
ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Sustaining Voltage (I _C = 100 mAdc, I _B = 0)	V _{CEO(sus)}	260	-	Vdc
Collector Cutoff Current (V _{CB} = 260 Vdc, I _E = 0)	I _{CBO}	-	50	μAdc
Emitter Cutoff Current $(V_{EB} = 5 \text{ Vdc}, I_C = 0)$	I _{EBO}	-	5	μAdc
SECOND BREAKDOWN				
Second Breakdown Collector with Base Forward Biased (V _{CE} = 50 Vdc, t = 1 s (non–repetitive) (V _{CE} = 100 Vdc, t = 1 s (non–repetitive)	I _{S/b}	4 1		Adc
ON CHARACTERISTICS				
DC Current Gain $ \begin{aligned} &(I_C = 500 \text{ mAdc, } V_{CE} = 5 \text{ Vdc}) \\ &(I_C = 1 \text{ Adc, } V_{CE} = 5 \text{ Vdc}) \\ &(I_C = 3 \text{ Adc, } V_{CE} = 5 \text{ Vdc}) \\ &(I_C = 5 \text{ Adc, } V_{CE} = 5 \text{ Vdc}) \\ &(I_C = 8 \text{ Adc, } V_{CE} = 5 \text{ Vdc}) \end{aligned} $	h _{FE}	75 75 75 75 75 45	150 150 150 150 -	
Collector–Emitter Saturation Voltage (I _C = 10 Adc, I _B = 1 Adc)	V _{CE(sat)}	-	3	Vdc
DYNAMIC CHARACTERISTICS	•			
Current–Gain – Bandwidth Product $(I_C = 1 \text{ Adc}, V_{CE} = 5 \text{ Vdc}, f_{test} = 1 \text{ MHz})$	f⊤	30	-	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f_{test} = 1 \text{ MHz}$)	C _{ob}	-	600	pF

TYPICAL CHARACTERISTICS

NPN MJL3281A

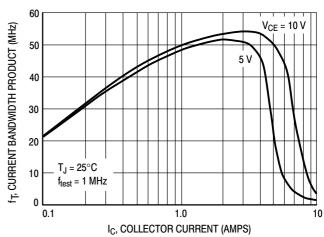
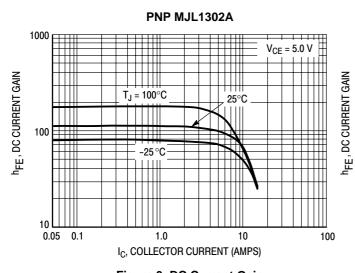



Figure 1. Typical Current Gain **Bandwidth Product**

Figure 2. Typical Current Gain **Bandwidth Product**

NPN MJL3281A

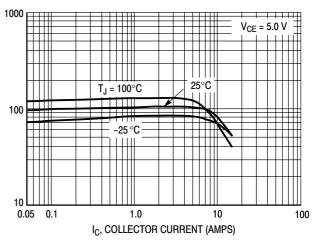
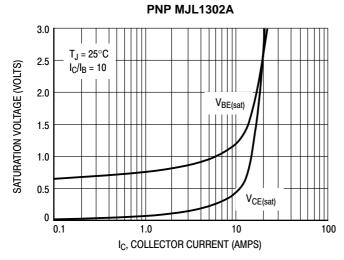



Figure 3. DC Current Gain

Figure 4. DC Current Gain


NPN MJL3281A

 $V_{\text{BE(sat)}}$

V_{CE(sat)}

100

IC, COLLECTOR CURRENT (AMPS) Figure 6. Typical Saturation Voltages

2.5

2.0

1.5

0.5

0

0.1

SATURATION VOLTAGE (VOLTS)

 $T_J = 25^{\circ}C$

 $I_{C}/I_{B}=10$

TYPICAL CHARACTERISTICS

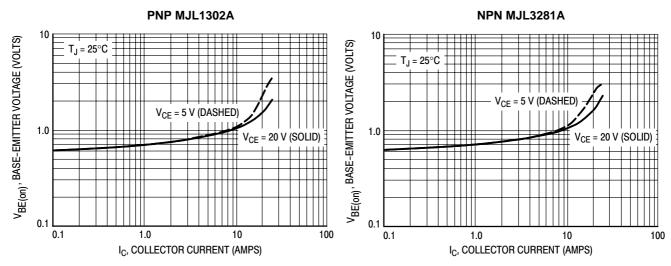


Figure 7. Typical Base-Emitter Voltage

Figure 8. Typical Base-Emitter Voltage

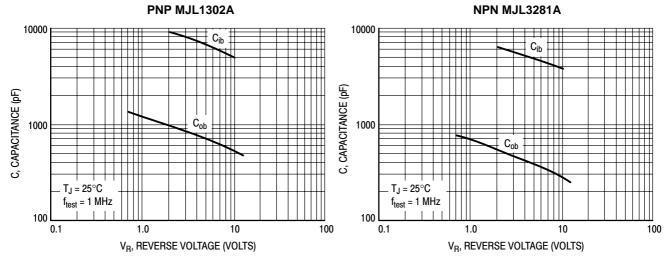
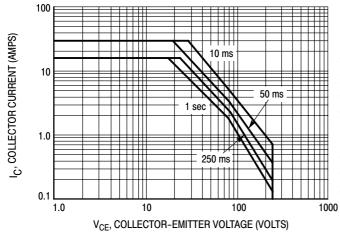
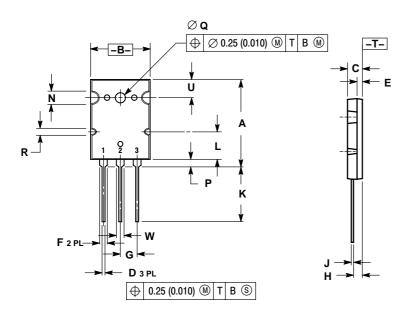


Figure 9. MJL1302A Typical Capacitance

Figure 10. MJL3281A Typical Capacitance




Figure 11. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 11 is based on $T_{J(pk)} = 150^{\circ}\text{C}$; T_{C} is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

PACKAGE DIMENSIONS

TO-3PBL (TO-264) CASE 340G-02 ISSUE J

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES

- DIMENSIONING AND TOLERANCING PER
 ANSLY 44 FM 4002
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	28.0	29.0	1.102	1.142	
В	19.3	20.3	0.760	0.800	
С	4.7	5.3	0.185	0.209	
D	0.93	1.48	0.037	0.058	
E	1.9	2.1	0.075	0.083	
F	2.2	2.4	0.087	0.102	
G	5.45 BSC		0.215 BSC		
Н	2.6	3.0	0.102	0.118	
J	0.43	0.78	0.017	0.031	
K	17.6	18.8	0.693	0.740	
L	11.2 REF		0.411 REF		
N	4.35 REF		0.172 REF		
Р	2.2	2.6	0.087	0.102	
Q	3.1	3.5	0.122	0.137	
R	2.25 REF		0.089 REF		
U	6.3 REF		0.248 REF		
w	2.8	3.2	0.110	0.125	

STYLE 2:

PIN 1. BASE

2. COLLECTOR

PowerBase is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

MJL3281A/D