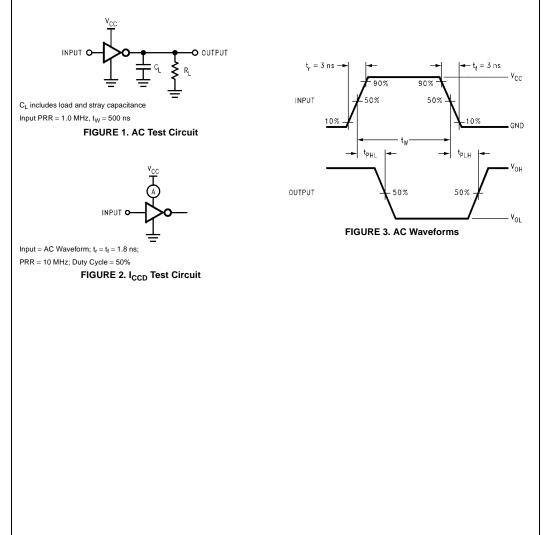
Absolute Maximum Ratings(Note 1)

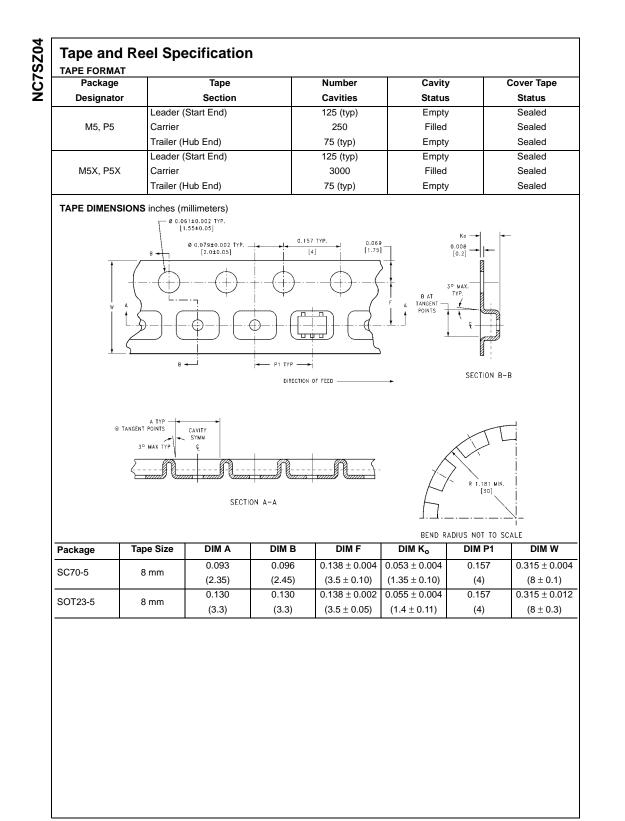
Supply Voltage (V _{CC})	-0.5V to +6V
DC Input Voltage (V _{IN})	-0.5V to +6V
DC Output Voltage (V _{OUT})	-0.5V to +6V
DC Input Diode Current (IIK)	
@V _{IN} < -0.5V	–50 mA
@ V _{IN} > 6V	+20 mA
DC Output Diode Current (I _{OK})	
@V _{OUT} < -0.5V	–50 mA
@ $V_{OUT} > 6V$, $V_{CC} = GND$	+20 mA
DC Output Current (I _{OUT})	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SOT23–5	200 mW
SOT70–5	150 mW

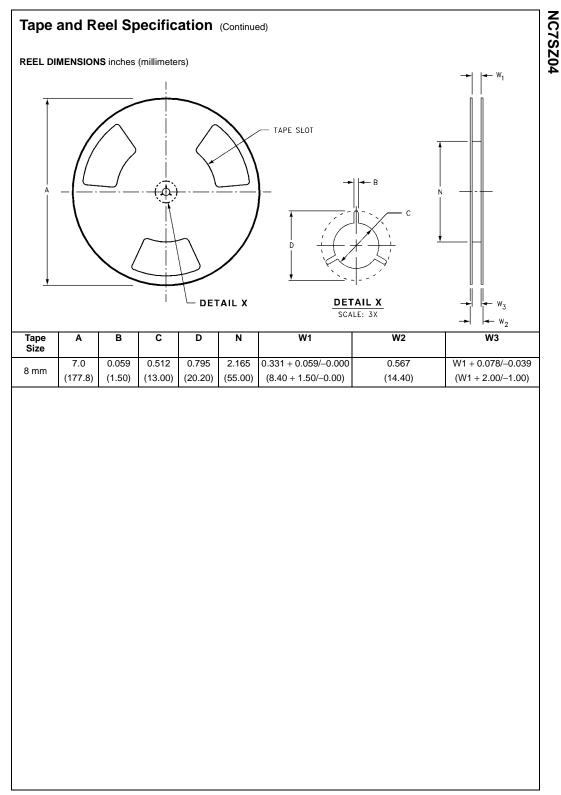
Recommended Operating Conditions (Note 2)							
Supply Voltage Operating (V_{CC})	1.8V to 5.5V						
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V						
Input Voltage (V _{IN})	0V to 5.5V						
Output Voltage (V _{OUT})	0V to V _{CC}						
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$						
Input Rise and Fall Time (t_r, t_f)							
$V_{CC} = 1.8V, 2.5V \pm 0.2V$	0 ns/V to 20 ns/V						
$V_{CC} = 3.3 V \pm 0.3 V$	0 ns/V to 10 ns/V						
$V_{CC} = 5.0V \pm 0.5V$	0 ns/V to 5 ns/V						
Thermal Resistance (θ_{JA})							
SOT23–5	300°C/W						
SC70–5	425°C/W						
Note 1: Absolute maximum ratings are DC values b							

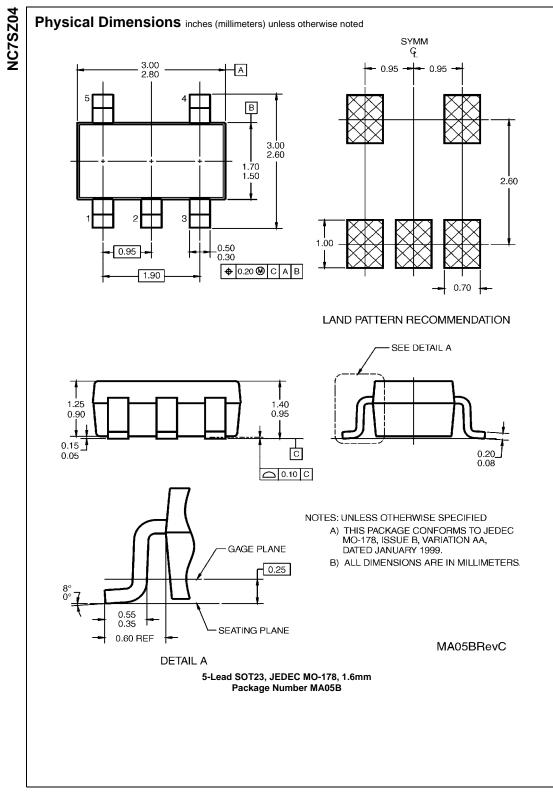
Note 1 Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

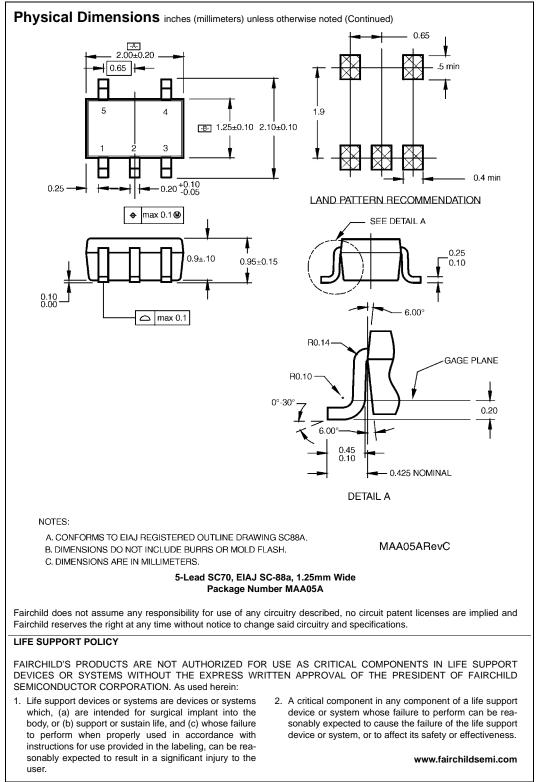
Note 2: Unused inputs must be held HIGH or LOW. They may not float.


DC Electrical Characteristics


Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions				
		(V)	Min	Тур	Max	Min	Max	Units		nations		
V _{IH}	HIGH Level Input Voltage	1.8	0.75 V _{CC}			0.75 V _{CC}		V				
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v				
V _{IL}	LOW Level Input Voltage	1.8			0.25 V _{CC}		0.25 V _{CC}	V				
		2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v				
V _{OH}	HIGH Level Output Voltage	1.8	1.7	1.8		1.7						
		2.3	2.2	2.3		2.2		V V _{II}	$V_{IN} = V_{IL}$ I_{OI}	I _{OH} = -100 μA		
		3.0	2.9	3.0		2.9				10H = -100 mA		
		4.5	4.4	4.5		4.4						
		2.3	1.9	2.15		1.9				I _{OH} = -8 mA		
		3.0	2.4	2.80		2.4		v		$I_{OH} = -16 \text{ mA}$		
		3.0	2.3	2.68		2.3		v		$I_{OH} = -24 \text{ mA}$		
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$		
V _{OL}	LOW Level Output Voltage	1.8		0.0	0.1		0.1					
		2.3		0.0	0.1		0.1	V	V	V	V _{IN} =V _{IH}	I _{OI} = 100 μA
		3.0		0.0	0.1		0.1		VIN-VIH	$O_L = 100 \mu A$		
		4.5		0.0	0.1		0.1					
		2.3		0.10	0.3		0.3			I _{OL} =8 mA		
		3.0		0.15	0.4		0.4	v		$I_{OL} = 16 \text{ mA}$		
		3.0		0.22	0.55		0.55	v		$I_{OL} = 24 \text{ mA}$		
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$		
I _{IN}	Input Leakage Current	0 to 5.5			±1		±10	μΑ	$0 \le V_{IN} \le 5$.5V		
I _{OFF}	Power Off Leakage Current	0.0			1		10	μΑ	V _{IN} or V _O	_{UT} = 5.5V		
I _{CC}	Quiescent Supply Current	1.8 to 5.5			2.0		20	μΑ	V _{IN} = 5.5\	/, GND		


Symbol	Parameter	V _{CC}	T _A = +25°C			T _A = -40°	C to +85°C	Units	Conditions	Fig. No
		(V)	Min	Тур	Max	Min	Max	Units	Conultions	Fig. NO.
t _{PLH}	Propagation Delay	1.8	2.0	4.4	9.5	2.0	10			
t _{PHL}		2.5 ± 0.2	0.8	2.9	6.5	0.8	7.0	ns	$C_L = 15 \text{ pF}$	Figures
		3.3 ± 0.3	0.5	2.1	4.5	0.5	4.7	ns	$R_L = 1 \ M\Omega$	1, 3
		5.0 ± 0.5	0.5	1.8	3.9	0.5	4.1			
t _{PLH}	Propagation Delay	3.3 ± 0.3	1.5	2.9	5.0	1.5	5.2	ns	$C_L = 50 \text{ pF}$	Figures
t _{PHL}		5.0 ± 0.5	0.8	2.4	4.3	0.8	4.5	115	$R_L = 500\Omega$	1, 3
CIN	Input Capacitance	0		4				pF		
C _{PD}	Power Dissipation Capacitance	3.3		20				pF	(Note 3)	Figure 2
		5.0		26				рн		Figure 2


Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (CPD) (V_{CC}) (f_{IN}) + (I_{CC} static)


AC Loading and Waveforms

NC7SZ04 TinyLogic™ UHS Inverter