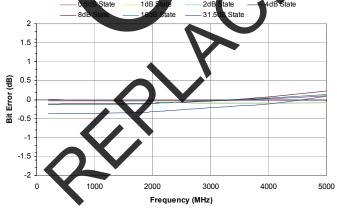

Table 1. Electrical Specifications @ +25°C, V_{DD} = 3.3 V or 5.0 V


Parameter	Test Conditions	Frequency	Min	Typical	Max	Units
Frequency Range			9 kHz		5 GHz	
Attenuation Range	0.5 dB Step			0 – 31.5		dB
Insertion Loss		9 kHz \leq 5 GHz		2.2	2.7	dB
Attenuation Error	0 dB - 31.5 dB Attenuation settings 0 dB - 31.5 dB Attenuation settings 0 dB - 31.5 dB Attenuation settings	9 kHz < 4 GHz 4 GHz ≤ 5 GHz 4 GHz ≤ 5 GHz			$\pm (0.3 + 3)\%$ +0.4 + 5% -0.3 - 3%	dB dB dB
Return Loss		9 kHz - 5 GHz		18		dB
Relative Phase	All States	9 kHz - 5 GHz		55		deg
P1dB (note 1)	Input	20 MHz - 5 GHz	30	32		dBm
IIP3	Two tones at +18 dBm, 20 MHz spacing	20 MHz - 5 GHz		58		dBm
Typical Spurious Value		1 MHz		-110		dBm
Video Feed Through				10		mVpp
Switching Time	50% DC CTRL to 10% / 90% RF			650		ns
RF Trise/Tfall	10% / 90% RF			400		ns
Settling Time	RF settled to within 0.05 dB of final value RBW = 5 MHz, Averaging ON			4		μs


Note 1. Please note Maximum Operating Pin (50 Ω) of +23 dBm as shown in Table 3

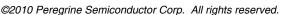

Performance Plots

Figure 3. 0.5 dB Step Error vs. Frequency

Document No. 70-0248-06 UltraCMOS™ BFIC Solutions

16

Attenuation Setting (dB)

20

24

28

32

12

Figure 6. 0.5 dB Attenuation Error vs. Frequency

900MHz

4000MHz

1800MHz

5000MHz

2200MHz

200MHz

3000MHz

8

4

2

1.5

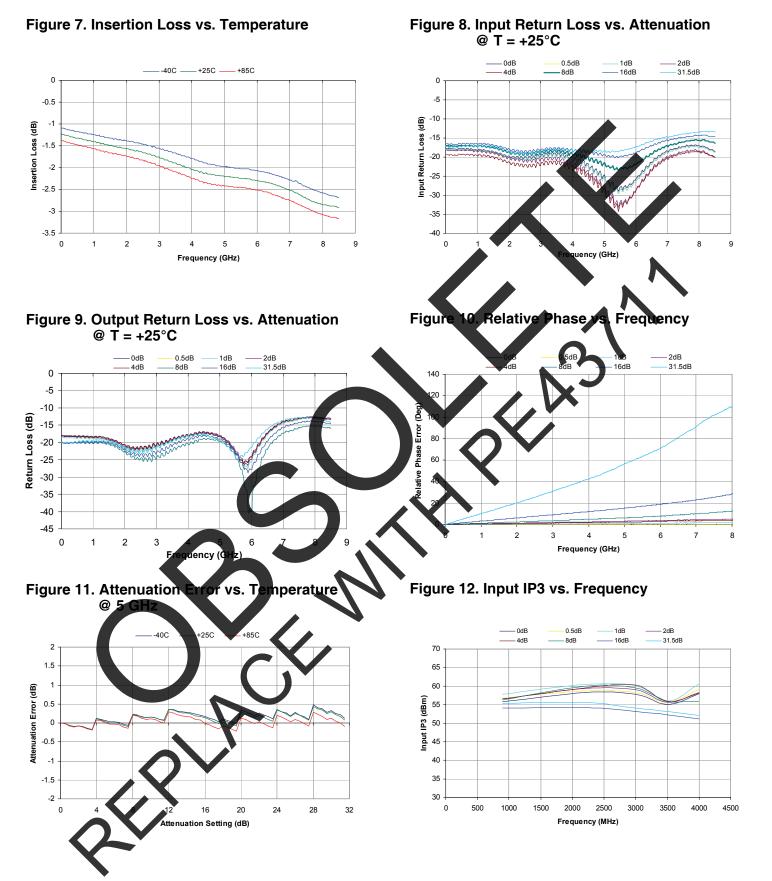
1

0.5

-0.5 -1

-1.5

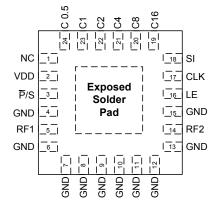
-2


0

0

Attenuation Error (dB)

Logo updated under non-rev change. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com


Document No. 70-0248-06 | www.psemi.com

©2010 Peregrine Semiconductor Corp. All rights reserved.

Logo updated under non-rev change. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com

Figure 13. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin No.	Pin Name	Description
1	GND	Ground
2	V _{DD}	Power supply pin
3	₽/S	Serial/Parallel mode select
4	GND	Ground
5	RF1	RF1 port
6 - 13	GND	Ground
14	RF2	RF2 port
15	GND	Ground
16	LE	Serial interface Latch Enable input
17	CLK	Serial interface Clock input
18	SI	Serial interface Data input
19	C16 (D6)	Parallel control bit, 16 dB
20	C8 (D5)	Parallel control bit, 8 dB
21	C4 (D4)	Parallel control bit, 4 dB
22	C2 (D3)	Parallel control bit, 2 dB
23	C1 (D2)	Parallel control bit, 1-dB
24	C0.5 (D1)	Parallel control bit, 0.5 dB
Paddle	GND	Ground for proper operation

Note: Ground C0.5, C1, C2, C4, C8, C16 if not i

Exposed Solder Pad Connection

The exposed solder pad on the bottom of the package must be grounded for proper device operation.

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE43602 in the 24-lead 4x4 QFN package is MS11.

Switching Frequency

The PE43602 has a maximum 25 kHz switching rate. Switching rate is defined to be the speed at which the DSA can be toggled across attenuation states.

Latch-Up Avoidance

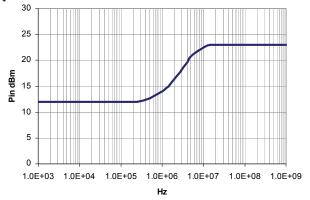
Unlike conventional CMOS devices, UltraCMOS™ devices are mmune to latch-up.

©2010 Peregrine Semiconductor Corp. All rights reserved.

Table 3. Operating Ranges

Parameter	Min	Тур	Мах	Units
V _{DD} Power Supply Voltage	3.0	3.3		V
V _{DD} Power Supply Voltage		5.0	5.5	V
IDD Power Supply Current		70	350	μA
Digital Input High	2.6		5.5	V
P _{IN} Input power (50 Ω): 9 kHz ≤20 MHz 20 MHz ≤5 GHz			Fig. 14 +23	dBm dBm
T _{OP} Operating temperature range	-40	25	85	°C
Digital Input Low			1	V
Digital Input Leakage			15	μA

Note 1. Input leakage current per Control pin


Table 4. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Мах	Units
V _{DD}	Power supply voltage	-0.3	6.0	V
VI	Voltage on any Digital input	-0.3	5.8	V
T _{ST}	Storage temperature range	-65	150	°C
P _{IN}	Input nower (50 Ω) 9 kHz ≤ 20 MHz 2 MHz ≤ 6 GHz		Fig. 14 +23	dBm dBm
Vesd	ESD voltage (HBN) ESD voltage (Vachine Model)		500 100	V V

Note: 1. Human Body Model (HBM, MIL_STD 883 Method 3015.7)

Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

igure 14. Maximum Power Handling Capability

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS[™] device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Document No. 70-0248-06 | UltraCMOS[™] RFIC Solutions

Downloaded from Arrow.com.

D0

(LSB)

L

L

L

Ľ

L

L

Attenuation Setting

RF1-RF2

Reference I.L.

0.5 dB

1 dB

2 dB

4 dB

8 dB

16 dB

31.5 dB

Table 8. Serial Attenuation Word Truth Table

D2

L

L

L

L

Н

D1

L

L

L

Н

Attenuation Word

D3

L

L

L

н

L

D4

L

L

L

L

н

н

D5

L

L

L

L

L

н

L

D7

L

L

L

L

L

L

L

L

D6

L

L

L

L

L

L

н

н

Table 5. Control Voltage

State	Bias Condition
Low	0 to +1.0 Vdc at 2 μA (typ)
High	+2.6 to +5 Vdc at 10 μA (typ)

Table 6. Latch and Clock Specifications

Latch Enable	Shift Clock	Function
х	↑	Shift Register Clocked
¢	x	Contents of shift register transferred to attenuator core

Table 7. Parallel Truth Table

Parallel Control Setting Attenuation Setting D6 D5 D4 D3 D2 D1 RF1-RF2 L L L L L L Reference I.L. н 0.5 dB L L L L L L L L L н L 1 dB L L н L L 2 d L L L н L L L 4 0 L н L L L L 8 dÈ L н L L L 16 dB н н н Н н Table 9. Serial Register Map MSB (last in) Q7 Q6 Q5 Q2 Q0 Bits must be set to logic low D4 D3 D D0 D7 D6 D5 Attenuation Wor Attenuation Word is derived directly from the attenuation value. For example, to program the 12.5 dB state: Attenuation Word: Multiply by 4 and convert to binary \rightarrow 4 * 12.5 dB \rightarrow 50 \rightarrow 00110010 0110010 Serial In Document No. 70-0248-06 www.psemi.com ©2010 Peregrine Semiconductor Corp. All rights reserved.

Programming Options

Parallel/Serial Selection

Either a parallel or serial interface can be used to control the PE43602. The \overline{P}/S bit provides this selection, with $\overline{P}/S=LOW$ selecting the parallel interface and $\overline{P}/S=HIGH$ selecting the serial interface.

Parallel Mode Interface

The parallel interface consists of six CMOScompatible control lines that select the desired attenuation state, as shown in *Table 7*.

The parallel interface timing requirements are defined by *Fig. 16* (Parallel Interface Timing Diagram), *Table 11* (Parallel Interface AC Characteristics), and switching speed (*Table 1*).

For *latched*-parallel programming the Latch Enable (LE) should be held LOW while changing attenuation state control values, then pulse LE HIGH to LOW (*per Fig. 16*) to latch new attenuation state into device.

For *direct* parallel programming, the Latch Enable (LE) line should be pulled HIGH. Changing attenuation state control values will change device state to new attenuation. Direct Mode is ideal for manual control of the device (using hardwire, switches, or jumpers).

Serial Interface

The serial interface is a 8-bit serial-in, parallel-out shift register buffered by a transparent latch. The 8 bits make up the Attenuation Word that controls the DSA. *Fig. 15* illustrates a example timing diagram for programming a state.

The serial-interface is controlled using three CMOScompatible signals: Serial-In (SI), Clock (CLK), and Latch Enable (LE). The SI and CLK inputs allow data to be serially entered into the shift register. Serial data is clocked in LSB first

The shift register must be loaded while LE is held LOW to prevent the attenuator value from changing as data is entered. The LE input should then be toggled HIGH and brought LOW again, latching the new data into the DSA. Attenuation Word truth table is listed in *Table 8*. A programming example of the serial register is illustrated in *Table 9*. The serial timing diagram is illustrated in *Fig. 15*. It is required that all parallel pins be grounded when the DSA is used in serial mode.

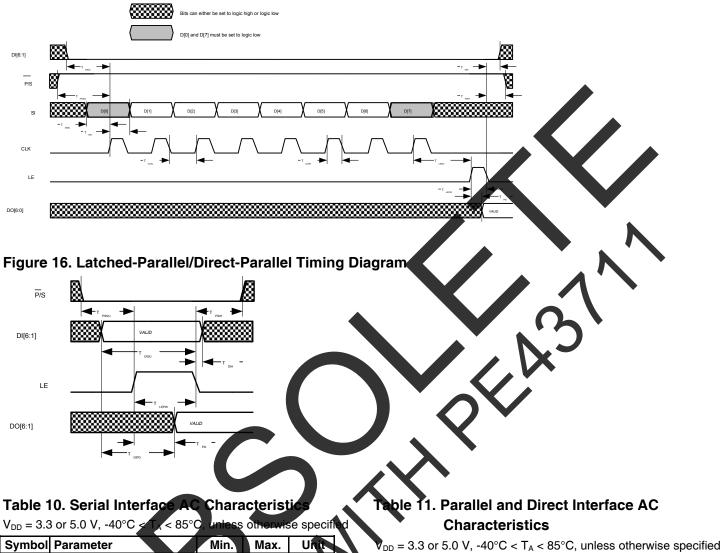
Power-up Control Settings

The PE43602 will always initialize to the maximum attenuation setting (31.5 dB) on power-up for both the serial and latched-parallel modes of operation and will remain in this setting until the user latches in the next programming word. In direct-parallel mode, the DSA can be preset to any state within the 31.5 dB range by pre-setting the parallel control pins prior to power-up. In this mode, there is a 400-µs delay between the time the DSA is powered-up to the time the desired since is set. During this powerdelay, the device attenuates to the maximum attenuation setting (81.5 dB) before defaulting to the user defined state. If the control pins are left floating n this mode during power-up, the device will default to the minimum attenuation setting (insertion loss state).

Dynamic operation between serial and parallel programming modes is possible.

If the DSA powers up in serial mode ($\overline{P}/S = HIGH$), all the parallel control inputs DI[6:1] must be set to logic low. Prior to toggling to parallel mode, the DSA *must* be programmed serially to ensure D[7] is set to logic low.

If the DSA powers up in either latched or directparallel mode, all parallel pins DI[6:1] must be set to logic low prior to toggling to serial mode (\overline{P}/S = HIGH), and *held* low until the DSA has been programmed serially to ensure bit D[7] is set to logic low.


The sequencing is only required once on powerup. Once completed, the DSA may be toggled between serial and parallel programming modes at will.

©2010 Peregrine Semiconductor Corp. All rights reserved.

Document No. 70-0248-06 | UltraCMOS[™] RFIC Solutions

Figure 15. Serial Timing Diagram

Symbol	Parameter	Min.	Max.	Unit	
F _{CLK}	Serial clock frequency	-	10	MHż	
T _{CLKH}	Serial clock HIGH time	30		ns	
T _{CLKL}	Serial clock LOW time	30	-	ns	
T _{LESU}	Last serial clock rising edge setup time to Latch Enable rising edge	10	Ň	ns	
T _{LEPW}	Latch Enable minimum pulse width	30		ns	
T _{SISU}	Serial data setup time	10	-	ns	
T _{SIH}	Serial data hold time	10	-	ns	
T _{DISU}	Parallel data setup time	100	-	ns	
T _{DIH}	Parallel data hold time	100	-	ns	
T _{ASU}	Address setup time	100	-	ns	
T _{AH}	Address hold time	100	-	ns	
T _{PSSU}	Parallel/Serial setup time	100	-	ns	
T _{PSH}	Parallel/Serial hold time	100	-	ns	
T _{PD}	Digital register delay (internal)	-	10	ns	

Symbol	Parameter	Min	Max	Unit
T _{LEPW}	Latch Enable minimum pulse width	30	-	ns
T _{DISU}	Parallel data setup time	100	-	ns
Т _{DIH}	Parallel data hold time	100	-	ns
T _{PSSU}	Parallel/Serial setup time	100	-	ns
T _{PSIH}	Parallel/Serial hold time	100	-	ns
T _{PD}	Digital register delay (internal)	-	10	ns
T _{DIPD}	Digital register delay (internal, direct mode only)	-	5	ns

Document No. 70-0248-06 | www.psemi.com

©2010 Peregrine Semiconductor Corp. All rights reserved.

Evaluation Kit

The Digital Attenuator Evaluation Kit board was designed to ease customer evaluation of the PE43602 Digital Step Attenuator.

Direct-Parallel Programming Procedure For automated direct-parallel programming, connect the test harness provided with the EVK from the parallel port of the PC to the J1 & Serial header pin and set the D0-D6 SP3T switches to the 'MIDDLE' toggle position. Position the Parallel/Serial (\overline{P} /S) select switch to the Parallel (or left) position. The evaluation software is written to operate the DSA in either Parallel or Serial-Addressable Mode. Ensure that the software is set to program in *Direct-Parallel* mode. Using the software, enable or disable each setting to the desired attenuation state. The software automatically programs the DSA each time an attenuation state is enabled or disabled.

For manual direct-parallel programming, disconnect the test harness provided with the EVK from the J1 and Serial header pins. Position the Parallel/Serial (\overline{P}/S) select switch to the Parallel (or left) position. The LE pin on the Serial header must be tied to V_{DD}. Switches D0-D6 are SP3T switches which enable the user to manually program the parallel bits. When any input DO-D is toggled 'UP', logic high is presented to the parallel input. When toggled DOWN', logic low is presented to the parallel input. Setting D0-D6 to the 'MIDDLE' toggle position presents an OPEN which forces an on-chip logic low. *ble 9* depict the parallel programming truth table and Fig. 16 illustrates the parallel programming timing diagram.

Latched-Parallel Programming Procedure For automated latched-parallel programming, the procedure is identical to the orrest-parallel method. The user only must ensure that Latched-Parallel is selected in the software.

For manual latched parallel programming, the procedure is identical to direct-parallel except now the LE pin on the Serial header must be logic low

Figure 17. Evaluation Board Layout

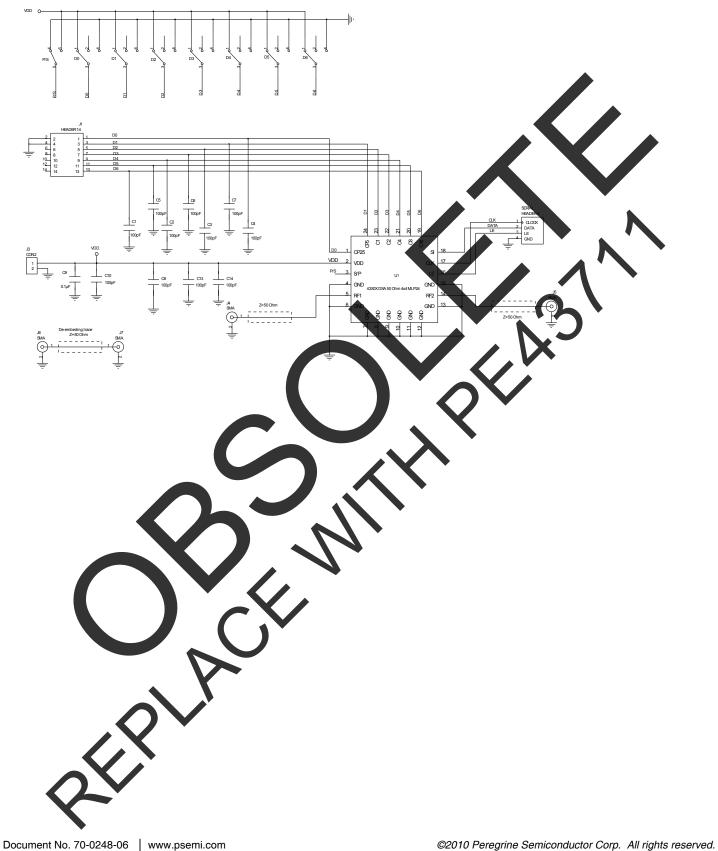
Peregrine Specification 101-0310

te: Reference Figure 18 for Evaluation Board Schematic

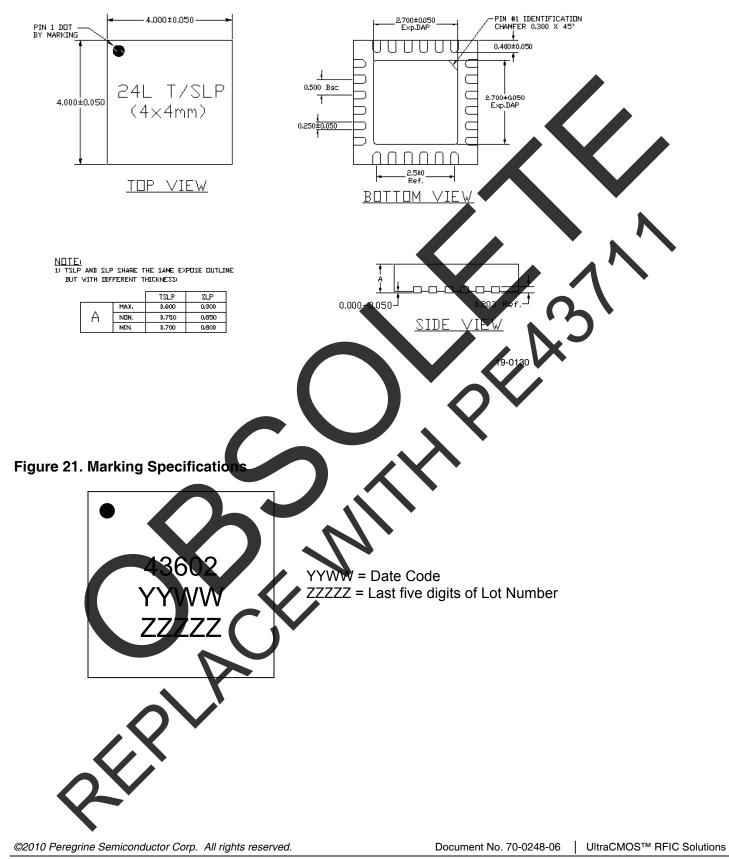
as the parallel bits are applied. The user must then pulse LE from 0V to V_{DD} and back to 0V to latch the programming word into the DSA. LE must be logic low prior to programming the next word.

Serial Programming Procedure

Position the Parallel/Serial (\overline{P} /S) select switch to the Serial (or right) position. The evaluation software is written to operate the DSA in either Parallel or Serial Mode. Ensure that the software is set to program in Serial mode. Using the software, enable or disable each setting to the desired attenuation state. The software automatically programs the DSA each time an attenuation state is enabled or disabled.


©2010 Peregrine Semiconductor Corp. All rights reserved.

Document No. 70-0248-06 | UltraCMOS™ RFIC Solutions


Figure 18. Evaluation Board Schematic

Peregrine Specification 102-0379

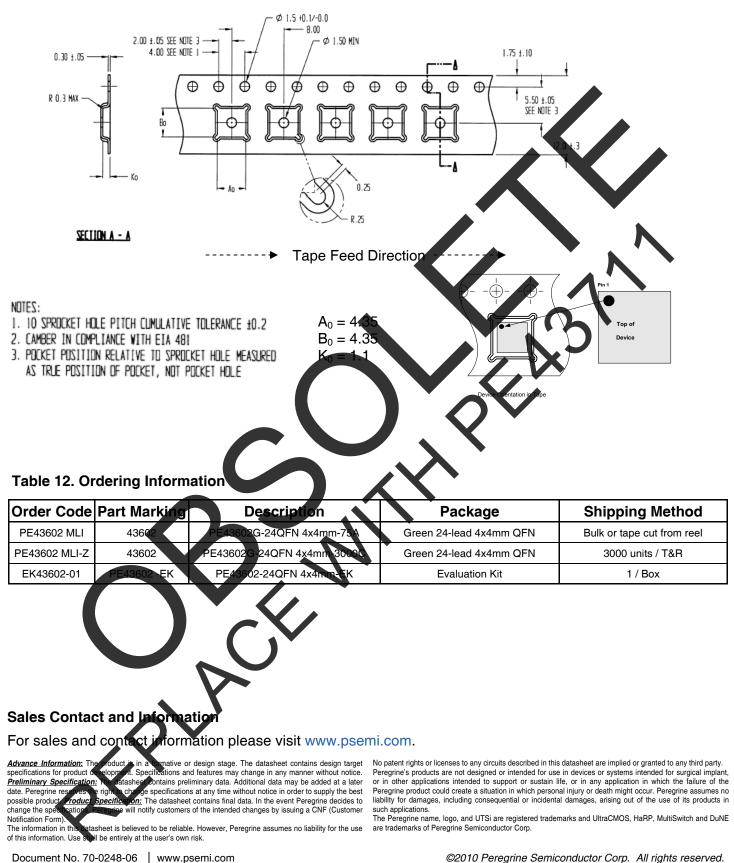


Figure 19. Package Drawing

Figure 20. Tape and Reel Drawing

Logo updated under non-rev change. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com