiver Enable, active low
TxC	38	0	TTL	TxC Receiver Output
TxC(b) / TxC(a)	51, 53	I	TTL	Differential TxC non-inverting (b) and inverting (a) inputs
TxCEN#	13	I	TTL	TxC Receiver Enable, active low
CTS	39	0	TTL	CTS Receiver Output
CS(b) / CS(a)	54, 55	I	TTL	Differential CTS non-inverting (b) and inverting (a) inputs
CSEN#	14	I	TTL	CTS Receiver Enable, active low
DSR	40	0	TTL	DSR Receiver Output
DM(b) / DM(a)	56, 57	I	TTL	Differential DSR non-inverting (b) and inverting (a) inputs
DMEN#	15	I	TTL	DSR Receiver Enable, active low
DCD_DTE	41	0	TTL	DCD_DTE Receiver Output
RRT(b) / RRT(a)	59, 60	I	TTL	Differential DCD_DTE non-inverting (b) and inverting (a) inputs
RRTEN#	16	I	TTL	DCD_DTE Receiver Enable, active low
			SINGLE ENDE	D RECEIVERS
IC	61	I	TTL	RI Receiver Input
RI	42	0	TTL	RI Receiver Output
ICEN#	17	I	TTL	RI Receiver Enable, active low
TM(a)	62	I	TTL	TM Receiver Input
TM	43	0	TTL	TM Receiver Output
TMEN	18	I	TTL	TM Receiver Enable
		Proto	DCOL MODE S	ELECTION SIGNALS
D2, D1, D0	21, 20, 19	I	TTL	Mode Select - Refer to Table 5 and Table 6

REV. 1.0.1

Pin Name	Pin Number	I/O		DESCRIPTION		
			Charge Pur	np Signals		
C1P, C1N	72, 69	1	Charge Pump Capacitor 1 +/- inputs. Connect a 1 capacitor between C1P and C1N pins.			
C2P, C2N	70, 67	I		Charge Pump Capacitor 2 +/- inputs. Connect a 1 μF capacitor between C2P and C2N pins.		
VSS1	66	I		-2xVCC Charge Pump		
VDD	73	I		2xVCC Charge Pump		
GENERAL CONTROL SIGNALS						
LOOPBACK#	27	I	TTL	Loopback mode enable, active low		
D_LATCH#	23	1		Decoder Latch, active low		
TERM_OFF	22	I		Termination disable		
			Reserve	ED PINS		
NC	24, 76			No Connect		
		Po	WER AND GR	OUND SIGNALS		
VCC	26, 64, 71, 77, 80, 84, 88, 98	I		5V supply.		
VL	1, 45	I		Logic I/O Power Supply Input		
GND	2, 25, 44, 52, 68, 74, 82, 86, 91, 96	I		Ground.		
GNDV10	58	I		V.10 Receiver Ground Reference		
V35RGND	46	0		Receiver Termination Reference		

Note: Pin type: I = Input, O = Output, I/O = Input/output.

TABLE 4: PIN DESCRIPTIONS BY PIN NUMBER

	PIN DESCRIPTIONS BY PIN NUMBER							
1	VL	Logic I/O Power Supply Input	32	DTR	DTR Driver TTL Input			
2	GND	Ground	33	DCD_DCE	DCD_DCE Driver TTL Input			
3	SDEN	TxD Driver Enable Input	34 RL RL Driver TTL In		RL Driver TTL Input			
4	TTEN	TxCE Driver Enable Input	35	LL	LL Driver TTL Input			
5	STEN	ST Driver Enable Input	36	RxD	RxD Receiver TTL Output			
6	RSEN	RTS Driver Enable Input	37	RxC	RxC Receiver TTL Output			
7	TREN	DTR Driver Enable Input	38	TxC	TxC Receiver TTL Output			
8	RRCEN	DCD Driver Enable Input	39	CTS	CTS Receiver TTL Output			
9	RLEN	RL Driver Enable Input	40	DSR	DSR Receiver TTL Output			
10	LLEN#	LL Driver Enable Input	41	DCD_DTE	DCD_DTE Receiver TTL Output			
11	RDEN#	RxD Receiver Enable Input	42	RI	RI Receiver TTL Output			
12	RTEN#	RxC Receiver Enable Input	43	TM	TM Receiver TTL Output			
13	TxCEN#	TxC Receiver Enable Input	44	GND	Ground			
14	CSEN#	CTS Receiver Enable Input	45	VL	Logic I/O Power Supply Input			
15	DMEN#	DSR Receiver Enable Input	46	V35RGND	Receiver Termination Reference			
16	RRTEN#	DCD_DTE Receiver Enable Input	47	RD(b)	RXD Non-Inverting Input			
17	ICEN#	RI Receiver Enable Input	48	RD(a)	RXD Inverting Input			
18	TMEN	TM Receiver Enable Input	49	RT(b)	RxC Non-Inverting Input			
19	D0	Mode Select Input - Bit 0	50	RT(a)	RxC Inverting Input			
20	D1	Mode Select Input - Bit 1	51	TxC(b)	TxC Non-Inverting Input			
21	D2	Mode Select Input - Bit 2	52	GND	Ground			
22	TERM_OFF	Termination Disable Input	53	TxC(a)	TxC Inverting Input			
23	D_LATCH#	Decoder Latch Input	54	CS(b)	CTS Non-Inverting Input			
24	NC	No Connect	55	CS(a)	CTS Inverting Input			
25	GND	Ground	56	DM(b)	DSR Non-Inverting Input			
26	Vcc	Power Supply Input	57	DM(a)	DSR Inverting Input			
27	LOOP- BACK#	Loopback Mode Enable Input	58	GNDV10	V.10 Rx Ground Reference			
28	TxD	TxD Driver TTL Input	59	RRT(b)	DCD_DTE Non-Inverting Input			
29	TxCE	TxCE Driver TTL Input	60	RRT(a)	DCD_DTE Inverting Input			
30	ST	ST Driver TTL Input	61	IC	RI Receiver Input			
31	RTS	RTS Driver TTL Input	62	TM(a)	TM Receiver Input			

	PIN DESCRIPTIONS BY PIN NUMBER						
63	LL(a)	LL Driver Output	82	GND	Ground		
64	VCC	Power Supply Input	83	RS(a)	RTS Inverting Output		
65	RL(a)	RL Driver Output	84	VCC	Power Supply Input		
66	VSS1	-2xVCC Charge Pump	85	RS(b)	RTS Non-Inverting Output		
67	C2N	Charge Pump Capacitor	86	GND	Ground		
68	GND	Ground	87	ST(a)	ST Inverting Output		
69	C1N	Charge Pump Capacitor	88	VCC	Power Supply Input		
70	C2P	Charge Pump Capacitor	89	V35TGND3	ST Termination Reference		
71	VCC	Power Supply Input	90	ST(b)	ST Non-Inverting Output		
72	C1P	Charge Pump Capacitor	91	GND	Ground		
73	VDD	2xVCC Charge Pump	92	TT(a)	TxCE Inverting Output		
74	GND	Ground	93	VCC	5V Power Supply		
75	TR(a)	DTR Inverting Output	94	V35TGND2	TT Termination Reference		
76	NC	No Connect	95	TT(b)	TxCE Non-Inverting Output		
77	VCC	Power Supply Input	96	GND	Ground		
78	TR(b)	DTR Non-Inverting Output	97	SD(a)	TxD Inverting Output		
79	RRC(b)	DCD Non-Inverting Output	98	VCC	5V Power Supply		
80	VCC	Power Supply Input	99	V35TGND1	SD Termination Reference		
81	RRC(a)	DCD Inverting Output	100	SD(b)	TxD Non-Inverting Output		

TABLE 5: DRIVER MODE SELECTION

DRIVER OUTPUT PIN	V.35 Mode	EIA-530 MODE	RS-232 MODE (V.28)	EIA- 530A MODE	RS-449 MODE (V.36)	X.21 MODE (V.11)	SHUT- DOWN	Suggested Signal
MODE (D0, D1, D2)	001	010	011	100	101	110	111	
T ₁ OUT(a)	V.35	V.11	V.28	V.11	V.11	V.11	High-Z	TxD(a)
T ₁ OUT(b)	V.35	V.11	High-Z	V.11	V.11	V.11	High-Z	TxD(b)
T ₂ OUT(a)	V.35	V.11	V.28	V.11	V.11	V.11	High-Z	TxCE(a)
T ₂ OUT(b)	V.35	V.11	High-Z	V.11	V.11	V.11	High-Z	TxCE(b)
T ₃ OUT(a)	V.35	V.11	V.28	V.11	V.11	V.11	High-Z	TxC_DCE(a)
T ₃ OUT(b)	V.35	V.11	High-Z	V.11	V.11	V.11	High-Z	TxC_DCE(b)
T ₄ OUT(a)	V.28	V.11	V.28	V.11	V.11	V.11	High-Z	RTS(a)
T ₄ OUT(b)	High-Z	V.11	High-Z	V.11	V.11	V.11	High-Z	RTS(b)
T ₅ OUT(a)	V.28	V.11	V.28	V.10	V.11	V.11	High-Z	DTR(a)
T ₅ OUT(b)	High-Z	V.11	High-Z	High-Z	V.11	V.11	High-Z	DTR(b)
T ₆ OUT(a)	V.28	V.11	V.28	V.11	V.11	V.11	High-Z	DCD_DCE(a)
T ₆ OUT(b)	High-Z	V.11	High-Z	V.11	V.11	V.11	High-Z	DCD_DCE(b)
T ₇ OUT(a)	V.28	V.10	V.28	V.10	V.10	High-Z	High-Z	RL
T ₈ OUT(a)	V.28	V.10	V.28	V.10	V.10	High-Z	High-Z	LL

TABLE 6: RECEIVER MODE SELECTION

RECEIVER INPUT PIN	V.35 Mode	EIA-530 MODE	RS-232 MODE (V.28)	EIA- 530A MODE	RS-449 MODE (V.36)	X.21 Mode (V.11)	SHUT- DOWN	SUGGESTED SIGNAL
MODE (D0, D1, D2)	001	010	011	100	101	110	111	
R ₁ IN(a)	V.35	V.11	V.28	V.11	V.11	V.11	High-Z	RxD(a)
R ₁ IN(b)	V.35	V.11	High-Z	V.11	V.11	V.11	High-Z	RxD(b)
R ₂ IN(a)	V.35	V.11	V.28	V.11	V.11	V.11	High-Z	RxCE(a)
R ₂ IN(b)	V.35	V.11	High-Z	V.11	V.11	V.11	High-Z	RxCE(b)
R ₃ IN(a)	V.35	V.11	V.28	V.11	V.11	V.11	High-Z	TxC_DTE(a)
R ₃ IN(b)	V.35	V.11	High-Z	V.11	V.11	V.11	High-Z	TxC_DTE(b)
R ₄ IN(a)	V.28	V.11	V.28	V.11	V.11	V.11	High-Z	CTS(a)
R ₄ IN(b)	High-Z	V.11	High-Z	V.11	V.11	V.11	High-Z	CTS(b)
R ₅ IN(a)	V.28	V.11	V.28	V.10	V.11	V.11	High-Z	DSR(a)
R ₅ IN(b)	High-Z	V.11	High-Z	High-Z	V.11	V.11	High-Z	DSR(b)
R ₆ IN(a)	V.28	V.11	V.28	V.11	V.11	V.11	High-Z	DCD_DTE(a)
R ₆ IN(b)	High-Z	V.11	High-Z	V.11	V.11	V.11	High-Z	DCD_DTE(b)
R ₇ IN(a)	V.28	V.10	V.28	V.10	V.10	High-Z	High-Z	RI
R ₈ IN(a)	V.28	V.10	V.28	V.10	V.10	High-Z	High-Z	TM

TABLE 7: V.11 & V.35 DRIVERS

INP	UTS	Оитритѕ		
Tx_EN#	Tx_IN	TX(A)	Tx(B)	
1	1	0	1	
1	0	1	0	

TABLE 8: V.11 & V.35 RECEIVERS

INPUTS	Оитритѕ		
Rx(a) - Rx(b)	RO		
≥ 200 mV	1		
≤ –200 mV	0		
Open / shorted	1		

TABLE 11: V.10 DRIVERS

INP	UTS	Оитритѕ		
Tx_EN#	Tx_IN	TX(A)	Тх(в)	
1	1	< -4V	> 30 kΩ	
1	0	> +4V	> 30 kΩ	

TABLE 12: V.10 RECEIVERS

INPUTS	Оитритѕ
Rx(a) - Rx(b)	RO
≥ + 0.3V	0
≤-0.3V	1
Open / ground	1

TABLE 9: V.28 DRIVERS

INP	UTS	Оитритѕ		
Tx_EN#	Tx_IN	TX(A)	Tx(B)	
1	1	< -5V	> 30 kΩ	
1	0	> +5V	> 30 kΩ	

TABLE 10: V.28 RECEIVERS

INPUTS	Outputs
Rx(a) - Rx(b)	RO
≥ + 3V	0
≤-3V	1
Open / ground	1

REV. 1.0.1

FIGURE 2. V.28 DRIVER OUTPUT OPEN CIRCUIT VOLTAGE

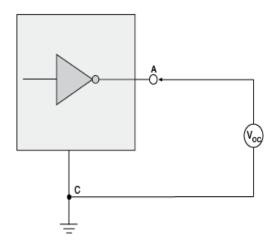


FIGURE 3. V.28 DRIVER OUTPUT LOADED VOLTAGE

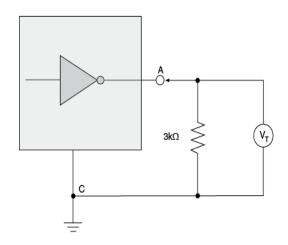


FIGURE 4. V.28 DRIVER OUTPUT SLEW RATE

FIGURE 5. V.28 DRIVER OUTPUT SHORT CIRCUIT CURRENT

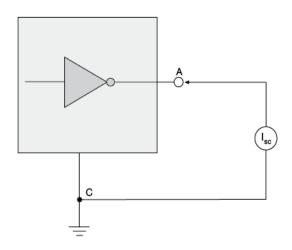


FIGURE 6. V.28 DRIVER OUTPUT POWER-OFF IMPEDANCE

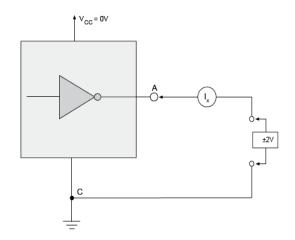


FIGURE 7. V.28 DRIVER OUTPUT RISE/FALL TIME

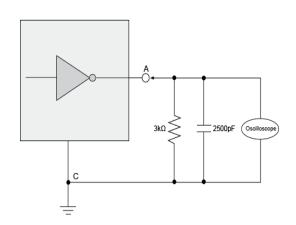


FIGURE 8. V.28 RECEIVER INPUT IMPEDANCE

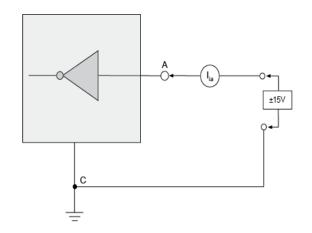


FIGURE 9. V.28 RECEIVER INPUT OPEN-CIRCUIT BIAS

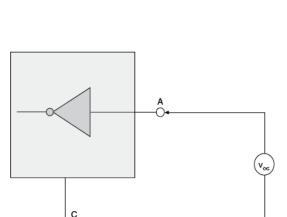


FIGURE 10. V.10 DRIVER OUTPUT OPEN-CIRCUIT VOLTAGE

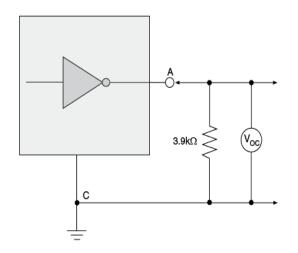


FIGURE 11. V.10 DRIVER OUTPUT TEST TERMINATED VOLTAGE

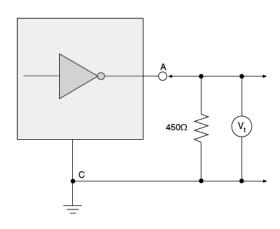


FIGURE 12. V.10 DRIVER OUTPUT SHORT-CIRCUIT CURRENT

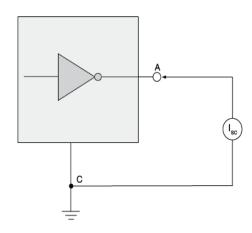


FIGURE 13. V.10 DRIVER OUTPUT POWER-OFF IMPED-ANCE

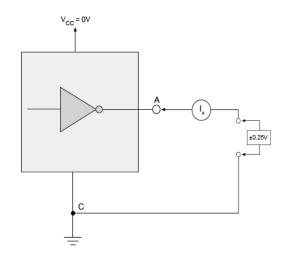


FIGURE 14. V.10 DRIVER OUTPUT TRANSITION TIME

A A 450Ω Socillocope

FIGURE 15. V.10 RECEIVER INPUT CURRENT

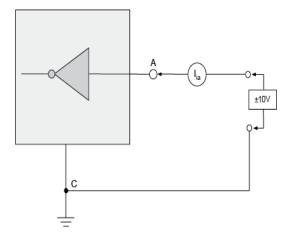


FIGURE 16. V.10 RECEIVER INPUT IV GRAPH

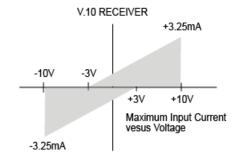


FIGURE 17. V.11 DRIVER OUTPUT TEST TERMINATED VOLTGE

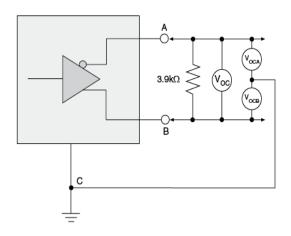


FIGURE 18. V.11 DRIVER OUTPUT TEST TERMINATED VOLTAGE

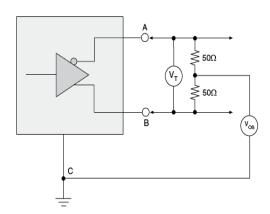


FIGURE 19. V.11 DRIVER OUTPUT SHORT-CIRCUIT CURRENT

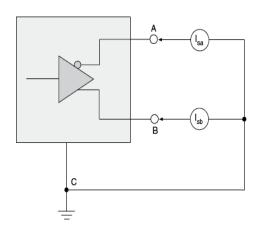
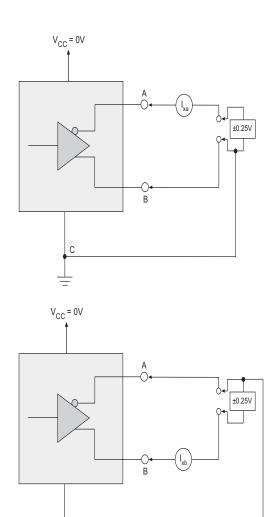
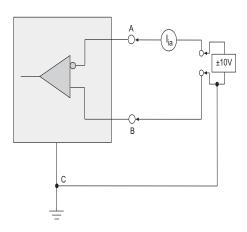




FIGURE 20. V.11 DRIVER OUTPUT POWER-OFF CURRENT

FIGURE 21. V.11 RECEIVER INPUT CURRENT

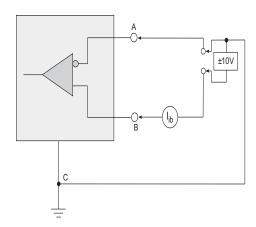


FIGURE 24. V.11 RECEIVER INPUT CURRENT WITH TER-MINATION

FIGURE 22. V.11 DRIVER OUTPUT RISE/FALL TIME

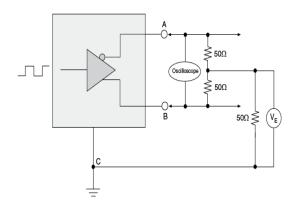
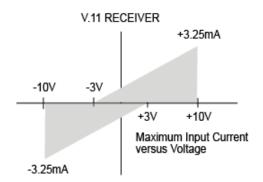
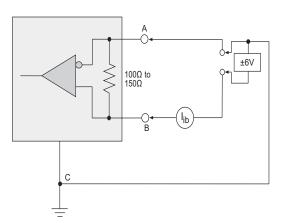




FIGURE 23. V.11 RECEIVER INPUT IV GRAPH

FIGURE 25. V.11 RECEIVER INPUT IV GRAPH WITH TERMINATION

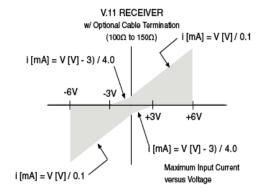


FIGURE 26. V.35 DRIVER OUTPUT TEST TERMINATED VOLTAGE

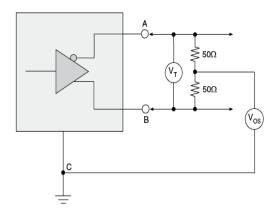
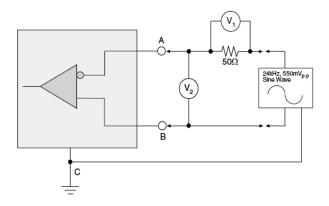



FIGURE 27. V.35 DRIVER OUTPUT SOURCE IMPEDANCE

FIGURE 28. V.35 DRIVER OUTPUT SHORT-CIRCUIT IMPEDANCE

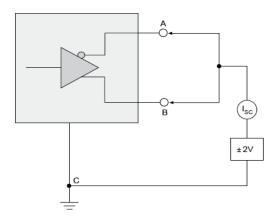


FIGURE 29. V.35 DRIVER OUTPUT RISE/FALL TIME

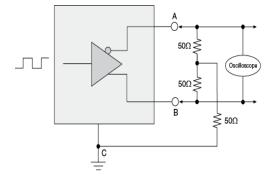
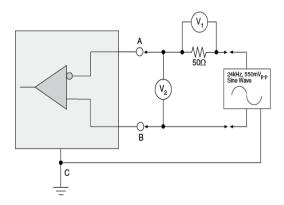



FIGURE 30. V.35 RECEIVER INPUT SOURCE IMPEDANCE

FIGURE 31. V.35 RECEIVER INPUT SHORT-CIRCUIT IMPEDANCE

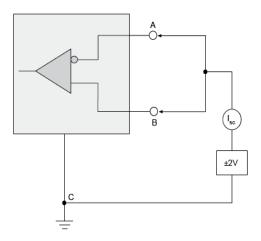


FIGURE 32. DRIVER OUTPUT CURRENT LEAKAGE TEST

Any one of the three conditions for disabling the driver.

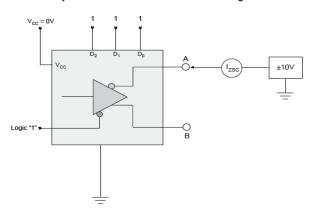
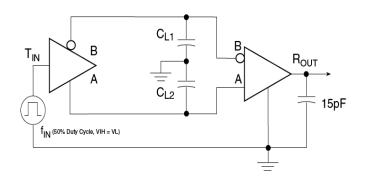



FIGURE 33. DRIVER / RECEIVER TIMING TEST CIRCUIT

FIGURE 34. DRIVER TIMING TEST LOAD CIRCUIT

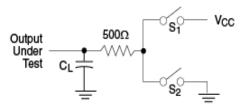


FIGURE 35. RECEIVER TIMING TEST LOAD CIRCUIT

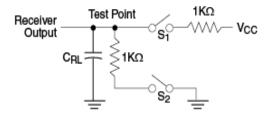
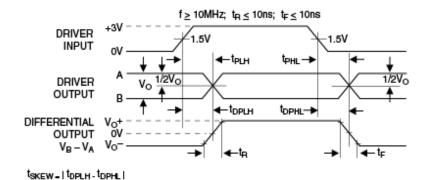



FIGURE 36. DRIVER PROPAGATON DELAYS

28

FIGURE 37. DRIVER ENABLE AND DISABLE TIMES

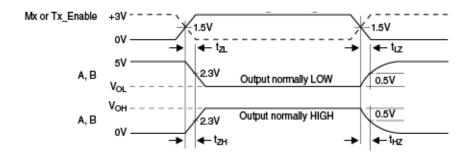


FIGURE 38. RECEIVER PROPAGATION DELAYS

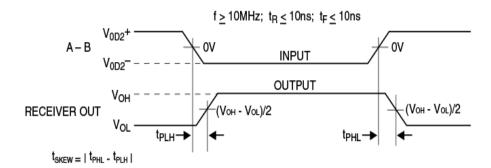


FIGURE 39. RECEIVER ENABLE AND DISABLE TIMES

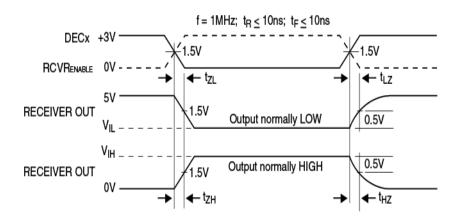
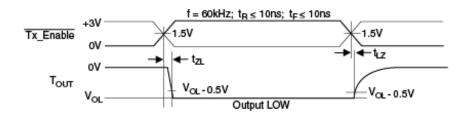



FIGURE 40. V.28 (RS-232) AND V.10 (RS-423) DRIVER ENABLE AND DISABLE TIMES

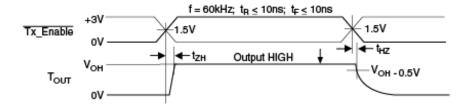
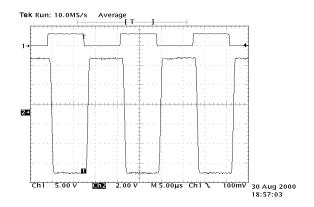



FIGURE 41. TYPICAL V.28 DRIVER OUTPUT WAVEFORM

FIGURE 42. TYPICAL V.10 DRIVER OUTPUT WAVEFORM

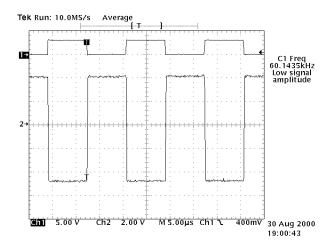


FIGURE 43. TYPICAL V.11 DRIVER OUTPUT WAVEFORM

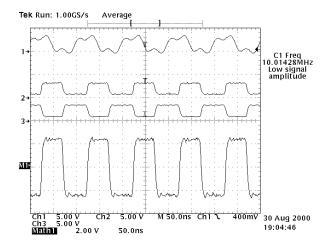
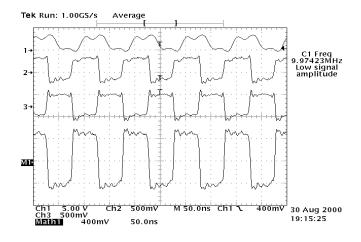



FIGURE 44. TYPICAL V.35 DRIVER OUTPUT WAVEFORM

RRCEN

RL

RL(a)

RLEN

LL(a)

LLEN

LL

34

35

10

V.35 DRIVER TERMINATION NETWORK

V.10-GND

TX ENABLE 3

FIGURE 45. FUNCTIONAL DIAGRAM

RRT(b)

IC >

TM(a) **>**

ICEN

RECEIVER TERMINATION NETWORK

TM ◀

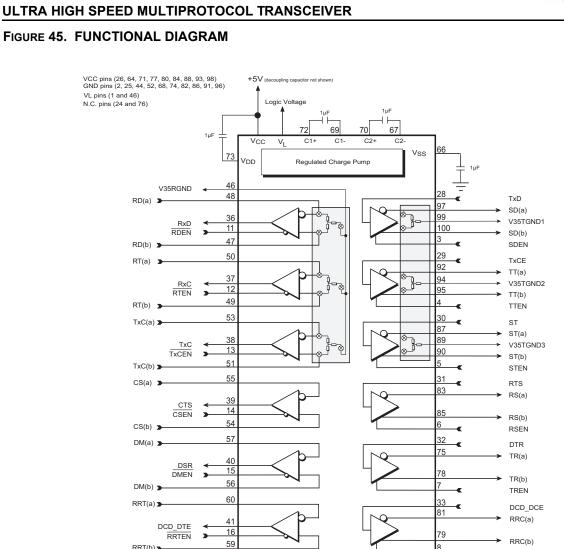
61

17

62

18

19 20


21 D2 23

22

D1

D-LATCH

TERM-OFF LOOPBACK

SP510

GND

FIGURE 46. SP510 LOOPBACK PATH

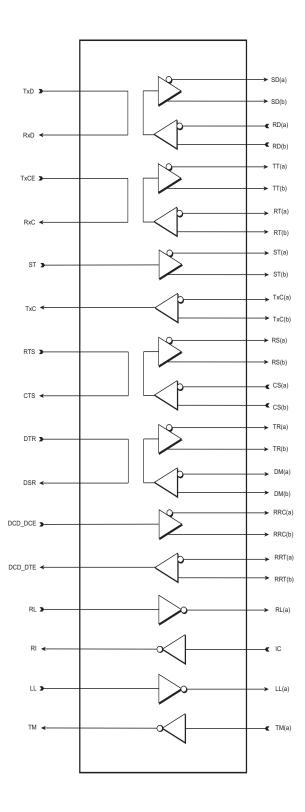
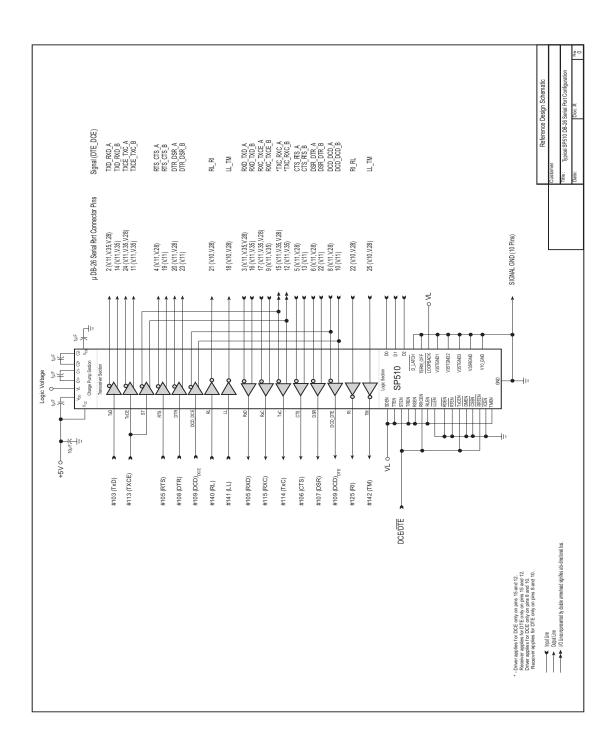



FIGURE 47. TYPICAL OPERATING CONFIGURATION TO SERIAL PORT CONNECTOR WITH DCE/DTE PROGRAMMABILITY

Thermal Considerations

High speed devices like the SP510 dissipate heat during normal operation. Actual power dissipation is a function of the switching frequency and loading. For maximum system performance and reliability designers should ensure sufficient air flow. Other commonly used methods for managing heat include heat sinks for higher powered devices, forced air flow (fans) and lower density board stuffing.

PCB Design

The use of multi layer printed circuit boards is recommended to provide both a better ground plane and a thermal path for heat dissipation. If possible, the ground plane should face the bottom of the package to form the thermal conduction plane. Two-sided printed circuit boards may be used where board dimensions and package count are small, but multi-layer boards allow for improved signal routing as well as improved signal integrity. A multi layer board allows the use of microstrip line techniques to provide for high speed signal interconnections. On multi-layer boards route the high speed signal lines on the inner layers.

REVISION HISTORY

DATE	Revision	DESCRIPTION
December 2009	Rev 1.0.0	Final datasheet.
June 2011	Rev 1.0.1	Correct type error on mode select tables and update ordering information.

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2011 EXAR Corporation

Datasheet June 2011.

Send your serial transceiver technical inquiry with technical details to hotline: serialtechsupport@exar.com.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.