ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND	0.3V to +6V
OUTA, OUTB to GND	0.3V to $(V_{DD} + 0.3V)$
FBA, FBB to GND	0.3V to $(V_{DD} + 0.3V)$
SCLK, DIN, CS to GND	0.3V to $(V_{DD} + 0.3V)$
REFIN, REFOUT to GND	0.3V to $(V_{DD} + 0.3V)$
Continuous Power Dissipation ($T_A = +$	-70°C)
12-Pin Thin QFN (derate 16.9mW/°C	above +70°C)1349mW
8-Pin µMAX (derate 5.9mW/°C above	ve +70°C)471mW

Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +1.8V \text{ to } +5.5V, \text{ OUT_unloaded}, \text{ T}_{A} = \text{T}_{MIN} \text{ to T}_{MAX}, \text{ unless otherwise noted}. \text{ Typical values are at T}_{A} = +25^{\circ}\text{C.})$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC ACCURACY (MAX5522/N	/AX5524 EX	TERNAL REFERENCE)				
Resolution	N		10			Bits
Integral Naplingarity (Nata 1)	INL	V _{DD} = 5V, V _{REF} = 4.096V		±1	±4	LSB
Integral Nonlinearity (Note 1)	IINL	$V_{DD} = 1.8V, V_{REF} = 1.024V$		±1	±4	LOD
Differential Nonlinearity (Note 1)	DNL	Guaranteed monotonic, V _{DD} = 5V, V _{REF} = 4.096V		±0.2	±1	LSB
Differential Northinearity (Note 1)	DIVE	Guaranteed monotonic, V _{DD} = 1.8V, V _{REF} = 1.024V		±0.2	±1	LOD
Offset Error (Note 2)	Vos	V _{DD} = 5V, V _{REF} = 4.096V		±1	±20	mV
Oliset Ellor (Note 2)	VOS	$V_{DD} = 1.8V, V_{REF} = 1.024V$		±1	±20	1110
Offset-Error Temperature Drift				±2		μV/°C
Gain Error (Note 3)	GE	$V_{DD} = 5V, V_{REF} = 4.096V$		±0.5	±2	LSB
Gain End (Note 3)	GE	$V_{DD} = 1.8V, V_{REF} = 1.024V$		±0.5	±2	LSB
Gain-Error Temperature Coefficient				<u>±</u> 4		ppm/°C
Power-Supply Rejection Ratio	PSRR	$1.8V \le V_{DD} \le 5.5V$		85		dB
STATIC ACCURACY (MAX5523/N	/AX5525 INT	ERNAL REFERENCE)				
Resolution	N		10			Bits
Integral Nonlinearity (Note 1)	INL	$V_{DD} = 5V$, $V_{REF} = 3.9V$		±1	±4	LSB
Integral Northinearity (Note 1)	IINL	$V_{DD} = 1.8V, V_{REF} = 1.2V$		±1	±4	LOD
Differential Nonlinearity (Note 1)	DNL	Guaranteed monotonic, V _{DD} = 5V, V _{REF} = 3.9V		±0.2	±1	- LSB
Differential Notifficearity (Note 1)	DINL	Guaranteed monotonic, V _{DD} = 1.8V, V _{REF} = 1.2V		±0.2	±1	LOD
Offe at Frage (Nets 2)	\/	V _{DD} = 5V, V _{REF} = 3.9V		±1	±20	\/ac
Offset Error (Note 2)	Vos	V _{DD} = 1.8V, V _{REF} = 1.2V		±1	±20	mV
Offset-Error Temperature Drift				±2		μV/°C
Gain Error (Note 3)	GE	V _{DD} = 5V, V _{REF} = 3.9V		±0.5	±2	LSB
	GE	V _{DD} = 1.8V, V _{REF} = 1.2V		±0.5	±2	LOD
Gain-Error Temperature Coefficient				±4		ppm/°C

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +1.8V \text{ to } +5.5V, \text{ OUT_ unloaded}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted}. Typical values are at } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Power-Supply Rejection Ratio	PSRR	1.8V ≤ V _{DD} ≤ 5.5V		85		dB	
REFERENCE INPUT (MAX5522/M	AX5524)						
Reference-Input Voltage Range	VREFIN		0		V_{DD}	V	
D. ()	Б	Normal operation	4.1			МΩ	
Reference-Input Impedance	RREFIN	In shutdown		2.5		GΩ	
REFERENCE OUTPUT (MAX5523	/MAX5525)						
		No external load, V _{DD} = 1.8V	1.197	1.214	1.231		
		No external load, V _{DD} = 2.5V	1.913	1.940	1.967		
Initial Accuracy	VREFOUT	No external load, V _{DD} = 3V	2.391	2.425	2.459	V	
	:	No external load, V _{DD} = 5V	3.828	3.885	3.941		
Output-Voltage Temperature Coefficient	VTEMPCO	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C \text{ (Note 4)}$		12	30	ppm/°C	
Line Regulation		VREFOUT < VDD - 200mV (Note 5)		2	200	μV/V	
		$0 \le I_{REFOUT} \le 1$ mA, sourcing, $V_{DD} = 1.8$ V, $V_{REF} = 1.2$ V		0.3	2		
Load Regulation		0 ≤ I _{REFOUT} ≤ 8mA, sourcing, V _{DD} = 5V, V _{REF} = 3.9V		0.3	2	μV/μΑ	
		-150µA ≤ I _{REFOUT} ≤ 0, sinking		0.2			
		0.1Hz to 10Hz, V _{REF} = 3.9V		150			
		10Hz to 10kHz, V _{REF} = 3.9V		600		1 ,,	
Output Noise Voltage		0.1Hz to 10Hz, V _{REF} = 1.2V		50	μ/Ρ-Γ		
		10Hz to 10kHz, V _{REF} = 1.2V		450			
01 10: "0 10 10 10		V _{DD} = 5V		30			
Short-Circuit Current (Note 6)		V _{DD} = 1.8V		14		mA	
Capacitive Load Stability Range		(Note 7)		0 to 10		nF	
Thermal Hysteresis		(Note 8)		200		ppm	
Reference Power-Up Time		REFOUT unloaded, V _{DD} = 5V		5.4			
(from Shutdown)		REFOUT unloaded, V _{DD} = 1.8V		4.4		ms	
Long-Term Stability				200		ppm/ 1khrs	
DAC OUTPUTS (OUTA, OUTB)						1	
Capacitive Driving Capability	CL			1000	-	pF	
		V _{DD} = 5V, V _{OUT} set to full scale, OUT shorted to GND, source current			65		
Short-Circuit Current (Note 6)		V _{DD} = 5V V _{OUT} set to 0V, OUT shorted to V _{DD} , sink current			65	m^	
Short-Circuit Current (Note 6)		V _{DD} = 1.8V, V _{OUT} set to full scale OUT shorted to GND, source current			14	mA	
		V _{DD} = 1.8V, V _{OUT} set to 0V, OUT shorted to V _{DD} , sink current			14		

NIXIN

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +1.8V \text{ to } +5.5V, \text{ OUT_unloaded}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted}. Typical values are at } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
		Coming out of shutdown	$V_{DD} = 5V$		3			
DAO Davis a Lla Tira		(MAX5522/MAX5524)	$V_{DD} = 1.8V$		3.8			
DAC Power-Up Time		Coming out of standby (MAX5523/MAX5525)	$V_{DD} = 1.8V \text{ to} $ 5.5V		0.4		μs	
Output Power-Up Glitch		C _L = 100pF			10		mV	
FB_ Input Current					10		рА	
DIGITAL INPUTS (SCLK, DIN, CS)							
		$4.5V \le V_{DD} \le 5.5V$		2.4				
Input High Voltage	VIH	2.7V < V _{DD} ≤ 3.6V		2.0			V	
		$1.8V \le V_{DD} \le 2.7V$		0.7 x V _D [)			
		$4.5V \le V_{DD} \le 5.5V$				0.8		
Input Low Voltage	VIL	2.7V < V _{DD} ≤ 3.6V				0.6	V	
		$1.8V \le V_{DD} \le 2.7V$			0	.3 x V _{DD}		
Input Leakage Current	I _{IN}	(Note 9)		İ	±0.05	±0.5	μΑ	
Input Capacitance	CIN			10		pF		
DYNAMIC PERFORMANCE		•		•			•	
Voltage-Output Slew Rate	SR	Positive and negative (No	te 10)		10		V/ms	
Voltage-Output Settling Time		0.1 to 0.9 of full scale to w (Note 10)	ithin 0.5 LSB		660		μs	
		0.411	$V_{DD} = 5V$		80			
		0.1Hz to 10Hz	$V_{DD} = 1.8V$		55		.,	
Output Noise Voltage		4011 1 40111	$V_{DD} = 5V$		620		μV _{P-P}	
		TUHZ TO TUKHZ	Hz to 10kHz $V_{DD} = 1.8V$					
POWER REQUIREMENTS								
Supply Voltage Range	V _{DD}			1.8		5.5	V	
			$V_{DD} = 5V$		7.0	8.0		
		MAX5523/MAX5525	$V_{DD} = 3V$		6.4	8.0		
Coursely Comment (Niete C)			$V_{DD} = 1.8V$		7.0	8.0	- μA	
Supply Current (Note 9)	IDD		$V_{DD} = 5V$		3.8	5.0		
		MAX5522/MAX5524	$V_{DD} = 3V$		3.8	5.0		
			$V_{DD} = 1.8V$		4.7	6.0		
			$V_{DD} = 5V$		3.3	4.5		
Standby Supply Current	IDDSD	MAX5523/MAX5525	$V_{DD} = 3V$		2.8	4.0	μΑ	
		(Note 9) $V_{DD} = 1.8V$			2.4	3.5		
Shutdown Supply Current	IDDPD	(Note 9)			0.05	0.25	μΑ	

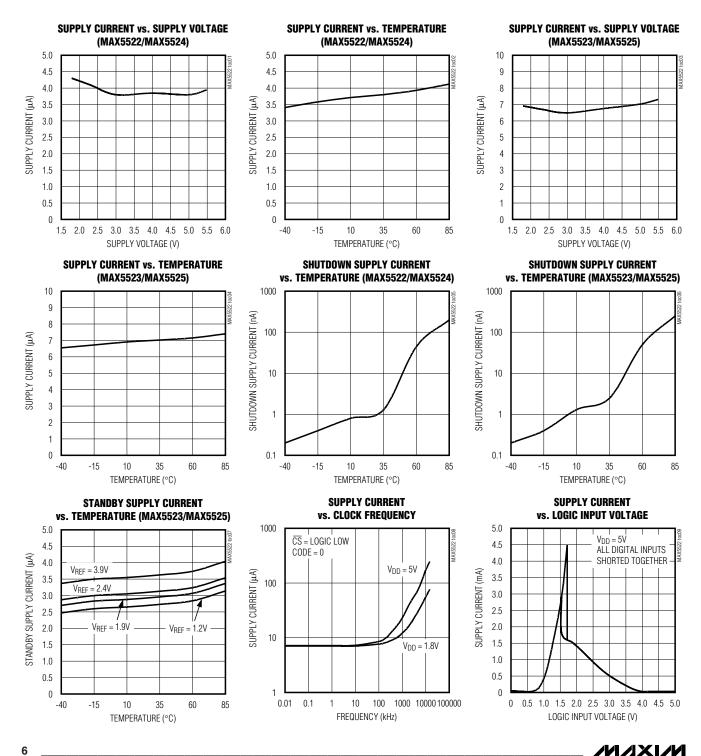
4 ______*NIXI/*M

TIMING CHARACTERISTICS

 $(V_{DD} = +4.5V \text{ to } +5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS			
TIMING CHARACTERISTICS (V _{DD} = 4.5V to 5.5V)									
Serial Clock Frequency	fsclk		0		16.7	MHz			
DIN to SCLK Rise Setup Time	t _{DS}		15			ns			
DIN to SCLK Rise Hold Time	t _{DH}		0			ns			
SCLK Pulse-Width High	tсн		24			ns			
SCLK Pulse-Width Low	t _{CL}		24			ns			
CS Pulse-Width High	tcsw		100			ns			
SCLK Rise to CS Rise Hold Time	tcsh		0			ns			
CS Fall to SCLK Rise Setup Time	tcss		20			ns			
SCLK Fall to CS Fall Setup	tcso		0			ns			
CS Rise to SCK Rise Hold Time	tCS1	_	20	•	•	ns			

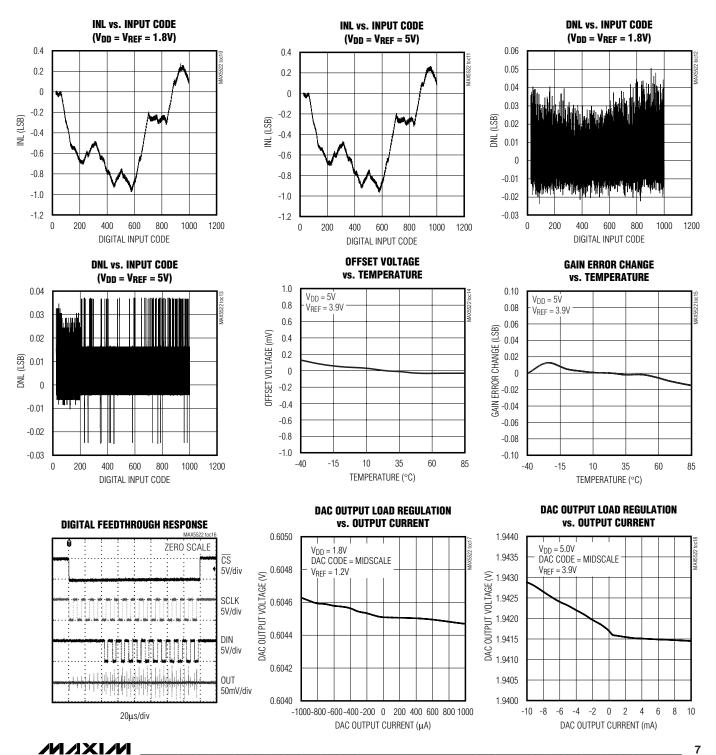
TIMING CHARACTERISTICS


 $(V_{DD} = +1.8V \text{ to } +5.5V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
TIMING CHARACTERISTICS (VDD =	= 1.8V to 5.5V)					
Serial Clock Frequency	fsclk		0		10	MHz
DIN to SCLK Rise Setup Time	t _{DS}		24			ns
DIN to SCLK Rise Hold Time	tDH		0			ns
SCLK Pulse-Width High	tсн		40			ns
SCLK Pulse-Width Low	t _{CL}		40			ns
CS Pulse-Width High	tcsw		150			ns
SCLK Rise to CS Rise Hold Time	tcsh		0			ns
CS Fall to SCLK Rise Setup Time	tcss		30			ns
SCLK Fall to CS Fall Setup	tcso		0			ns
CS Rise to SCK Rise Hold Time	t _{CS1}		30			ns

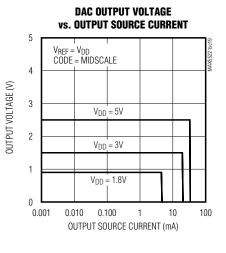
- Note 1: Linearity is tested within codes 24 to 1020.
- Note 2: Offset is tested at code 24.
- Note 3: Gain is tested at code 1023. For the MAX5524/MAX5525, FB_ is connected to its respective OUT_.
- Note 4: Guaranteed by design. Not production testsed
- Note 5: V_{DD} must be a minimum of 1.8V.
- Note 6: Outputs can be shorted to V_{DD} or GND indefinitely, provided that package power dissipation is not exceeded.
- Note 7: Optimal noise performance is at 2nF load capacitance.
- Note 8: Thermal hysteresis is defined as the change in the initial +25°C output voltage after cycling the device from TMAX to TMIN.
- Note 9: All digital inputs at V_{DD} or GND.
- **Note 10:** Load = $10k\Omega$ in parallel with 100pF, $V_{DD} = 5V$, $V_{REF} = 4.096V$ (MAX5522/MAX5524) or $V_{REF} = 3.9V$ (MAX5523/MAX5525).

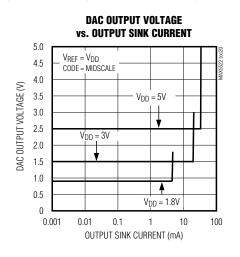
Typical Operating Characteristics

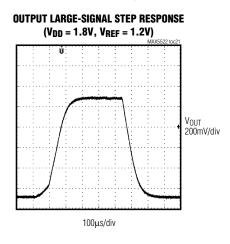

(VDD = 5.0V, VBEF = 4.096V (MAX5522/MAX5524), VREF = 3.9V (MAX5523/MAX54525), TA = +25°C, unless otherwise noted.)

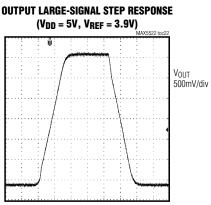
Downloaded from **Arrow.com**.

Typical Operating Characteristics (continued)

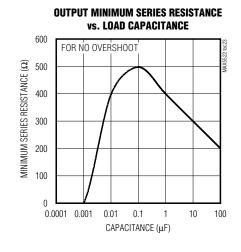

(VDD = 5.0V, VREF = 4.096V (MAX5522/MAX5524), VREF = 3.9V (MAX5523/MAX54525), TA = +25°C, unless otherwise noted.)

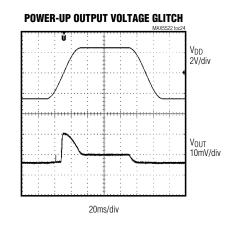


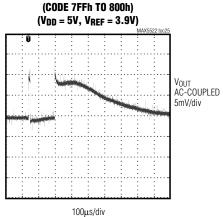

Downloaded from Arrow.com.

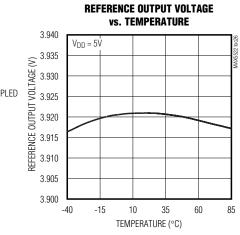

Typical Operating Characteristics (continued)

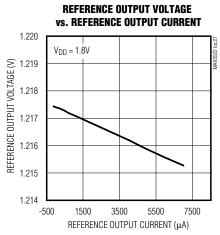
(V_{DD} = 5.0V, V_{REF} = 4.096V (MAX5522/MAX5524), VREF = 3.9V (MAX5523/MAX54525), T_A = +25°C, unless otherwise noted.)

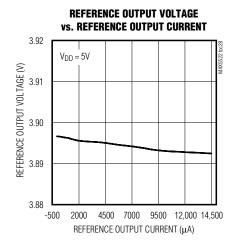


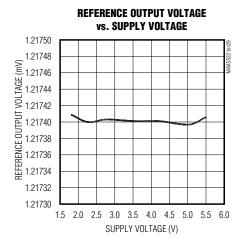


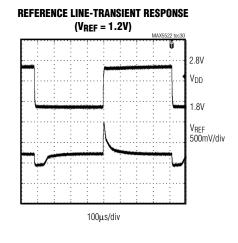



200µs/div

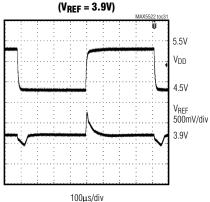

MAJOR CARRY OUTPUT VOLTAGE GLITCH

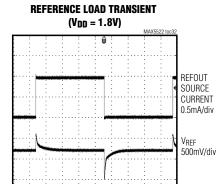


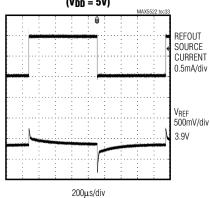



8 ______ /V|/X|/V|

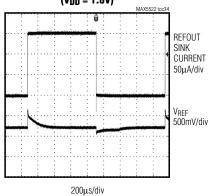
Typical Operating Characteristics (continued)


 $(V_{DD} = 5.0V, V_{REF} = 4.096V (MAX5522/MAX5524), VREF = 3.9V (MAX5523/MAX54525), T_{A} = +25^{\circ}C, unless otherwise noted.)$



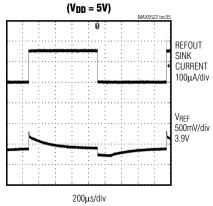


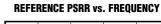
REFERENCE LINE-TRANSIENT RESPONSE

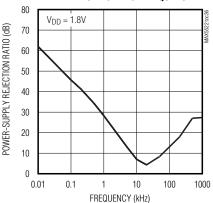


REFERENCE LOAD TRANSIENT $(V_{DD} = 5V)$

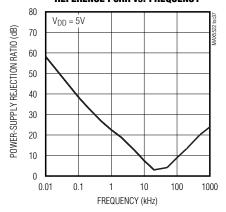
REFERENCE LOAD TRANSIENT $(V_{DD} = 1.8V)$

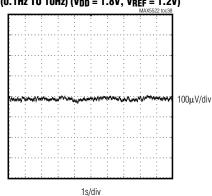

200µs/div

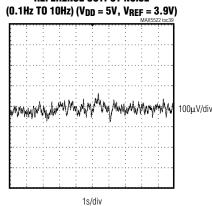


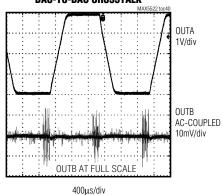

Typical Operating Characteristics (continued)

 $(V_{DD} = 5.0V, V_{REF} = 4.096V (MAX5522/MAX5524), VREF = 3.9V (MAX5523/MAX54525), T_{A} = +25^{\circ}C, unless otherwise noted.)$

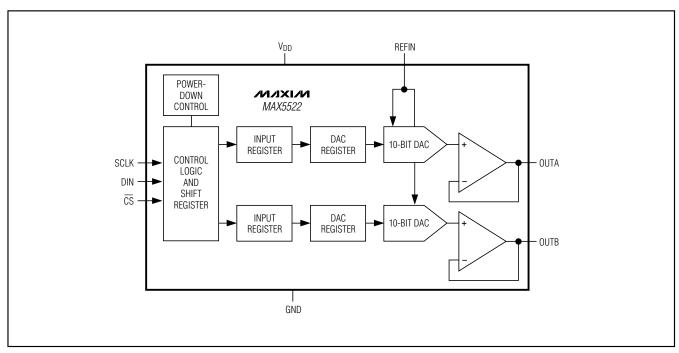

REFERENCE LOAD TRANSIENT



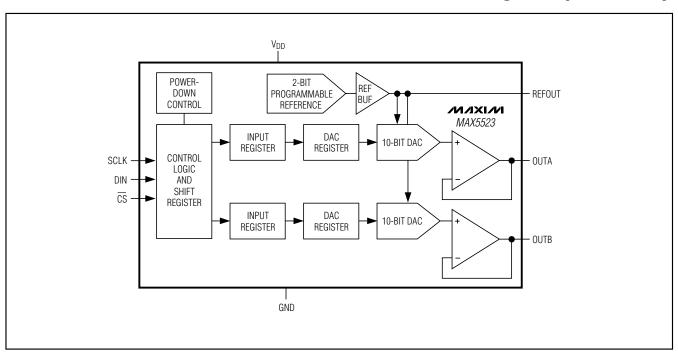

REFERENCE PSRR vs. FREQUENCY

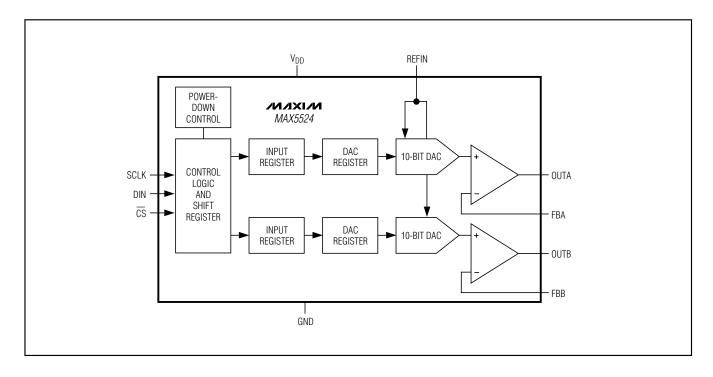

REFERENCE OUTPUT NOISE (0.1Hz TO 10Hz) (V_{DD} = 1.8V, V_{REF} = 1.2V)

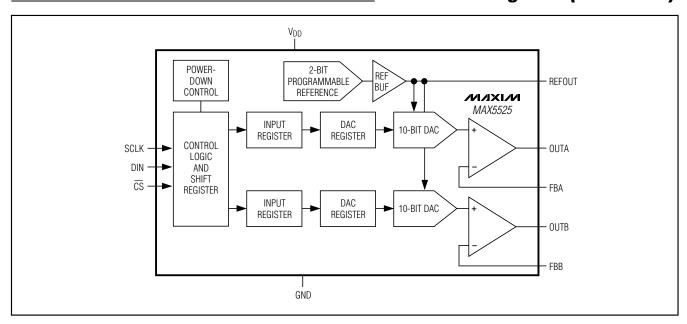
REFERENCE OUTPUT NOISE


DAC-TO-DAC CROSSTALK

Pin Description


	P	IN		NAME	FUNCTION
MAX5522	MAX5523	MAX5524	MAX5525	NAME	FUNCTION
1	1	1	1	CS	Active-Low Digital Chip-Select Input
2	2	2	2	SCLK	Serial-Interface Clock Input
3	3	3	3	DIN	Serial-Interface Data Input
4	_	4	_	REFIN	Reference Input
_	4	_	4	REFOUT	Reference Output
_	_	5, 11	5, 11	N.C.	No Connection. Leave N.C. inputs unconnected (floating) or connected to GND.
_	_	6	6	FBB	Channel B Feedback Input
5	5	7	7	OUTB	Channel B Analog Voltage Output
6	6	8	8	V _{DD}	Power Input. Connect V _{DD} to a 1.8V to 5.5V power supply. Bypass V _{DD} to GND with a 0.1µF capacitor.
7	7	9	9	GND	Ground
8	8	10	10	OUTA	Channel A Analog Voltage Output
_	_	12	12	FBA	Channel A Feedback Input
_	_	EP	EP	Exposed Paddle	Exposed Paddle. Connect EP to GND.


Functional Diagrams


////XI/// ______ 11

Functional Diagrams (continued)

Functional Diagrams (continued)

Detailed Description

The MAX5522-MAX5525 dual, 10-bit, ultra-low-power, voltage-output DACs offer rail-to-rail buffered voltage outputs. The DACs operate from a 1.8V to 5.5V supply and require only 5µA (max) supply current. These devices feature a shutdown mode that reduces overall current, including the reference input current, to just 0.18µA (max) The MAX5523/MAX5525 include an internal reference that saves additional board space and can source up to 8mA, making it functional as a system reference. The 16MHz, 3-wire serial interface is compatible with SPI, QSPI, and MICROWIRE protocols. When VDD is applied, all DAC outputs are driven to zero scale with virtually no output glitch. The MAX5522/ MAX5523 output buffers are configured in unity gain and come in µMAX packages. The MAX5524/MAX5525 output buffers are configured in force sense allowing users to externally set voltage gains on the output (an output-amplifier inverting input is available). The MAX5524/MAX5525 come in 4mm x 4mm thin QFN packages.

Digital Interface

The MAX5522–MAX5525 use a 3-wire serial interface that is compatible with SPI/QSPI/MICROWIRE protocols (Figures 1 and 2).

The MAX5522–MAX5525 include a single, 16-bit, input shift register. Data <u>loads</u> into the shift register through the serial interface. \overline{CS} must remain low until all 16 bits are clocked in. The 16 bits consist of 4 control bits (C3–C0), 10 data bits (D9–D0) (Table 1), and 2 sub-bits (S1 and S0). D9–D0 are the DAC data bits and S1 and S0 are the sub-bits. The sub-bits must be set to zero for proper operation. Following the control bits, data loads MSB first, D9–D0. The control bits C3–C0 control the MAX5522–MAX5525, as outlined in Table 2.

Each DAC channel includes two registers: an input register and a DAC register. The input register holds input data. The DAC register contains the data updated to the DAC output.

The double-buffered register configuration allows any of the following:

- Loading the input registers without updating the DAC registers
- Updating the DAC registers from the input registers
- Updating all the input and DAC registers simultaneously

Table 1. Serial Write Data Format

	CON	ΓROL			DATA BITS										
MSB					L						LSB				
СЗ	C2	C1	C0	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	S1	S0

Sub-bits S1 to S0 must be set to zero for proper operation.

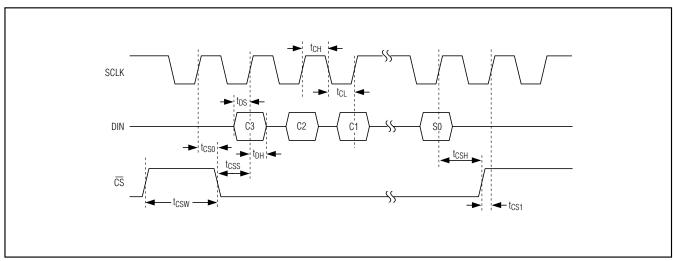


Figure 1. Timing Diagram

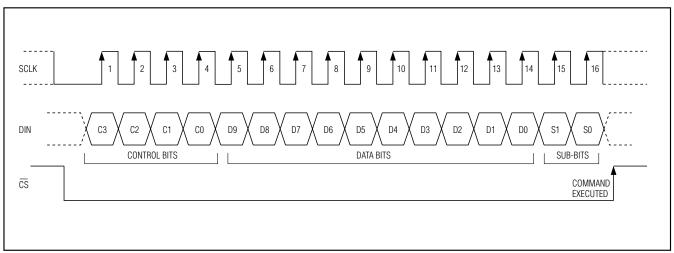


Figure 2. Register Loading Diagram

4 ______ /VI/XI/M

Table 2. Serial-Interface Programming Commands

	CONTR	OL BITS	3	INPUT DATA	SUB-BITS	FUNCTION
C3	C2	C1	C0	D9-D0	S1 AND S0	FONCTION
0	0	0	0	XXXXXXXXX	00	No operation; command is ignored.
0	0	0	1	10-bit data	00	Load input register A from shift register; DAC registers unchanged; DAC outputs unchanged.
0	0	1	0	10-bit data	00	Load input register B from shift register; DAC registers unchanged; DAC outputs unchanged.
0	0	1	1	_	_	Command reserved. Do not use.
0	1	0	0	_		Command reserved. Do not use.
0	1	0	1	_	_	Command reserved. Do not use.
0	1	1	0	_		Command reserved. Do not use.
0	1	1	1	_	_	Command reserved. Do not use.
1	0	0	0	10-bit data	00	Load DAC registers A and B from respective input registers; DAC outputs A and B updated; MAX5523/MAX5525 enter normal operation if in standby or shutdown; MAX5522/MAX5524 enter normal operation if in shutdown.
1	0	0	1	10-bit data	00	Load input register A and DAC register A from shift register; DAC output A updated; Load DAC register B from input register B; DAC output B updated; MAX5523/MAX5525 enter normal operation if in standby or shutdown; MAX5522/MAX5524 enter normal operation if in shutdown.
1	0	1	0	10-bit data	00	Load input register B and DAC register B from shift register; DAC output B updated; Load DAC register A from input register A; DAC output A updated; MAX5523/MAX5525 enter normal operation if in standby or shutdown; MAX5522/MAX5524 enter normal operation if in shutdown.
1	0	1	1	_	_	Command reserved. Do not use.
1	1	0	0	D9, D8, XXXXXXXX	00	MAX5523/MAX5525 enter standby*, MAX5522/MAX5524 enter shutdown. For the MAX5523/MAX5525, D9 and D8 configure the internal reference voltage (Table 3).
1	1	0	1	D9, D8, XXXXXXXX	00	MAX5522–MAX5525 enter normal operation; DAC outputs reflect existing contents of DAC registers. For the MAX5523/MAX5525, D9 and D8 configure the internal reference voltage (Table 3).
1	1	1	0	D9, D8, XXXXXXXX	00	MAX5522–MAX5525 enter shutdown; DAC outputs set to high impedance. For the MAX5523/MAX5525, D9 and D8 configure the internal reference voltage (Table 3).
1	1	1	1	10-bit data	00	Load input registers A and B and DAC registers A and B from shift register; DAC outputs A and B updated; MAX5523/MAX5525 enter normal operation if in standby or shutdown; MAX5522/MAX5524 enter normal operation if in shutdown.

X = Don't care.

/**/**//X|/// _______ 15

^{*}Standby mode can be entered from normal operation only. It is not possible to enter standby mode from shutdown.

Power Modes

The MAX5522–MAX5525 feature two power modes to conserve power during idle periods. In normal operation, the device is fully operational. In shutdown mode, the device is completely powered down, including the internal voltage reference in the MAX5523/MAX5525. The MAX5523/MAX5525 also offer a standby mode in which all circuitry is powered down except the internal voltage reference. Standby mode keeps the reference powered up while the remaining circuitry is shut down, allowing it to be used as a system reference. It also helps reduce the wake-up delay by not requiring the reference to power up when returning to normal operation.

Shutdown Mode

The MAX5522–MAX5525 feature a software-programmable shutdown mode that reduces the supply current and the interface input-current to 0.18µA (max). Writing an input control word with control bits C[3:0] = 1110 (Table 2) places the device in shutdown mode. In shutdown, the MAX5522/MAX5524 reference input and DAC output buffers go high impedance. Placing the MAX5523/MAX5525 into shutdown turns off the internal reference and the DAC output buffers go high impedance. The serial interface still remains active for all devices.

Table 2 shows several commands that bring the MAX5522–MAX5525 back to normal operation. The power-up time from shutdown is required before the DAC outputs are valid.

Note: For the MAX5523/MAX5525, standby mode cannot be entered directly from shutdown mode. The device must be brought into normal operation first before entering standby mode.

Standby Mode (MAX5523/MAX5525 Only)

The MAX5523/MAX5525 feature a software-programmable standby mode that reduces the typical supply current to $3\mu A$ (max). Standby mode powers down all circuitry except the internal voltage reference. Place the device in standby mode by writing an input control word with control bits C[3:0] = 1100 (Table 2). The internal reference and serial interface remain active while the DAC output buffers go high impedance.

For the MAX5523/MAX5525, standby mode cannot be entered directly from shutdown mode. The device must be brought into normal operation first before entering standby mode. To enter standby from shutdown, issue the command to return to normal operation followed immediately by the command to go into standby.

Table 2 shows several commands that bring the MAX5523/MAX5525 back to normal operation. When transitioning from standby mode to normal operation, only the DAC power-up time is required before the DAC outputs are valid.

Reference Input

The MAX5522/MAX5524 accept a reference with a voltage range extending from 0 to V_{DD}. The output voltage (V_{OUT}) is represented by a digitally programmable voltage source as:

$VOUT = (VREF \times N / 256) \times gain$

where N is the numeric value of the DAC's binary input code (0 to 1023), V_{REF} is the reference voltage, gain is the externally set voltage gain for the MAX5524, and gain is one for the MAX5522.

In shutdown mode, the reference input enters a high-impedance state with an input impedance of $2.5G\Omega$ (typ).

Reference Output

The MAX5523/MAX5525 internal voltage reference is software configurable to one of four voltages. Upon power-up, the default reference voltage is 1.214V. Configure the reference voltage using D8 and D9 data bits (Table 3) when the control bits are as follows C[3:0] = 1100, 1101, or 1110 (Table 2). VDD must be kept at a minimum of 200mV above VREF for proper operation.

Table 3. Reference Output Voltage Programming

D9	D8	REFERENCE VOLTAGE (V)
0	0	1.214
0	1	1.940
1	0	2.425
1	1	3.885

Applications Information

1-Cell and 2-Cell Circuits

See Figure 3 for an illustration of how to power the MAX5522–MAX5525 with either one lithium-ion battery or two alkaline batteries. The low current consumption of the devices make the MAX5522–MAX5525 ideal for battery-powered applications.

Programmable Current Source

See the circuit in Figure 4 for an illustration of how to configure the MAX5524/MAX5525 as a programmable current source for driving an LED. The MAX5524/MAX5525 drive a standard NPN transistor to program the current source. The current source (I_{LED}) is defined in the equation in Figure 4.

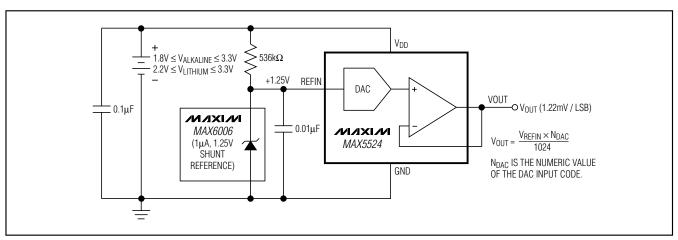


Figure 3. Portable Application Using Two Alkaline Cells or One Lithium Coin Cell

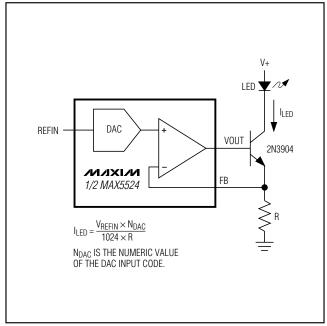


Figure 4. Programmable Current Source Driving an LED

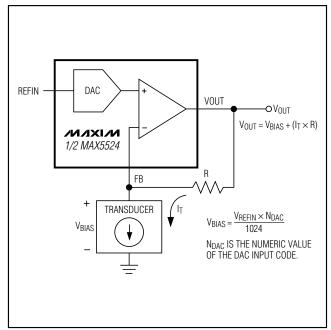


Figure 5. Transimpedance Configuration for a Voltage-Biased Current-Output Transducer

Voltage Biasing a Current-Output Transducer

See the circuit in Figure 5 for an illustration of how to configure the MAX5524/MAX5525 to bias a current-out-put transducer. In Figure 5, the output voltage of the MAX5524/MAX5525 is a function of the voltage drop across the transducer added to the voltage drop across the feedback resistor R.

Unipolar Output

Figure 6 shows the MAX5524 in a unipolar output configuration with unity gain. Table 4 lists the unipolar output codes.

Bipolar Output

The MAX5524 output can be configured for bipolar operation as shown in Figure 7. The output voltage is given by the following equation:

where NA represents the decimal value of the DAC's binary input code. Table 5 shows the digital codes (offset binary) and the corresponding output voltage for the circuit in Figure 7.

Configurable Output Gain

The MAX5524/MAX5525 have force-sense outputs, which provide a connection directly to the inverting terminal of the output op amp, yielding the most flexibility. The advantage of the force-sense output is that specific gains can be set externally for a given application. The gain error for the MAX5524/MAX5525 is specified in a unity-gain configuration (op-amp output and inverting terminals connected), and additional gain error results from external resistor tolerances. Another advantage of the force-sense DAC is that it allows many useful circuits to be created with only a few simple external components.

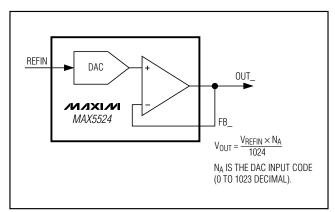


Figure 6. Unipolar Output Circuit

An example of a custom fixed gain using the MAX5524/ MAX5525 force-sense output is shown in Figure 8. In this example, R1 and R2 set the gain for VOUTA.

 $V_{OUTA} = [(V_{REFIN} \times N_A) / 1024] \times [1 + (R2 / R1)]$ where NA represents the numeric value of the DAC input code.

Self-Biased Two-Electrode Potentiostat Application

See the circuit in Figure 10 for an illustration of how to use the MAX5525 to bias a two-electrode potentiostat on the input of an ADC.

Power Supply and Bypassing Considerations

Bypass the power supply with a 4.7µF capacitor in parallel with a 0.1µF capacitor to GND. Minimize lengths to reduce lead inductance. If noise becomes an issue, use shielding and/or ferrite beads to increase isolation. For the thin QFN package, connect the exposed pad to ground.

Table 4. Unipolar Code Table (Gain = +1)

DA	C CONTE	NTS	ANALOG OUTPUT
MSB		LSB	ANALOG GOTPOT
1111	1111	1100	+V _{REF} (1023/1024)
1000	0000	0100	+V _{REF} (513/1024)
1000	0000	0000	$+V_{REF}$ (512/1024) = $+V_{REF}$ /2
0111	1111	1100	+V _{REF} (511/1024)
0000	0000	0100	+V _{REF} (1/1024)
0000	0000	0000	0V

Table 5. Bipolar Code Table (Gain = +1)

DA	C CONTE	NTS	ANALOG OUTPUT			
MSB		LSB	ANALOG OUTPUT			
1111	1111	1100	+V _{REF} (511/512)			
1000	0000	0100	+V _{REF} (1/512)			
1000	0000	0000	OV			
0111	1111	1100	-V _{REF} (1/512)			
0000	0000	0100	-V _{REF} (511/512)			
0000	0000	0000	-V _{REF} (512/512) = -V _{REF}			

18 ______ /VIXI/VI

Layout Considerations

Digital and AC transient signals coupling to GND can create noise at the output. Use proper grounding techniques, such as a multilayer board with a low-inductance ground plane. Wire-wrapped boards and sockets are not recommended. For optimum system performance, use printed circuit (PC) boards. Good PC board ground layout minimizes crosstalk between DAC outputs, reference inputs, and digital inputs. Reduce crosstalk by keeping analog lines away from digital lines.

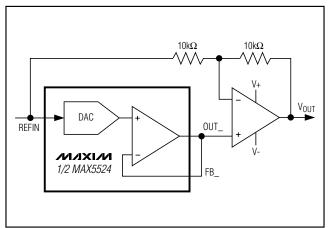


Figure 7. Bipolar Output Circuit

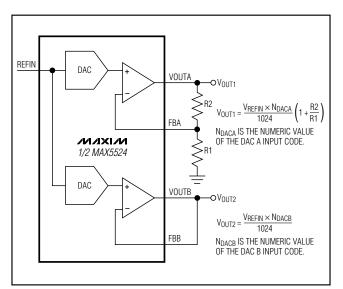


Figure 8. Separate Force-Sense Outputs Create Unity and Greater-than-Unity DAC Gains Using the Same Reference

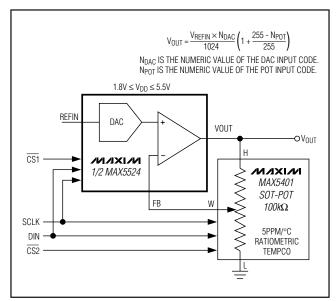


Figure 9. Software-Configurable Output Gain

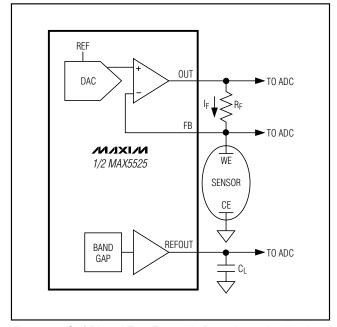


Figure 10. Self-Biased Two-Electrode Potentiostat Application

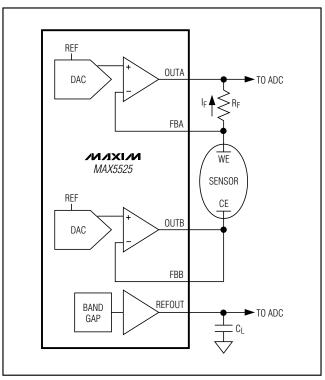
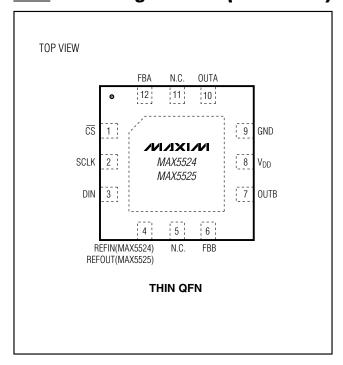
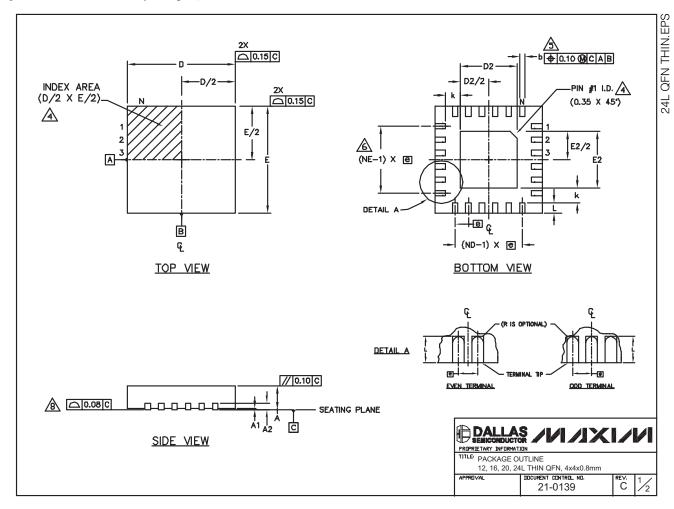



Figure 11. Driven Two-Electrode Potentiostat Application

_Pin Configurations (continued)

Chip Information


TRANSISTOR COUNT: 10,688

PROCESS: BiCMOS

20 _______/VIXI/M

_Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

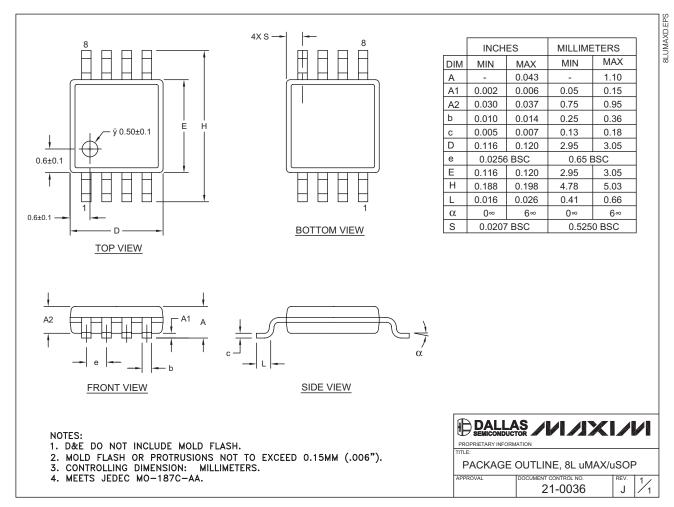
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

												_
COMMON DIMENSIONS												
PKG	12L 4×4			16L 4×4			20L 4×4			24L 4×4		
REF.	MIN.	NDM.	MAX	MIN	NDM.	MAX.	MIN.	NDM.	MAX	MIN.	NOM.	MAX
Α	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
A1	0.0	20.0	0.05	0.0	0.02	0.05	0.0	20.0	0.05	0.0	0.02	0.05
A2	0.20 REF		0.20 REF			0.20 REF			0.20 REF			
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.18	0.23	0.30
D	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10
Ε	3.90	4.00	4.10	3.90	4.00	4.10	3.90	4.00	4.10	3,90	4.00	4.10
6	0.80 BSC.		0.65 BSC.			0.50 BSC.			0.50 BSC.			
k	0.25	_	-	0.25	-	_	0.25	-	-	0.25	-	-
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50
N		12 16		20			24					
ND		3	•	4		5			6			
NE		3		4		5			6			
Jedec Var.		WGGB WGGC		VGGD−1			WGGD-2					

Ε	EXPOSED PAD VARIATIONS									
PKG.		D2			DOWN BONDS					
CODES	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	ALLOVED			
T1244-2	1.95	2.10	2.25	1.95	2.10	2.25	ND			
T1244-3	1.95	2.10	2.25	1.95	2.10	2,25	YES			
T1244-4	1.95	2.10	2.25	1.95	2.10	2.25	ND			
T1644-2	1.95	2.10	2.25	1.95	2.10	2,25	ND			
T1644-3	1.95	2.10	2.25	1.95	2.10	2.25	YES			
T1644-4	1.95	2.10	2,25	1.95	2.10	2,25	ND			
T2044-1	1.95	2.10	2.25	1.95	2.10	2.25	ND			
T2044-2	1.95	2.10	2,25	1.95	2.10	2,25	YES			
T2044-3	1.95	2.10	2.25	1.95	2.10	2.25	ND			
T2444-1	2.45	2.60	2.63	2.45	2.60	2.63	ND			
T2444-2	1.95	2.10	2.25	1.95	2.10	2.25	YES			
T2444-3	2.45	2.60	2.63	2.45	2.60	2.63	YES			
T2444-4	2.45	2.60	2.63	2.45	2.60	2.63	ND			

NOTES:

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
- 3. N IS THE TOTAL NUMBER OF TERMINALS.
- THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
- DIMENSION 6 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
- 6 ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
- 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
- A COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
- 9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR T2444-1, T2444-3 AND T2444-4.



12, 16, 20, 24L THIN QFN, 4x4x0.8mm APPROVAL 21-0139

Č

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

_ 23