Ordering Information | Part Number | | | Circuit Breaker | Temperature | | | |---------------|---------------|-------------|-----------------|--------------|--------------|--| | Standard | Pb-Free | Enable | Function | Range | Package | | | MIC2010-1PCQS | MIC2010-1PZQS | Active High | | 0°C to +70°C | 16-lead QSOP | | | MIC2010-2PCQS | MIC2010-1PZQS | Active Low | | 0°C to +70°C | 16-lead QSOP | | | MIC2070-1PCQS | MIC2070-1PZQS | Active High | ✓ | 0°C to +70°C | 16-lead QSOP | | | MIC2070-2PCQS | MIC2070-2PZQS | Active Low | ✓ | 0°C to +70°C | 16-lead QSOP | | # **Pin Configuration** # **Pin Description** | Pin Number | Pin Name | Pin Function | | | | |------------|----------|---|--|--|--| | 1 | FAULT1 | Fault Status (Output): Channel 1, active-low; weak pull-up to AUX. FAUL is asserted LOW when channel 1 is in a thermal shutdown state or overcurent condition for more than 5ms. MIC2070 latches this output in its asserstate upon overcurrent condition. Toggling EN1 or removing the load will reset the circuit breaker latch, and deassert FAULT1. | | | | | 2 | EN1 | Enable (Input): Channel 1, active-high (-1) or active-low (-2). Toggling this input also resets the latched output of the MIC2070. | | | | | 3 | S3# | Control (Input): When this input is high, the MAIN inputs are connected to OUT1 and OUT2 via $100m\Omega$, $500mA$ MOSFET switches. When this input is LOW, the AUX inputs are connected to OUT1 and OUT2 via $500m\Omega$ MOSFET switches with a current-limit threshold specified by external resistors, RSET1 and RSET2. | | | | | 4 | RSET1 | Current-Limt Set Resistor (Input): Channel 1. A resistor connected to this input sets the current-limit threshold in AUX mode (S3# asserted). The current-limit threshold is determined by approximately 18/RSET1. | | | | | 5 | AUX | Auxiliary 5V Supply (Input): Also used as power supply for internal circuitry. | | | | | 6 | NC | No Connection: This pin may be connected to other pins without restriction. | | | | | 7 | RSET2 | Current-Limit Set Resistor (Input): Channel 2. A resistor connected to this input sets the current-limit threshold in AUX mode (S3# asserted). The current-limit threshold is determined by approximately 18/RSET2. | | | | | 8 | GND | Ground | | | | | 9, 10 | OUT2 | Channel 2 (Output): Both pins must be connected together externally. | | | | | 11, 12 | MAIN | 5V Main Supply (Input): All MAIN inputs must be connected together externally. | | | | | 13, 14 | OUT1 | Channel 1 (Output): Both pins must be connected together externally. | | | | | 15 | EN2 | Enable (Input): Channel 2, active-high (-1) or active-low (-2). Toggling this input also resets the latched output for the MIC2070. | | | | | 16 | FAULT2 | Fault Status (Output): Channel 2, active-low; weak pull-up to AUX. FAULT is asserted LOW when channel 2 is in a thermal shutdown state or overcur rent condition for more than 5ms. MIC2070 latches this output in it's assert state upon overcurrent condition. Toggling EN2 or removing load will reset the circuit breaker latch, and deassert FAULT2. | | | | ## **Absolute Maximum Ratings** (1, 4) | Supply Voltage (V _{IN}) | –0.3V to 6V | |-----------------------------------|-------------| | FAULT#, OUT1, OUT2 Output Pins | –0.3V to 6V | | FAULT1,FAULT2, Output Current | 25mA | | ESD Rating ⁽³⁾ | 2kV | # Operating Ratings⁽²⁾ | Supply Voltage (V _{MAIN.} V _{AUX}) | +4.5V to +5.5V | |---|-----------------------| | Continuous Output Current (AU | X Mode) 50mA to 300mA | | Ambient Temperature (T _A) | 0°C to +70°C | | Junction Temperature (T _J) | Internally Limited | | Package Thermal Resistance | | | $QSOP(\theta_{JA})$ | 163°C/W | ## **Electrical Characteristics** V_{MAIN} = 5V; AUX = 5V; R_{SET} = 125 Ω , T_{A} = 25°C. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |-----------------------|---|---|------------|--------------------------|--|--------------------------| | V _{MAIN} | MAIN Supply Voltage | | 4.5 | 5.0 | 5.5 | V | | I _{MAIN} | MAIN Supply Current ⁽⁵⁾ | S3# = 1, both switches ON, no load
S3# = 1, both switches OFF, no load | | 16 | 22
5 | μ Α
μ Α | | I _{LEAK} | MAIN Reverse Leakage Current ⁽⁵⁾ | S3# = 0, both switches ON, V _{MAIN} = 0V | -10 | | +10 | μА | | V_{AUX} | AUX Supply Voltage | | 4.5 | 5.0 | 5.5 | V | | I _{AUX} | AUX Supply Current ⁽⁵⁾ | S3# = 0; No load, both switches ON
S3# = 0; No load, both switches OFF | | .6 | 1
5 | mA
μA | | V _{UV/AUX} | AUX Undervoltage Lockout
Threshold | V _{AUX} increasing
V _{AUX} decreasing | 3.5
3.3 | 3.7
3.5 | 4.0
3.8 | V | | V _{HYS} | AUX Undervoltage Lockout
Hysteresis | | | 200 | | mV | | R _{DSMAIN} | MAIN On-Resistance, Each Output | S3# = 1, I _{OUT} = 500mA | | 100 | 140 | mΩ | | R _{DSAUX} | AUX On-Resistance, Each Output | S3# = 0, I _{OUT} = 100mA | | 500 | 700 | mΩ | | I _{LIMIT} | MAIN Current-Limit Threshold, | S3# = 1, V _{OUT} = 4.0V, ramped load | 0.5 | | 1.25 | Α | | | MAIN Short-Circuit Current-Limit | V _{OUT} = 0V | 0.5 | | 5.5
5.5
6.22
5.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10. | Α | | | Current-Limit Factor (AUX Supply) ⁽⁶⁾ | S3# = 0, I _{OUT} = 50mA to 300mA
V _{OUT} = 4V | 14.4 | 18 | 21.6 | Α•Ω | | V _{TH} | S3#, EN1, EN2
Input Threshold Voltage | High-to-Low transition
Low-to-High transition | .8 | 1.5
1.7 | 2.0 | V | | I _{IN} | S3#, EN1, EN2 Input Current | V _{S3/EN} =5V, 0V | -1 | | 1 | μА | | V_{HYS} | EN1, EN2 and S3# Input Hysteresis | | | 200 | | mV | | I _{OFF} | OUT1, 2 Leakage Current | Outputs are off, V _{OUT} = 0 | -10 | | 10 | μΑ | | | Pull-Up Current During Latched
Output State (MIC2070-x only) | Outputs latched off | TBD | 1 | 10 | mA | | V _{TH LATCH} | Latch Reset Threshold | V _{OUT} rising | | 1.95 | | V | | | Minimum Output Slew Rate to Reset Latch (MIC2070-x only) ⁽⁷⁾ | Output rising | | .4 | 22
5
+10
5.5
1
5
4.0
3.8
140
700
1.25
21.6
2.0
1
10
TBD | V/s | | | Overtemperature Threshold | T _J increasing, single channel T _J decreasing, single channel T _J increasing, both channels T _J decreasing, both channels | | 140
120
160
125 | | ိုင္
၁°
၁° | | V_{OL} | FAULT1, 2 Output Low Voltage | I _{FAULT} = 5mA | | | 0.2 | V | | | FAULT1, 2 Output Off Current
(Not Applicable for 'P' versions) | V _{FAULT} = 5V | | 0.2 | 5 4.0 3.8 140 700 1.25 1.25 21.6 2.0 1 10 TBD | μА | | Symbol | Parameter | Condition | Min | Тур | Max | Units | |------------------------|--|---|-----|--------|-----|--------------------------| | V _{OH} | FAULT1, 2 Output High Voltage
(MIC2010-1P,2P), (MIC2070-1P,2P) | $I_{FAULT} = -20\mu A$ | 4 | | | V | | T _H | MAIN to S3# Hold Time, Note 7 | Figure 5 | 5 | | | ms | | T _S | MAIN to S3# Set-up Time, Note 7 | Figure 5 | 0 | | | ms | | t _{DLY} | FAULT Delay Filter Response Time (Overcurrent only), Note 8 | Output shorted to ground, Figure 4 | 5 | 10 | 20 | ms | | t _{OC} | Overcurrent Response Time | Output shorted to ground, Figure 4 MAIN output AUX output | | 2
2 | | μ s
μ s | | t _{ON(MAIN)} | MAIN Output Turn-On Time | $R_L = 10\Omega$, $C_L = 1\mu F$, Figure 3 | | 2 | | ms | | t _{OFF(MAIN)} | MAIN Output Turn-Off Time | $R_L = 10\Omega$, $C_L = 1\mu F$, Figure 3 | | 35 | | μS | | t _{r(MAIN)} | MAIN Output Rise Time | $R_L = 10\Omega$, $C_L = 1\mu F$, Figure 3 | | 2 | | ms | | t _{f(MAIN)} | MAIN Output Fall Time | $R_L = 10\Omega$, $C_L = 1\mu F$, Figure 3 | | 32 | | μS | | t _{ON(AUX)} | AUX Output Turn-On Time | $R_L = 50\Omega$, $C_L = 1\mu F$, Figure 3 | | 0.6 | | ms | | t _{OFF(AUX)} | AUX Output Turn-Off Time | $R_L = 50\Omega$, $C_L = 1\mu F$, Figure 3 | | 120 | | μS | | $t_{r(AUX)}$ | AUX Output Rise Time | $R_L = 50\Omega$, $C_L = 1\mu F$, Figure 3 | | 0.5 | | ms | | $t_{f(AUX)}$ | AUX Output Fall Time | $R_L = 50\Omega$, $C_L = 1\mu F$, Figure 3 | | 115 | | μS | | t _{XMA} | MAIN to AUX
Cross Conduction Time, Note 9 | S3# transition to 0 | | 5 | 7.5 | ms | | t _{XAM} | AUX to MAIN
Cross Conduction Time, Note 9 | S3# transition to 1 | | 5 | 7.5 | ms | #### Notes: - 1. Exceeding the absolute maximum rating may damage the device. - 2. The device is not guaranteed to function outside its operating rating. - 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. - 4. All voltages are referenced to ground. - 5. For MIC2070-1(P) OFF occurs when $V_{EN} < 0.8V$ and ON occurs when $V_{EN} > 2.4V$. For MIC2070-2(P) OFF occurs when $V_{EN} > 2.4V$ and ON occurs when $V_{EN} < 0.8V$. - 6. Current-limit threshold is defined by the current-limit factor divided by R_{SET}. - 7. Guaranteed by design. Not production tested. - 8. Assumes only one channel in current-limit. Delay circuitry is shared among channels so it is possible for t_{DLY} to be 40ms max if one channel enters current-limit as the other is about to time-out. - 9. Cross conduction time is the duration in which both MAIN and AUX internal switches are on subsequent to S3# transitioning. ### **Test Circuit** ## **Timing Diagram** Figure 2. MIC2010/70-1 Figure 3. MIC2010/70-2 Figure 4. Overcurrent Response Timing Figure 5. MAIN to S3# Timing ## **Functional Diagram** ## **Functional Description** The MIC2010/2070 are designed to support the power distribution requirements for USB wakeup from the ACPI S3 state. It integrates two independent channels under control of input S3#. When S3# is asserted LOW (ACPI S3 state) the MIC2010/2070 will switch a $500 m\Omega$ MOSFET switch from the AUX input to each of its two outputs. In addition the current-limit threshold will be set to a value specified by a resistor connected to the RSET inputs. Conversely when the S3# input is HIGH the MIC2010/2070 will switch a $100 m\Omega$ MOSFET switch from the MAIN inputs to each of its two outputs. The current-limit threshold is preset to 500 mA in this state. The lower current limit during the ACPI S3 state helps to ensure that the standby supply maintains regulation even during fault conditions. ### **Thermal Shutdown** Thermal shutdown is employed to protect the device from damage should the die temperature exceed safe margins due mainly to short circuit faults. Thermal shutdown shuts off the output MOSFET and asserts the FAULT output if the die temperature reaches 140°C and the overheated channel is in current limit. The other channel is not affected. If however, the die temperature exceeds 160°C, both channels will be shut off even if neither channel is in current limit. #### **Power Dissipation** The device's junction temperature depends on several factors such as the load, PCB layout, ambient temperature and package type. The power dissipated in each channel is $P_D = R_{DS(on)} \times I_{OUT}^{\ 2} \ where \ R_{DS(on)} \ is \ the \ on-resistance \ of \ the \ internal \ MOSFETs \ and \ I_{OUT} \ is \ the \ continuous \ output \ current.$ Total power dissipation of the device will be the summation of $P_{\rm D}$ for both channels. To relate this to junction temperature, the following equation can be used: $$TJ = P_D \times \theta_{JA} + T_A$$ where $T_{.I}$ = junction temperature T_A = ambient temperature $\theta_{\text{.IA}}$ = is the thermal resistance of the package ### **Current Sensing and Limiting** The current-limit threshold of each channel is preset internally at 500mA when S3# is deasserted. When S3# is asserted the current-limit threshold is specified by a resistor connected to the RSET input. The value of the current-limit threshold is determined by the equation $18/R_{\rm SET}$ ohms where $R_{\rm SET}$ is the resistance connected between the RSET pin and ground. The current-limit threshold should be set at 1.2X of the applications continous output current requirement. When an overcurrent condition lasts longer than t_{DLY} the MIC2070 will activate an internal circuit breaker that will latch the output off and assert FAULT. The output will remain off until either the load is removed or EN is toggled. When the MIC2070 enters a latched output condition a 1mA pull-up current source is activated. This provides a way to automatically reset the output once the load is removed without the need to toggle the enable input. Please refer to Figure 7 for timing details. The MIC2010 will automatically reset its output when the die temperature cools down to 120°C. The MIC2010 output and FAULT signal will continue to cycle on and off until the device is disabled or the fault is removed. Figure 6 depicts typical timing. Depending on PCB layout, package, ambient temperature, etc., it may take several hundred milliseconds from the incidence of the fault to the output MOSFET being shut off. This time duration will be shortest in the case of a dead short on the output. #### **Fault Status Output** The FAULT signal is an active-low output with a weak pull-up. FAULT is asserted when either an overcurrent or thermal shutdown condition occurs. In the case of an overcurrent condition, FAULT will be asserted only after the flag response delay time, $t_{\rm DLY}$, has elapsed. This ensures that FAULT is asserted only upon valid overcurrent conditions and that erroneous error reporting is eliminated. The FAULT response delay time $t_{\rm DLY}$ is typically 10ms. Since the delay timer is shared between both channels it is possible for $t_{\rm DLY}$ to be extended by an amount equal to the difference between the occurrence of the over-current event in both channels. #### **Undervoltage Lockout** Undervoltage lockout (UVLO) prevents the output MOSFET from turning on until the AUX input exceeds approximately 3.5V. UVLO ensures that the output MOSFETs remain off to prevent high transient inrush current due to stray or bulk load capacitance. This helps to ensure that the power supply voltage regulation is preserved and also prevents possible damage to sensitive components. Figure 6. MIC2010 System Timing Figure 7. MIC2070 System Timing— Output Resets When Load is Removed ### **Functional Characteristics** ## **Package Information** ### MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2005 Micrel, Incorporated