

Maximum Ratings (1)

Supply Voltage	
V _{DD}	0.5V to +4.6V
REF	0.5V to +4.6V
Input Current	50mA
Output Current	±50mA
Lead Temperature (soldering, 10 sec.)	+260°C
Storage Temperature (Ts)	65°C to +150°C
Junction Temperature	+150°C

Operation Ratings⁽²⁾

Supply Voltage
V _{DD} +3.0V to +3.6V
V _{DD} +2.375V to +2.625V
Operating Temperature (industrial)40°C to +85°C
Package Thermal Resistance (2)
θЈА
Still-Air157°C/W
θЈВ
Junction-to-Board42°C

Notes:

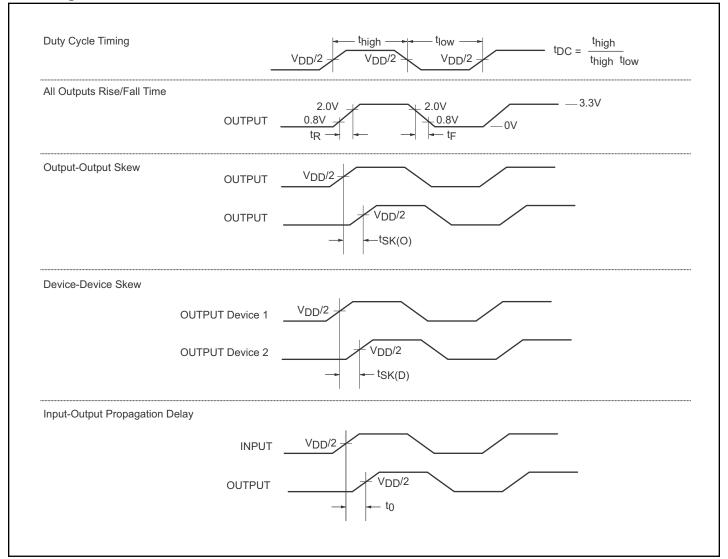
- 1. Stresses greater then those listed under Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the this specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. θ JA and θ JB values are determined for a 4-layer board in still-air, unless otherwise stated.

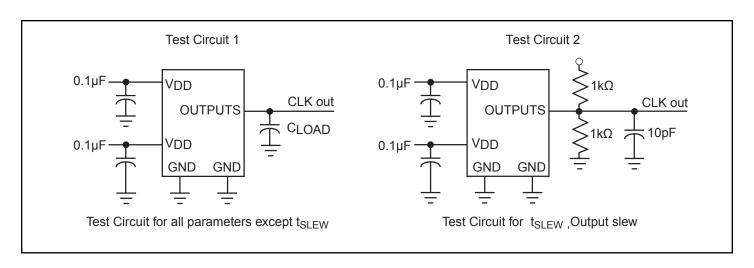
DC Electrical Characteristics

Parameter	Description	Test Conditions			Max.	Units
V Louis I OW Vales		$V_{DD} = 3.3V$			0.8	
$V_{ m IL}$	Input LOW Voltage	$V_{DD} = 2.5V$			0.7	$\mid _{\mathrm{V}} \mid$
N/	V I AHIGHA I	$V_{DD} = 3.3V$		2.0		
V _{IH} Input HIGH Voltage	$V_{\rm DD} = 2.5 V$		1.7		1	
I_{IL}	Input LOW Current	$V_{IN} = 0V$			10	
I_{IH}	Input HIGH Current	$V_{IN} = V_{DD}$			100	μA
V _{OL} Output LOW Vol	Outsut I OW Valtage	$I_{OL} = 12$ mA	$V_{DD} = 3.3V$		0.25	
	Output LOW voitage		$V_{DD} = 2.5V$		0.35	$\left[\begin{array}{cc} V \end{array}\right]$
V	Output HICH Valtage	$V_{DD} = 2.5V, I_{OH} = -12mA$		1.9]
V _{OH} Output HIGH Voltage		$V_{DD} = 3.3V$, $I_{OH} = -12mA$		2.55		
I _{DD}	Supply Current	Unloaded outputs 66 MHz			22	mA

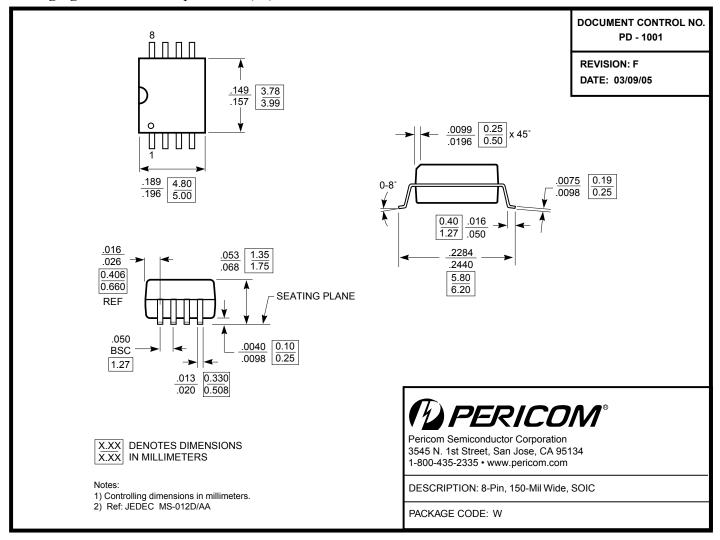
2.5/3.3V 200MHz Zero-Delay Clock Buffer with 5 Outputs

AC Electrical Characteristics

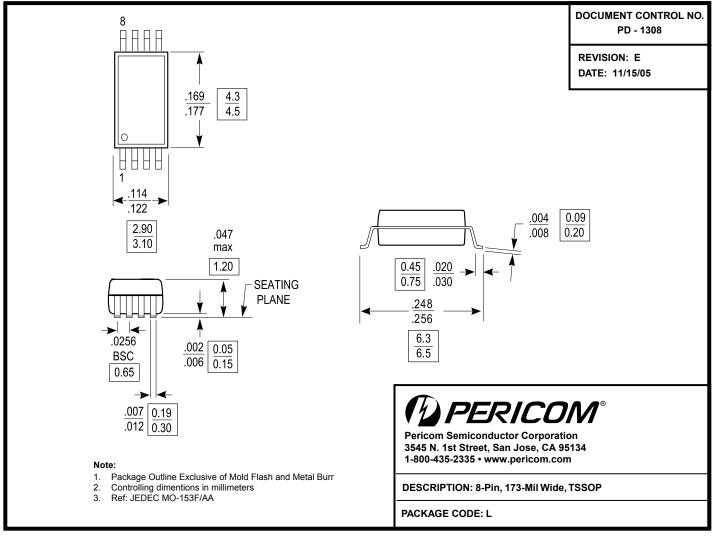

Parameter	Description	Test Conditions		Min.	Typ.	Max.	Units
Е	Output Engage	t Frequency $V_{DD} = 2.5V, C_L = 15pF$ $V_{DD} = 3.3V, C_L = 15pF$		10		200	MHz
F_{O}	Output Frequency			10		220	MHz
BW Bandwidth for PLL	$V_{DD} = 2.5V$			0.8		MII	
	Bandwigth for PLL	$V_{\rm DD} = 3.3 \text{V}$			1.5		MHz
$t_{\rm DC}$	Duty Cycle ⁽¹⁾⁽⁴⁾	Measured at V _{DD} /2, 10pF load		45	50	55	%
4-	t _R Rise Time ⁽¹⁾⁽⁴⁾	For 3.3V: Measured between 0.8V and 2.0V @ 10pF				1	
t _R Rise Time(1)(4)	For 2.5V: Measured between 0.6V and 1.8V @ 10pF				1.8]	
t- -	Fall Time ⁽¹⁾⁽⁴⁾	For 3.3V: Measured bety	ween 0.8V and 2.0V @ 10pF			1	ns
t _F Fall Time ⁽¹⁾⁽⁴⁾	For 2.5V: Measured between 0.6V and 1.8V @ 10pF				1.8		
4	Output to Output Straw(2)	All outputs equally loaded	$V_{DD} = 3.3V$			90	ps ps
$t_{sk(o)}$	Output to Output Skew ⁽²⁾		$V_{DD} = 2.5V$			90	
	Delay, REF Rising Edge	Measured at V _{DD} /2 @ 66MHz	$V_{DD} = 3.3V$	-100		100	
t_0	to CLKOUT Rising Edge ⁽²⁾		$V_{DD} = 2.5V$	-200		200	
t _{SK(D)}	Device-to-device Skew ⁽³⁾	Measured at V _{DD} /2 on CLKx pins of device		-300		+300	
t _{JIT} Cycle-to-Cycle Jitter		15pF load, >66MHz, standard drive	$V_{DD} = 3.3V$		47	110	
			$V_{DD} = 2.5V$		42	90	
		15pF load, >66MHz,	$V_{DD} = 3.3V$		45	100	
	high drive	$V_{DD} = 2.5V$		40	80] ,	
	Cycle-to-Cycle filler	30pF load, >66MHz, standard drive	$V_{DD} = 3.3V$		63	120	ps -
			$V_{DD} = 2.5V$		83	130	
		30pF load, >66MHz, high drive	$V_{DD} = 3.3V$		51	115	
			$V_{DD} = 2.5V$		66	115	
t _{PJ} Period J		15pF load, >66MHz, standard drive	$V_{DD} = 3.3V$		39	90	ps
			$V_{DD} = 2.5V$		28	60	
	Period Jitter (Peak)	15pF load, >66MHz, high drive	$V_{DD} = 3.3V$		39	85	
			$V_{DD} = 2.5V$		27	55	
		30pF load, >66MHz, standard drive	$V_{DD} = 3.3V$		48	85	
			$V_{DD} = 2.5V$		75	90	
		30pF load, >66MHz,	$V_{DD} = 3.3V$		43	75	
		high drive	$V_{DD} = 2.5V$		60	80	
t _{LOCK}	PLL Lock Time (1)	Stable power supply, valid clocks presented on REF pin				1.0	ms


Note:

- 1. See Switching Waveforms
- 2. All clock output should have the same loading to achieve zero delay between the input and outputs and zero output-to-output skew. Since the CLKOUT pin is the internal feedback to the PLL, its relative loading can adjust the input-to-output delay. If input-to-output delay adjustments are needed, the CLKOUT load may be changed to vary the delay between the REF input to the clock outputs. Output-to-output skew includes CLK 1-4.
- 3. Specifications are guaranteed by design and not production tested.
- 4. Measured at 100MHz.


Switching Waveforms

Packaging Mechanical: 8-pin SOIC (W)



Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Packaging Mechanical: 8-pin TSSOP (L)

Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information(1,2,3)

Ordering Code	Package Code	Package Description
PI6C22405-1HWE	W	Pb-free & Green, 8-pin SOIC
PI6C22405-1HWIE	W	Pb-free & Green, 8-pin SOIC, Industrial temp range
PI6C22405-1HLE	L	Pb-free & Green, 8-pin TSSOP
PI6C22405-1HLIE	L	Pb-free & Green, 8-pin TSSOP, Industrial temp range

Notes:

- 1. Latest Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free & Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com