## Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

## **Absolute Maximum Ratings**

| Voltages Referenced to GND                                                   | Continuous Power Dissipation (T <sub>A</sub> = +70°C) |
|------------------------------------------------------------------------------|-------------------------------------------------------|
| IN0.3 to +13.5V                                                              | 8-Pin SO (derate 5.88mW/°C above +70°C)471mW          |
| OUT0.3V to (V <sub>IN</sub> + 0.3V)                                          | Operating Temperature Range40°C to +85°C              |
| Output Short-Circuit Duration to GND or IN (V <sub>IN</sub> ≤ 6V) Continuous | Storage Temperature Range65°C to +150°C               |
| Output Short-Circuit Duration to GND or IN (VIN > 6V) 60s                    | Lead Temperature (soldering, 10s)+300°C               |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Electrical Characteristics—MAX6161 (V<sub>OUT</sub> = 1.25V)

| PARAMETER                             | SYMBOL                                  | CON                                                              | CONDITIONS   |       | TYP   | MAX   | UNITS             |
|---------------------------------------|-----------------------------------------|------------------------------------------------------------------|--------------|-------|-------|-------|-------------------|
| Quitaut Voltage                       | N                                       | T - 105°C                                                        | MAX6161A     | 1.248 | 1.250 | 1.252 | V                 |
| Output Voltage                        | V <sub>OUT</sub>                        | T <sub>A</sub> = +25°C                                           | MAX6161B     | 1.246 | 1.250 | 1.254 |                   |
| Output Voltage Temperature            | TOV                                     | MAX6161A                                                         | ,            |       | 4     | 10    |                   |
| Coefficient (Note 2)                  | TCV <sub>OUT</sub>                      | MAX6161B                                                         |              |       | 6     | 15    | - ppm/°C          |
| Line Regulation                       | ΔV <sub>OUT</sub> /<br>ΔV <sub>IN</sub> | $2.5 \text{V} \leq \text{V}_{\text{IN}} \leq 12.6 \text{V}$      |              |       | 12    | 150   | μV/V              |
| Lood Doculation                       | ΔV <sub>OUT</sub> /                     | Sourcing: 0 ≤ I <sub>OUT</sub> :                                 | ≤ 4mA        |       | 0.5   | 0.9   | mV/mA             |
| Load Regulation                       | ΔI <sub>OUT</sub>                       | Sinking: -2mA ≤ I <sub>OU</sub>                                  | JT ≤ 0       |       | 1.3   | 2.5   |                   |
| OUT Object Oirewit Ourseat            |                                         | Short to GND                                                     | Short to GND |       | 110   |       |                   |
| OUT Short-Circuit Current             | I <sub>SC</sub>                         | Short to IN                                                      | Short to IN  |       | 25    |       | - mA              |
| Long-Term Stability                   | ΔV <sub>OUT</sub> /<br>time             | 1000hr at +25°C                                                  |              |       | 115   |       | ppm/<br>1000hr    |
| Output Voltage Hysteresis<br>(Note 3) | ΔV <sub>OUT</sub> /<br>cycle            |                                                                  |              |       | 125   |       | ppm               |
| DYNAMIC CHARACTERISTICS               |                                         | 1                                                                |              |       |       |       |                   |
|                                       |                                         | f = 0.1Hz to 10Hz                                                |              |       | 20    |       | µVp-p             |
| Noise Voltage                         | eout                                    | f = 10Hz to 10kHz                                                |              |       | 15    |       | μV <sub>RMS</sub> |
| Ripple Rejection                      | V <sub>OUT</sub> /V <sub>IN</sub>       | V <sub>IN</sub> = +5V ±100mV,                                    | f = 120Hz    |       | 80    |       | dB                |
| Turn-On Settling Time                 | t <sub>R</sub>                          | V <sub>OUT</sub> to 0.1% of final value, C <sub>OUT</sub> = 50pF |              |       | 50    |       | μs                |
| INPUT CHARACTERISTICS                 | - ·                                     | ·                                                                |              |       |       |       |                   |
| Supply Voltage Range                  | V <sub>IN</sub>                         | Guaranteed by line-regulation test                               |              | 2.5   |       | 12.6  | V                 |
| Quiescent Supply Current              | I <sub>IN</sub>                         |                                                                  |              |       | 125   | 150   | μA                |
| Change in Supply Current              | $\Delta I_{\rm IN} / \Delta V_{\rm IN}$ | $2.5V \le V_{IN} \le 12.6V$                                      |              |       | 3.2   | 8.0   | µA/V              |

# Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

## Electrical Characteristics—MAX6168 (V<sub>OUT</sub> = 1.800V)

| PARAMETER                             | SYMBOL                                  | CON                                                              | IDITIONS     | MIN         | TYP   | MAX   | UNITS             |      |
|---------------------------------------|-----------------------------------------|------------------------------------------------------------------|--------------|-------------|-------|-------|-------------------|------|
| Outrat Valtage                        |                                         | T - 105%0                                                        | MAX6168A     | 1.798       | 1.800 | 1.802 | - V               |      |
| Output Voltage                        | Vout                                    | T <sub>A</sub> = +25°C                                           | MAX6168B     | 1.795       | 1.800 | 1.805 |                   |      |
| Output Voltage Temperature            | 701/                                    | MAX6168A                                                         |              |             | 2     | 5     | (80               |      |
| Coefficient (Note 2)                  | TCV <sub>OUT</sub>                      | MAX6168B                                                         |              |             | 4     | 10    | ppm/°C            |      |
| Line Regulation                       | ΔV <sub>OUT</sub> /<br>ΔV <sub>IN</sub> | 2.5V ≤ V <sub>IN</sub> ≥ 12.6V                                   |              |             | 42    | 200   | μV/V              |      |
| Load Degulation                       | ΔV <sub>OUT</sub> /                     | Sourcing: $0 \le I_{OUT}$                                        | ≤ 5mA        |             | 0.5   | 0.9   |                   |      |
| Load Regulation                       | ΔI <sub>OUT</sub>                       | Sinking: -2mA ≤ I <sub>OI</sub>                                  | UT ≤ 0       |             | 1.5   | 4     | mV/mA             |      |
|                                       |                                         | Short to GND                                                     | Short to GND |             | 110   |       |                   |      |
| OUT Short-Circuit Current             | ISC                                     | I <sub>SC</sub> Short to IN                                      |              | Short to IN |       | 25    |                   | - mA |
| Long-Term Stability                   | ΔV <sub>OUT</sub> /<br>time             | 1000hr at +25°C                                                  |              |             | 80    |       | ppm/<br>1000hr    |      |
| Output Voltage Hysteresis<br>(Note 3) | ΔV <sub>OUT</sub> /<br>cycle            |                                                                  |              |             | 125   |       | ppm               |      |
| DYNAMIC CHARACTERISTIC                | s                                       | I                                                                |              | 1           |       |       | 1                 |      |
| Niele - Mallere                       |                                         | f = 0.1Hz to 10Hz                                                |              |             | 22    |       | µVp-p             |      |
| Noise Voltage                         | eout                                    | f = 10Hz to 10kHz                                                |              |             | 25    |       | μV <sub>RMS</sub> |      |
| Ripple Rejection                      | ΔV <sub>OUT</sub> /ΔV <sub>IN</sub>     | V <sub>IN</sub> = +5V ±100mV, f = 120Hz                          |              |             | 78    | -     | dB                |      |
| Turn-On Settling Time                 | t <sub>R</sub>                          | V <sub>OUT</sub> to 0.1% of final value, C <sub>OUT</sub> = 50pF |              |             | 100   |       | μs                |      |
| INPUT CHARACTERISTICS                 |                                         |                                                                  |              |             |       |       |                   |      |
| Supply Voltage Range                  | V <sub>IN</sub>                         | Guaranteed by line-regulation test                               |              | 2.5         |       | 12.6  | V                 |      |
| Quiescent Supply Current              | I <sub>IN</sub>                         |                                                                  |              |             | 100   | 120   | μA                |      |
| Change in Supply Current              | $\Delta I_{IN} / \Delta V_{IN}$         | 2.5V ≤ V <sub>IN</sub> ≤ 12.6V                                   |              |             | 3.4   | 8.0   | μA/V              |      |

# Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

#### Electrical Characteristics—MAX6162 (V<sub>OUT</sub> = 2.048V)

| PARAMETER                             | SYMBOL                                  | CONDITIONS                                         |              | MIN   | TYP   | MAX      | UNITS             |
|---------------------------------------|-----------------------------------------|----------------------------------------------------|--------------|-------|-------|----------|-------------------|
| Quite it Voltage                      |                                         | T - 105°C                                          | MAX6162A     | 2.046 | 2.048 | 2.050    | - V               |
| Output Voltage                        | Vout                                    | T <sub>A</sub> = +25°C                             | MAX6162B     | 2.043 | 2.048 | 2.053    |                   |
| Output Voltage Temperature            |                                         | MAX6162A                                           |              |       | 2     | 5        |                   |
| Coefficient (Note 2)                  | TCV <sub>OUT</sub>                      | MAX6162B                                           |              | 4     | 10    | - ppm/°C |                   |
| Line Regulation                       | ΔV <sub>OUT</sub> /<br>ΔV <sub>IN</sub> | 2.5V ≤ V <sub>IN</sub> ≤ 12.6V                     | 1            |       | 42    | 250      | μV/V              |
| Lood Dogulation                       | ΔV <sub>OUT</sub> /                     | Sourcing: 0 ≤ I <sub>OUT</sub>                     | ≤ 5mA        |       | 0.5   | 0.9      | mV/mA             |
| Load Regulation                       | ΔI <sub>OUT</sub>                       | Sinking: -2mA ≤ I <sub>O</sub>                     | UT ≤ 0       |       | 1.5   | 4        |                   |
| OUT Short-Circuit Current             | 1                                       | Short to GND                                       | Short to GND |       | 110   |          | - mA              |
|                                       | Isc                                     | Short to IN                                        |              |       | 25    |          |                   |
| Long-Term Stability                   | ΔV <sub>OUT</sub> /<br>time             | 1000hr at +25°C                                    |              |       | 80    |          | ppm/<br>1000hr    |
| Output Voltage Hysteresis<br>(Note 3) | ΔV <sub>OUT</sub> /<br>cycle            |                                                    |              |       | 125   |          | ppm               |
| DYNAMIC CHARACTERISTIC                | S                                       |                                                    |              |       |       |          |                   |
| Naisa Valtana                         |                                         | f = 0.1Hz to 10Hz                                  |              |       | 22    |          | µVp-p             |
| Noise Voltage                         | eout                                    | f = 10Hz to 10kHz                                  |              |       | 25    |          | μV <sub>RMS</sub> |
| Ripple Rejection                      | V <sub>OUT</sub> /V <sub>IN</sub>       | V <sub>IN</sub> = 5V ±100mV,                       | f = 120Hz    |       | 78    |          | dB                |
| Turn-On Settling Time                 | t <sub>R</sub>                          | $V_{OUT}$ to 0.1% of final value, $C_{OUT}$ = 50pF |              |       | 100   |          | μs                |
| INPUT CHARACTERISTICS                 |                                         |                                                    |              | •     |       |          |                   |
| Supply Voltage Range                  | V <sub>IN</sub>                         | Guaranteed by line-regulation test                 |              | 2.5   |       | 12.6     | V                 |
| Quiescent Supply Current              | I <sub>IN</sub>                         |                                                    |              |       | 100   | 120      | μA                |
| Change in Supply Current              | $\Delta I_{IN} / \Delta V_{IN}$         | 2.5V ≤ V <sub>IN</sub> ≤ 12.6V                     |              |       | 3.4   | 8.0      | μA/V              |

# Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

## Electrical Characteristics—MAX6166 (V<sub>OUT</sub> = 2.500V)

| PARAMETER                             | SYMBOL                                  | CONDITIONS                                         |          | MIN                | TYP   | MAX   | UNITS             |
|---------------------------------------|-----------------------------------------|----------------------------------------------------|----------|--------------------|-------|-------|-------------------|
| Quitaut Valtage                       |                                         | T - 125°C                                          | MAX6166A | 2.498              | 2.500 | 2.502 | v                 |
| Output Voltage                        | VOUT                                    | T <sub>A</sub> = +25°C                             | MAX6166B | 2.495              | 2.500 | 2.505 | V                 |
| Output Voltage Temperature            | TOV                                     | MAX6166A                                           | •        |                    | 2     | 5     | nnm/°C            |
| Coefficient (Note 2)                  | TCV <sub>OUT</sub>                      | MAX6166B                                           |          |                    | 4     | 10    | ppm/°C            |
| Dropout Voltage (Note 4)              | V <sub>IN</sub> - V <sub>OUT</sub>      | I <sub>OUT</sub> = 1mA                             |          |                    | 50    | 200   | mV                |
| Line Regulation                       | ΔV <sub>OUT</sub> /<br>ΔV <sub>IN</sub> | V <sub>OUT</sub> + 0.2V ≤ V <sub>IN</sub> ≤ 7      | 12.6V    |                    | 60    | 250   | μV/V              |
| Load Regulation                       | ΔV <sub>OUT</sub> /                     | Sourcing: $0 \le I_{OUT} \le 3$                    | 5mA      |                    | 0.5   | 0.9   | mV/mA             |
|                                       | ΔI <sub>OUT</sub>                       | Sinking: -2mA $\leq$ I <sub>OUT</sub>              | ≤ 0      |                    | 1.6   | 5     |                   |
| OUT Short-Circuit Current             |                                         | Short to GND                                       |          |                    | 110   |       | mA                |
|                                       | I <sub>SC</sub>                         | Short to IN                                        |          |                    | 25    |       | IIIA              |
| Long-Term Stability                   | ΔV <sub>OUT</sub> /<br>time             | 1000hr at +25°C                                    |          |                    | 80    |       | ppm/<br>1000hr    |
| Output Voltage Hysteresis<br>(Note 3) | ΔV <sub>OUT</sub> /<br>cycle            |                                                    |          |                    | 125   |       | ppm               |
| DYNAMIC CHARACTERISTICS               | 1                                       | 1                                                  |          |                    |       |       |                   |
|                                       | _                                       | f = 0.1Hz to 10Hz                                  |          |                    | 27    |       | µVp-p             |
| Noise Voltage                         | eOUT                                    | f = 10Hz to 10kHz                                  |          |                    | 30    |       | μV <sub>RMS</sub> |
| Ripple Rejection                      | V <sub>OUT</sub> /V <sub>IN</sub>       | V <sub>IN</sub> = 5V ±100mV, f = 120Hz             |          |                    | 76    |       | dB                |
| Turn-On Settling Time                 | t <sub>R</sub>                          | $V_{OUT}$ to 0.1% of final value, $C_{OUT}$ = 50pF |          |                    | 115   |       | μs                |
| INPUT CHARACTERISTICS                 |                                         |                                                    |          |                    |       |       |                   |
| Supply Voltage Range                  | V <sub>IN</sub>                         | Guaranteed by line-regulation test                 |          | V <sub>OUT</sub> + | 0.2   | 12.6  | V                 |
| Quiescent Supply Current              | I <sub>IN</sub>                         |                                                    |          |                    | 100   | 120   | μA                |
| Change in Supply Current              | $\Delta I_{\rm IN} / \Delta V_{\rm IN}$ | $V_{OUT} + 0.2V \le V_{IN} \le 12.6V$              |          |                    | 3.2   | 8.0   | μA/V              |

# Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

## Electrical Characteristics—MAX6163 (V<sub>OUT</sub> = 3.000V)

| PARAMETER                             | SYMBOL                                  | CONDITIONS                                         | MIN                | TYP            | MAX   | UNITS             |      |
|---------------------------------------|-----------------------------------------|----------------------------------------------------|--------------------|----------------|-------|-------------------|------|
| Quite it Voltage                      |                                         | MAX6163A                                           | 2.998              | 3.000          | 3.002 | - V               |      |
| Output Voltage                        | Vout                                    | T <sub>A</sub> = +25°C MAX6163B                    | 2.995              | 3.000          | 3.005 |                   |      |
| Output Voltage Temperature            | TOV                                     | MAX6163A                                           |                    | 2              | 5     |                   |      |
| Coefficient (Note 2)                  | TCV <sub>OUT</sub>                      | MAX6163B                                           |                    | 4              | 10    | ppm/°C            |      |
| Dropout Voltage (Note 4)              | V <sub>IN</sub> - V <sub>OUT</sub>      | I <sub>OUT</sub> = 1mA                             |                    | 50             | 200   | mV                |      |
| Line Regulation                       | ΔV <sub>OUT</sub> /<br>ΔV <sub>IN</sub> | $V_{OUT} + 0.2V \le V_{IN} \le 12.6V$              |                    | 83             | 300   | μV/V              |      |
| Load Regulation                       | ΔV <sub>OUT</sub> /                     | Sourcing: $0 \le I_{OUT} \le 5mA$                  |                    | 0.5            | 0.9   | - mV/mA           |      |
|                                       | Δl <sub>OUT</sub>                       | Sinking: $-2mA \le I_{OUT} \le 0$                  |                    | 1.8            | 5     |                   |      |
| OUT Short-Circuit Current             |                                         | Short to GND                                       |                    | 110            |       | - mA              |      |
|                                       | I <sub>SC</sub>                         | Short to IN                                        |                    | Short to IN 25 |       |                   | IIIA |
| Long-Term Stability                   | ΔV <sub>OUT</sub> /<br>time             | 1000hr at +25°C                                    |                    | 80             |       | ppm/<br>1000hr    |      |
| Output Voltage Hysteresis<br>(Note 3) | ΔV <sub>OUT</sub> /<br>cycle            |                                                    |                    | 125            |       | ppm               |      |
| DYNAMIC CHARACTERISTICS               | S                                       |                                                    |                    |                |       |                   |      |
|                                       |                                         | f = 0.1Hz to 10Hz                                  |                    | 35             |       | µVр-р             |      |
| Noise Voltage                         | eout                                    | f = 10Hz to 10kHz                                  |                    | 40             |       | μV <sub>RMS</sub> |      |
| Ripple Rejection                      | V <sub>OUT</sub> /V <sub>IN</sub>       | V <sub>IN</sub> = 5V ±100mV, f = 120Hz             |                    | 76             |       | dB                |      |
| Turn-On Settling Time                 | t <sub>R</sub>                          | $V_{OUT}$ to 0.1% of final value, $C_{OUT}$ = 50pl | =                  | 115            |       | μs                |      |
| INPUT CHARACTERISTICS                 |                                         |                                                    |                    |                |       |                   |      |
| Supply Voltage Range                  | V <sub>IN</sub>                         | Guaranteed by line-regulation test                 | V <sub>OUT</sub> + | 0.2            | 12.6  | V                 |      |
| Quiescent Supply Current              | I <sub>IN</sub>                         |                                                    |                    | 100            | 120   | μA                |      |
| Change in Supply Current              | $\Delta I_{IN} / \Delta V_{IN}$         | $V_{OUT} + 0.2V \le V_{IN} \le 12.6V$              |                    | 3.2            | 8.0   | µA/V              |      |

# Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

### Electrical Characteristics—MAX6164 (V<sub>OUT</sub> = 4.096V)

| PARAMETER                             | SYMBOL                                  | CONDITIONS                                        | MIN                | TYP            | MAX   | UNITS             |      |
|---------------------------------------|-----------------------------------------|---------------------------------------------------|--------------------|----------------|-------|-------------------|------|
| Quitaut Voltage                       |                                         | MAX6164A                                          | 4.094              | 4.096          | 4.098 | - V               |      |
| Output Voltage                        | V <sub>OUT</sub>                        | T <sub>A</sub> = +25°C MAX6164B                   | 4.091              | 4.096          | 4.101 |                   |      |
| Output Voltage Temperature            | TOV                                     | MAX6164A                                          |                    | 2              | 5     |                   |      |
| Coefficient (Note 2)                  | TCV <sub>OUT</sub>                      | MAX6164B                                          |                    | 4              | 10    | ppm/°C            |      |
| Dropout Voltage (Note 4)              | V <sub>IN</sub> - V <sub>OUT</sub>      | I <sub>OUT</sub> = 1mA                            |                    | 50             | 200   | mV                |      |
| Line Regulation                       | ΔV <sub>OUT</sub> /<br>ΔV <sub>IN</sub> | $V_{OUT}$ + 0.2V $\leq$ $V_{IN} \leq$ 12.6V       |                    | 140            | 300   | μV/V              |      |
| Load Regulation                       | ΔV <sub>OUT</sub> /                     | Sourcing: $0 \le I_{OUT} \le 5mA$                 |                    | 0.6            | 0.9   | - mV/mA           |      |
|                                       | Δl <sub>OUT</sub>                       | Sinking: $-2mA \le I_{OUT} \le 0$                 |                    | 2.0            | 7.0   |                   |      |
| OUT Short-Circuit Current             |                                         | Short to GND   Short to IN                        |                    | 110            |       | mA                |      |
| OUT Short-Circuit Current             | I <sub>SC</sub>                         |                                                   |                    | Short to IN 25 |       |                   | IIIA |
| Long-Term Stability                   | ΔV <sub>OUT</sub> /<br>time             | 1000hr at +25°C                                   |                    | 80             |       | ppm/<br>1000hr    |      |
| Output Voltage Hysteresis<br>(Note 3) | ΔV <sub>OUT</sub> /<br>cycle            |                                                   |                    | 125            |       | ppm               |      |
| DYNAMIC CHARACTERISTICS               | S                                       |                                                   | I                  |                |       | 1                 |      |
| Naizz Maltaza                         |                                         | f = 0.1Hz to 10Hz                                 |                    | 50             |       | µVp-p             |      |
| Noise Voltage                         | eout                                    | f = 10Hz to 10kHz                                 |                    | 50             |       | μV <sub>RMS</sub> |      |
| Ripple Rejection                      | V <sub>OUT</sub> /V <sub>IN</sub>       | V <sub>IN</sub> = 5V ±100mV, f = 120Hz            |                    | 72             |       | dB                |      |
| Turn-On Settling Time                 | t <sub>R</sub>                          | $V_{OUT}$ to 0.1% of final value, $C_{OUT}$ = 50p | νF                 | 190            |       | μs                |      |
| INPUT CHARACTERISTICS                 |                                         |                                                   |                    |                |       |                   |      |
| Supply Voltage Range                  | V <sub>IN</sub>                         | Guaranteed by line-regulation test                | V <sub>OUT</sub> + | 0.2            | 12.6  | V                 |      |
| Quiescent Supply Current              | I <sub>IN</sub>                         |                                                   |                    | 100            | 120   | μA                |      |
| Change in Supply Current              | $\Delta I_{IN} / \Delta V_{IN}$         | $V_{OUT}$ + 0.2V $\leq$ $V_{IN} \leq$ 12.6V       |                    | 3.2            | 8.0   | μA/V              |      |

# Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

### Electrical Characteristics—MAX6167 (V<sub>OUT</sub> = 4.500V)

| PARAMETER                             | SYMBOL                                  | CONDITIO                                           | ONS      | MIN                | TYP   | MAX   | UNITS             |
|---------------------------------------|-----------------------------------------|----------------------------------------------------|----------|--------------------|-------|-------|-------------------|
| Quite it Valta as                     |                                         |                                                    | IAX6167A | 4.498              | 4.500 | 4.502 | v                 |
| Output Voltage                        | Vout                                    | $T_A = +25^{\circ}C$ M                             | IAX6167B | 4.495              | 4.500 | 4.505 |                   |
| Output Voltage Temperature            | том                                     | MAX6167A                                           |          |                    | 2     | 5     | nnm/°C            |
| Coefficient (Note 2)                  | TCVOUT                                  | MAX6167B                                           |          |                    | 4     | 10    | ppm/°C            |
| Dropout Voltage (Note 4)              | V <sub>IN</sub> - V <sub>OUT</sub>      | I <sub>OUT</sub> = 1mA                             |          |                    | 50    | 200   | mV                |
| Line Regulation                       | ΔV <sub>OUT</sub> /<br>ΔV <sub>IN</sub> | $V_{OUT}$ + 0.2V $\leq$ V <sub>IN</sub> $\leq$ 12. | 6V       |                    | 160   | 450   | μV/V              |
| Load Pogulation                       | ΔV <sub>OUT</sub> /                     | Sourcing: $0 \le I_{OUT} \le 5m$                   | ۱A       |                    | 0.6   | 0.9   | mV/mA             |
| Load Regulation                       | ΔI <sub>OUT</sub>                       | Sinking: $-2mA \le I_{OUT} \le 0$                  | )        |                    | 2.3   | 8.0   |                   |
| OUT Short-Circuit Current             |                                         | Short to GND                                       |          |                    | 110   |       | mA                |
| OUT Short-Circuit Current             | I <sub>SC</sub>                         | Short to IN                                        |          |                    | 25    |       | IIIA              |
| Long-Term Stability                   | ΔV <sub>OUT</sub> /<br>time             | 1000hr at +25°C                                    |          |                    | 80    |       | ppm/<br>1000hr    |
| Output Voltage Hysteresis<br>(Note 3) | ΔV <sub>OUT</sub> /<br>cycle            |                                                    |          |                    | 125   |       | ppm               |
| DYNAMIC CHARACTERISTICS               |                                         | 1                                                  |          | 1                  |       |       |                   |
| Naisa Maltana                         |                                         | f = 0.1Hz to 10Hz                                  |          |                    | 55    |       | µVp-p             |
| Noise Voltage                         | eout                                    | f = 10Hz to 10kHz                                  |          |                    | 55    |       | μV <sub>RMS</sub> |
| Ripple Rejection                      | V <sub>OUT</sub> /V <sub>IN</sub>       | V <sub>IN</sub> = 5V ±100mV, f = 120Hz             |          |                    | 70    |       | dB                |
| Turn-On Settling Time                 | t <sub>R</sub>                          | $V_{OUT}$ to 0.1% of final value, $C_{OUT}$ = 50pF |          |                    | 230   |       | μs                |
| INPUT CHARACTERISTICS                 |                                         |                                                    |          |                    |       |       |                   |
| Supply Voltage Range                  | V <sub>IN</sub>                         | Guaranteed by line-regulation test                 |          | V <sub>OUT</sub> + | 0.2   | 12.6  | V                 |
| Quiescent Supply Current              | I <sub>IN</sub>                         |                                                    |          |                    | 100   | 120   | μA                |
| Change in Supply Current              | $\Delta I_{\rm IN} / \Delta V_{\rm IN}$ | $V_{OUT} + 0.2V \le V_{IN} \le 12.6V$              |          |                    | 3.1   | 8.0   | μA/V              |

## Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

#### Electrical Characteristics—MAX6165 (V<sub>OUT</sub> = 5.000V)

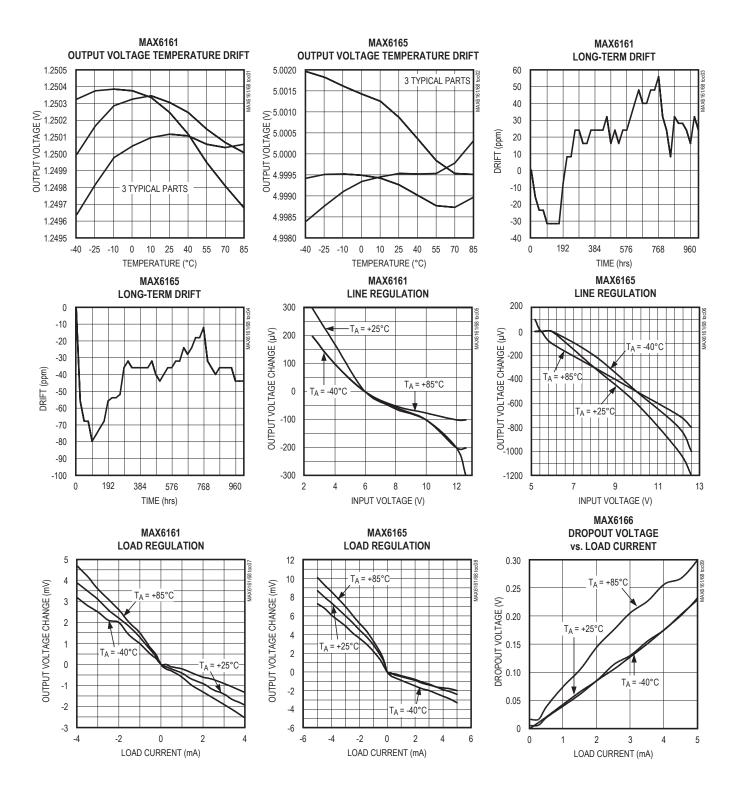
 $(V_{IN} = +5V, I_{OUT} = 0, T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise specified. Typical values are at  $T_A = +25^{\circ}C$ .) (Note 1)

| PARAMETER                             | SYMBOL                                  | COND                                               | ITIONS   | MIN                | TYP   | MAX   | UNITS             |
|---------------------------------------|-----------------------------------------|----------------------------------------------------|----------|--------------------|-------|-------|-------------------|
|                                       |                                         | T 125°C                                            | MAX6165A | 4.998              | 5.000 | 5.002 | v                 |
| Output Voltage                        | V <sub>OUT</sub>                        | T <sub>A</sub> = +25°C                             | MAX6165B | 4.995              | 5.000 | 5.005 |                   |
| Output Voltage Temperature            |                                         | MAX6165A                                           |          |                    | 2     | 5     | nnm/°C            |
| Coefficient (Note 2)                  | TCV <sub>OUT</sub>                      | MAX6165B                                           |          |                    | 4     | 10    | ppm/°C            |
| Dropout Voltage (Note 4)              | V <sub>IN</sub> - V <sub>OUT</sub>      | I <sub>OUT</sub> = 1mA                             |          |                    | 50    | 200   | mV                |
| Line Regulation                       | ΔV <sub>OUT</sub> /<br>ΔV <sub>IN</sub> | $V_{OUT}$ + 0.2V $\leq$ $V_{IN}$ $\leq$            | 12.6V    |                    | 180   | 400   | μV/V              |
| Load Regulation                       | ΔV <sub>OUT</sub> /                     | Sourcing: $0 \le I_{OUT} \le$                      | 5mA      |                    | 0.6   | 0.9   | mV/mA             |
|                                       | ΔI <sub>OUT</sub>                       | Sinking: -2mA ≤ I <sub>OUT</sub>                   | · ≤ 0    |                    | 2.4   | 8.0   | 111V/IIIA         |
| OUT Short-Circuit Current             | 1                                       | Short to GND                                       |          |                    | 110   |       | mA                |
| OUT Short-Circuit Current             | I <sub>SC</sub>                         | Short to IN                                        |          |                    | 25    |       |                   |
| Long-Term Stability                   | ΔV <sub>OUT</sub> /<br>time             | 1000hr at +25°C                                    |          |                    | 80    |       | ppm/<br>1000hr    |
| Output Voltage Hysteresis<br>(Note 3) | ΔV <sub>OUT</sub> /<br>cycle            |                                                    |          |                    | 125   |       | ppm               |
| DYNAMIC CHARACTERISTICS               |                                         |                                                    |          |                    |       |       |                   |
| Naina Valtara                         |                                         | f = 0.1Hz to 10Hz                                  |          |                    | 60    |       | µVp-p             |
| Noise Voltage                         | eOUT                                    | f = 10Hz to 10kHz                                  |          |                    | 60    |       | μV <sub>RMS</sub> |
| Ripple Rejection                      | V <sub>OUT</sub> /V <sub>IN</sub>       | V <sub>IN</sub> = 5.5V ±100mV, f = 120Hz           |          |                    | 65    |       | dB                |
| Turn-On Settling Time                 | t <sub>R</sub>                          | $V_{OUT}$ to 0.1% of final value, $C_{OUT}$ = 50pF |          |                    | 300   |       | μs                |
| INPUT CHARACTERISTICS                 |                                         |                                                    |          |                    |       |       |                   |
| Supply Voltage Range                  | V <sub>IN</sub>                         | Guaranteed by line-regulation test                 |          | V <sub>OUT</sub> + | 0.2   | 12.6  | V                 |
| Quiescent Supply Current              | I <sub>IN</sub>                         |                                                    |          |                    | 100   | 120   | μA                |
| Change in Supply Current              | $\Delta I_{\rm IN} / \Delta V_{\rm IN}$ | $V_{OUT} + 0.2V \le V_{IN} \le 12.6V$              |          |                    | 3.1   | 8.0   | μA/V              |

Note 1: 100% production tested at  $T_A$  = +25°C. Guaranteed by design for  $T_A$  = -40°C to +85°C.

**Note 2:** Temperature Coefficient is specified by the "box" method; i.e., the maximum  $\Delta V_{OUT}$  is divided by the maximum  $\Delta T$ .

**Note 3:** Thermal Hysteresis is defined as the change in  $T_A = +25^{\circ}C$  output voltage before and after temperature cycling of the device (from  $T_A = T_{MIN}$  to  $T_{MAX}$ ). Initial measurement at  $T_A = +25^{\circ}C$  is followed by temperature cycling the device to  $T_A = +85^{\circ}C$  then to  $T_A = -40^{\circ}C$ , and another measurement at  $T_A = +25^{\circ}C$  is compared to the original measurement at  $T_A = +25^{\circ}C$ .

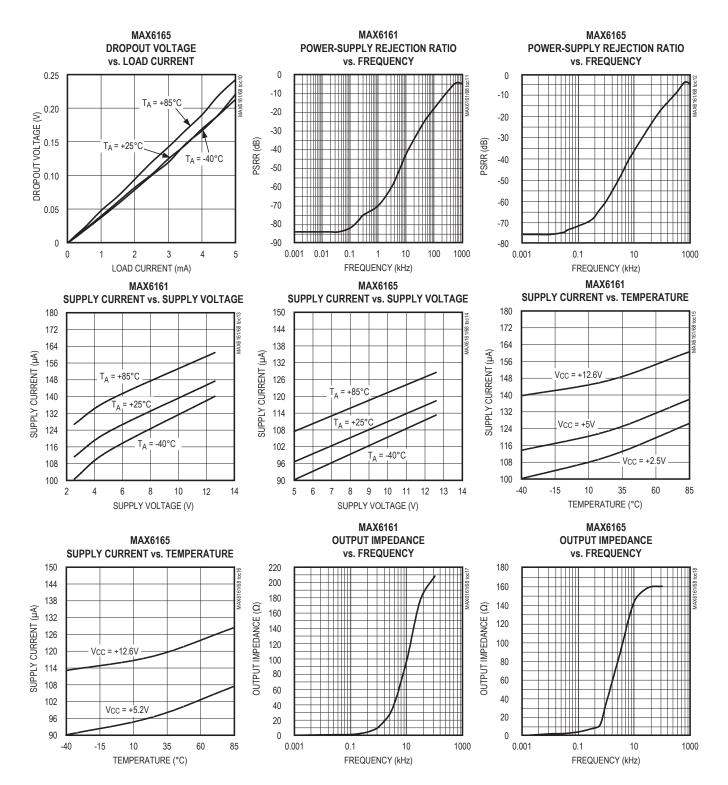

Note 4: Dropout voltage is the minimum input voltage at which  $V_{OUT}$  changes  $\leq 0.2\%$  from  $V_{OUT}$  at  $V_{IN} = 5.0V$  ( $V_{IN} = 5.5V$  for MAX6165).

Maxim Integrated | 9

# Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

#### **Typical Operating Characteristics**

(V<sub>IN</sub> = +5V for MAX6161–MAX6168, V<sub>IN</sub> = +5.5V for MAX6165, I<sub>OUT</sub> = 0,  $T_A$  = +25°C, unless otherwise noted.) (Note 5)

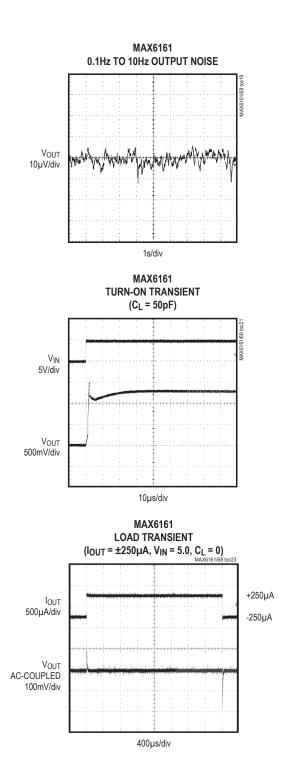


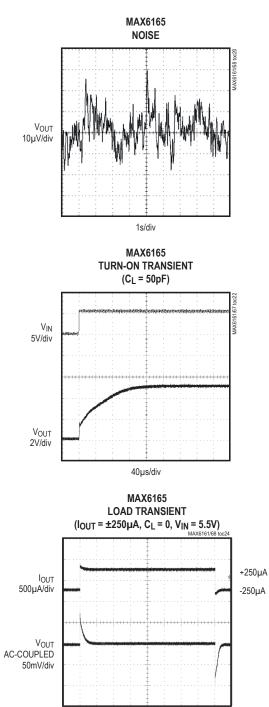

www.maximintegrated.com

# Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

# **Typical Operating Characteristics (continued)**

(V<sub>IN</sub> = +5V for MAX6161–MAX6168, V<sub>IN</sub> = +5.5V for MAX6165, I<sub>OUT</sub> = 0,  $T_A$  = +25°C, unless otherwise noted.) (Note 5)





www.maximintegrated.com

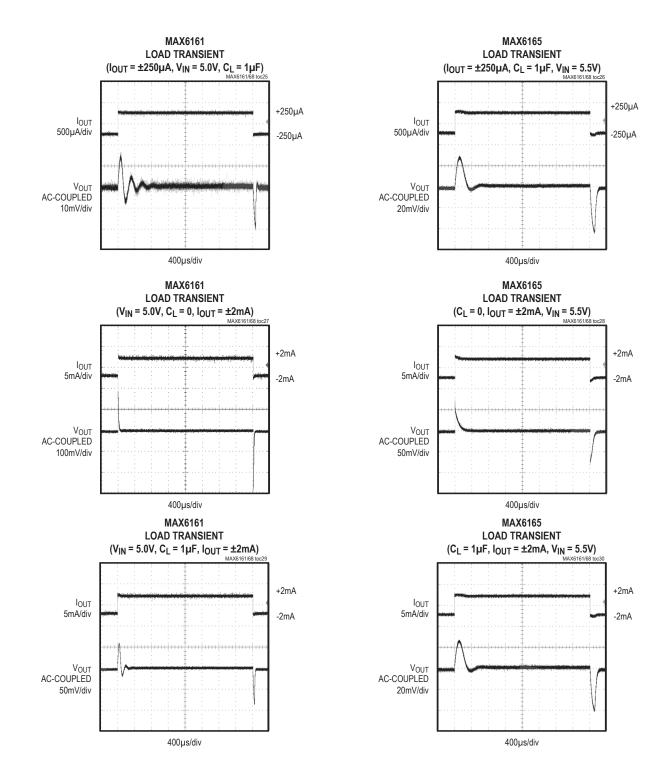
# Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

### **Typical Operating Characteristics (continued)**

(V<sub>IN</sub> = +5V for MAX6161–MAX6168, V<sub>IN</sub> = +5.5V for MAX6165, I<sub>OUT</sub> = 0,  $T_A$  = +25°C, unless otherwise noted.) (Note 5)



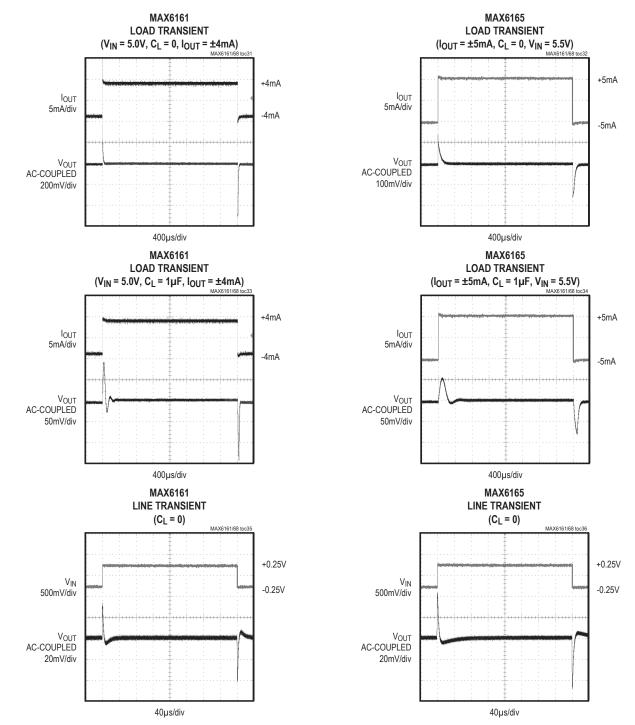



400µs/div

www.maximintegrated.com

# Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

## **Typical Operating Characteristics (continued)**


(V<sub>IN</sub> = +5V for MAX6161–MAX6168, V<sub>IN</sub> = +5.5V for MAX6165,  $I_{OUT}$  = 0,  $T_A$  = +25°C, unless otherwise noted.) (Note 5)



# Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

#### **Typical Operating Characteristics (continued)**

(V<sub>IN</sub> = +5V for MAX6161–MAX6168, V<sub>IN</sub> = +5.5V for MAX6165, I<sub>OUT</sub> = 0,  $T_A$  = +25°C, unless otherwise noted.) (Note 5)



Note 5: Many of the *Typical Operating Characteristics* of the MAX6161 family are extremely similar. The extremes of these characteristics are found in the MAX6161 (1.25V output) and the MAX6165 (5.0V output). The *Typical Operating Characteristics* of the remainder of the MAX6161 family typically lie between these two extremes and can be estimated based on their output voltages.

## Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

#### **Pin Description**

| PIN           | NAME | FUNCTION                                 |  |  |
|---------------|------|------------------------------------------|--|--|
| 1, 3, 5, 7, 8 | N.C. | No Connection. Not internally connected. |  |  |
| 2             | IN   | Input Voltage                            |  |  |
| 4             | GND  | Ground                                   |  |  |
| 6             | OUT  | Reference Output                         |  |  |

#### **Applications Information**

#### **Input Bypassing**

For the best line-transient performance, decouple the input with a  $0.1\mu$ F ceramic capacitor as shown in the *Typical Operating Circuit*. Locate the capacitor as close to IN as possible. When transient performance is less important, no capacitor is necessary.

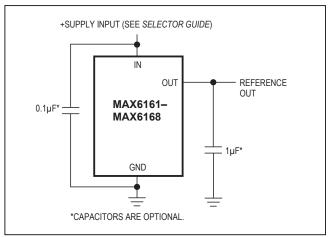
#### **Output/Load Capacitance**

Devices in the MAX6161 family do not require an output capacitor for frequency stability. In applications where the load or the supply can experience step changes, an output capacitor of at least  $0.1\mu$ F will reduce the amount of overshoot (undershoot) and improve the circuit's transient response. Many applications do not require an external capacitor, and the MAX6161 family can offer a significant advantage in applications when board space is critical.

#### **Supply Current**

The quiescent supply current of the series-mode MAX6161 family is typically 100 $\mu$ A and is virtually independent of the supply voltage, with only an 8 $\mu$ A/V (max) variation with supply voltage. Unlike series references, shunt-mode references operate with a series resistor connected to the power supply. The quiescent current of a shunt-mode reference is thus a function of the input voltage. Additionally, shunt-mode references have to be biased at the maximum expected load current, even if the load current is not present at the time. In the MAX6161 family, the load current is drawn from the input voltage only when required, so supply current is not wasted and efficiency is maximized at all input voltages. This improved efficiency reduces power dissipation and extends battery life.

When the supply voltage is below the minimum specified input voltage (as during turn-on), the devices can draw up to  $400\mu$ A beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.


#### **Output Voltage Hysteresis**

Output voltage hysteresis is the change in the input voltage at  $T_A = +25^{\circ}$ C before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the bandgap core transistors. The typical temperature hysteresis value is 125ppm.

#### **Turn-On Time**

These devices typically turn on and settle to within 0.1% of their final value in 50µs to 300µs, depending on the output voltage (see electrical table of part used). The turn-on time can increase up to 1.5ms with the device operating at the minimum dropout voltage and the maximum load.

## **Typical Operating Circuit**



Chip Information

TRANSISTOR COUNT: 117 PROCESS: BICMOS

## Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

#### **Selector Guide**

| PART     | OUTPUT VOLTAGE<br>(V) | INITIAL ACCURACY<br>(mV) | TEMPERATURE<br>COEFFICIENT<br>(ppm/°C) |
|----------|-----------------------|--------------------------|----------------------------------------|
| MAX6161A | 1.250                 | ±2                       | 10                                     |
| MAX6161B | 1.250                 | ±4                       | 15                                     |
| MAX6168A | 1.800                 | ±2                       | 5                                      |
| MAX6168B | 1.800                 | ±5                       | 10                                     |
| MAX6162A | 2.048                 | ±2                       | 5                                      |
| MAX6162B | 2.048                 | ±5                       | 10                                     |
| MAX6166A | 2.500                 | ±2                       | 5                                      |
| MAX6166B | 2.500                 | ±5                       | 10                                     |
| MAX6163A | 3.000                 | ±2                       | 5                                      |
| MAX6163B | 3.000                 | ±5                       | 10                                     |
| MAX6164A | 4.096                 | ±2                       | 5                                      |
| MAX6164B | 4.096                 | ±5                       | 10                                     |
| MAX6167A | 4.500                 | ±2                       | 5                                      |
| MAX6167B | 4.500                 | ±5                       | 10                                     |
| MAX6165A | 5.000                 | ±2                       | 5                                      |
| MAX6165B | 5.000                 | ±5                       | 10                                     |

## **Ordering Information**

| PART*        | TEMP RANGE     | PIN-<br>PACKAGE | OUTPUT<br>VOLTAGE (V) |
|--------------|----------------|-----------------|-----------------------|
| MAX6161_ESA+ | -40°C to +85°C | 8 SO            | 1.250                 |
| MAX6162_ESA+ | -40°C to +85°C | 8 SO            | 2.048                 |
| MAX6163_ESA+ | -40°C to +85°C | 8 SO            | 3.000                 |
| MAX6164_ESA+ | -40°C to +85°C | 8 SO            | 4.096                 |
| MAX6165_ESA+ | -40°C to +85°C | 8 SO            | 5.000                 |
| MAX6166_ESA+ | -40°C to +85°C | 8 SO            | 2.500                 |
| MAX6167_ESA+ | -40°C to +85°C | 8 SO            | 4.500                 |
| MAX6168_ESA+ | -40°C to +85°C | 8 SO            | 1.800                 |

+Denotes a lead(Pb)-free package/RoHS-compliant package. \*Insert the code for the desired initial accuracy and temperature coefficient (from the Selector Guide) in the blank to complete the part number.

Note: For leaded version, contact factory.

## **Package Information**

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

| PACKAGE | PACKAGE | OUTLINE | LAND        |
|---------|---------|---------|-------------|
| TYPE    | CODE    | NO.     | PATTERN NO. |
| 8 SO    | S8+2    | 21-0041 | 90-0096     |

# Precision, Micropower, Low-Dropout, High-Output-Current, SO-8 Voltage References

## **Revision History**

| REVISION | REVISION | DESCRIPTION                                        | PAGES   |
|----------|----------|----------------------------------------------------|---------|
| NUMBER   | DATE     |                                                    | CHANGED |
| 4        | 12/08    | Updated part numbers in Ordering Information table | 1       |

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. | 17