ABSOLUTE MAXIMUM RATINGS

V_{CC}, IN_, CIN_, COM_, NO_,

, <u>, , , , , , , , , , , , , , , , , , </u>	
NC_ to GND (Note 1)	0.3V to +6.0V
COUT	0.3V to (V _{CC} + 0.3V)
COUT_ Continuous Current	±20mA
Closed Switch Continuous Current COM_	<u>, NO_, NC_</u>
3.5Ω Switch	±100mA
7 Ω Switch	±50mA
Peak Current COM_, NO_, NC_ (pulsed at	1ms, 50% duty cycle)
3.5Ω Switch	±200mA
7 Ω Switch	±100mA

Peak Current COM_, NO_, NC_ (pulsed at 1ms, 10% duty cycle)	
3.5Ω Switch±240mA	
7Ω Switch±120mA	
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
16-Pin TQFN (derate 20.8mW/°C above +70°C)	
Operating Temperature Range40°C to +85°C	
Junction Temperature+150°C	
Storage Temperature Range65°C to +150°C	
Lead Temperature (soldering, 10s)+300°C	

Note 1: Signals on IN, NO, NC, or COM below GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V_{CC} = +2.7V to +5.5V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = +3.0V, T_A = +25°C, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS	
Supply Voltage	V _{CC}			2.0		5.5	V	
			MAX4850		5	10		
Supply Current	Icc	V_{CC} = 5.5V, $V_{IN_}$ = 0V or V_{CC}	MAX4850H/ MAX4852H		10	20	μΑ	
			MAX4852			1		
ANALOG SWITCH (3.5 Ω Swi	tch)							
Analog Signal Range	V _{NO} , V _{NC} , V _{COM}			0		5.5	V	
		$V_{CC} = 3V, I_{COM} = 10mA,$	$T_A = +25^{\circ}C$		3.5	4.5	Ω	
On-Resistance (Note 3)	R _{ON}	V_{NC} or V_{NO} = 0 to 5.5V (MAX485_) or V_{CC} (MAX485_H)	$T_A = -40^{\circ}C$ to +85°C			5		
On-Resistance Match Between Channels (Notes 3, 4)		$V_{CC} = 3V$, $I_{COM} = 10mA$, V_{NC} or $V_{NO} = 1.5V$	T _A = +25°C		0.1	0.2		
			$T_A = -40^{\circ}C$ to +85°C			0.25	Ω	
			$T_A = +25^{\circ}C$		1.2	1.8		
On-Resistance Flatness (Note 5)	R _{FLAT}	$V_{CC} = 3V$, $I_{COM} = 10mA$, V_{NC} or $V_{NO} = 1V$, 2V, 3V	$T_A = -40^{\circ}C$ to +85°C			2	Ω	
			$T_A = +25^{\circ}C$	-2		+2		
NO_/NC_ Off-Leakage Current	I _{OFF}	$V_{CC} = 5.5V, V_{NC} \text{ or } V_{NO} = 1V$ or 4.5V, $V_{COM} = 4.5V$ or 1V	$T_A = -40^{\circ}C$ to +85°C	-10		+10	nA	
COM_ On-Leakage Current		$V_{CC} = 5.5V; V_{NC} \text{ or } V_{NO} = 1V,$ 4.5V, or floating; $V_{COM} = 1V, 4.5V, \text{ or floating}$	$T_A = +25^{\circ}C$	-2		+2	nA	
	I _{ON}		$T_A = -40^{\circ}C$ to +85°C	-12.5		+12.5		
-3dB Bandwidth	BW	Signal = 0dBm, $R_L = 50\Omega$, $C_L = 5pF$ (Figure 5)			100		MHz	
NO_/NC_ Off-Capacitance	COFF	f = 1MHz (Figure 6)			20		pF	

2

ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = +2.7V to +5.5V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = +3.0V, T_A = +25°C, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
COM On-Capacitance	CON	f = 1MHz (Figure 6)			60		рF
ANALOG SWITCH (7 Ω Swite	h)	I					
Analog Signal Range	V _{NO} , V _{NC} , V _{COM}			0		5.5	V
		$V_{CC} = 3V$, $I_{COM} = 10$ mA, V_{NC}	$T_A = +25^{\circ}C$		7	9	Ω
On-Resistance	R _{ON}	or $V_{NO_{-}} = 0$ to 5.5V (MAX4852) or V_{CC} (MAX4852H)	$T_A = -40^{\circ}C$ to +85°C			10	
On-Resistance Match			$T_A = +25^{\circ}C$		0.2	0.4	
Between Channels (Notes 3, 4)	∆R _{ON}	$V_{CC} = 3V, I_{COM} = 10mA, V_{NC} \text{ or } V_{NO} = 1.5V$	$T_A = -40^{\circ}C$ to +85°C			0.5	Ω
On Registeres Flatage		V(ac. 2)/ Jacut 10mA V(uc	$T_A = +25^{\circ}C$		2.5	3.75	<u> </u>
On-Resistance Flatness (Note 5)	R _{FLAT}	$V_{CC} = 3V, I_{COM} = 10mA, V_{NC}$ or $V_{NO} = 1V, 2V, 3V$	$T_A = -40^{\circ}C$ to +85°C			4.0	Ω
			$T_A = +25^{\circ}C$	-2		+2	nA
NO_/NC_ Off-Leakage Current	loff	$V_{CC} = 5.5V, V_{NC} \text{ or } V_{NO} = 1V$ or 4.5V, $V_{COM} = 4.5V$ or 1V	$T_A = -40^{\circ}C$ to +85°C	-10		+10	
		$V_{CC} = 5.5V$; V_{NC} or $V_{NO} = 1V$,	$T_A = +25^{\circ}C$	-2		+2	
COM_ On-Leakage Current	ION	4.5V, or floating; $V_{COM} = 1V$, 4.5V, or floating	$T_A = -40^{\circ}C$ to +85°C	-12.5		+12.5	nA
-3dB Bandwidth	BW	Signal = 0dBm, $R_L = 50\Omega$, $C_L = 5pF$ (Figure 5)			135		MHz
NO_/NC_ Off-Capacitance	COFF	f = 1MHz (Figure 6)			12		рF
COM On-Capacitance	CON	f = 1MHz (Figure 6)			50		рF
DYNAMIC CHARACTERISTI	cs	I					
Signal Over-Rail to High-Z Switching Time	thiz	MAX4850H/MAX4852H, V _{NO} or V (V _{CC} + 0.5V), V _{CC} < 5V (Figure 1)	$NC_ = V_{CC}$ to		0.5	1	μs
High-Z to Low-Z Switching Time	tніzв	MAX4850H/MAX4852H, V_{NO} or V_{NC} = (V_{CC} + 0.5V) to V_{CC} , V_{CC} < 5V (Figure 1)			0.5	1	μs
Skew (Note 3)	t SKEW	$R_S = 39\Omega$, $C_L = 50pF$ (Figure 2)			0.1	1	ns
Propagation Delay (Note 3)	tpD	$R_S = 39\Omega$, $C_L = 50pF$ (Figure 2)			0.9	2	ns
Turn-On Time		1/22 - 21/1/22 - 151/22	$T_A = +25^{\circ}C$		40	60	
	ton	$\label{eq:VCC} \begin{array}{l} V_{CC} = 3V, \ V_{NO} \ or \ V_{NC} = 1.5V, \\ R_L = 300 \Omega, \ C_L = 50 p F \ (Figure \ 1) \end{array}$	$T_A = -40^{\circ}C$ to +85°C		100	ns	
			$T_A = +25^{\circ}C$		30	40	
Turn-Off Time	tOFF	$V_{CC} = 3V$, V_{NO} or V_{NC} = 1.5V, R _L = 300 Ω , C _L = 50pF (Figure 1)	$T_A = -40^{\circ}C$ to +85°C			60	ns

ELECTRICAL CHARACTERISTICS (continued)

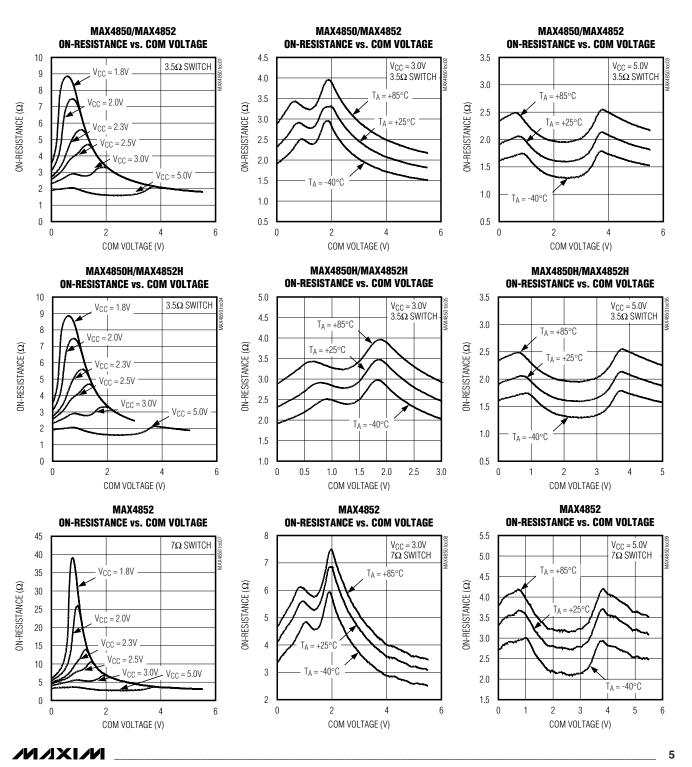
(V_{CC} = +2.7V to +5.5V, T_A = -40°C to +85°C, unless otherwise noted. Typical values are at V_{CC} = +3.0V, T_A = +25°C, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	МАХ	UNITS	
			$T_A = +25^{\circ}C$		15			
Break-Before-Make Time Delay (Note 3)	tD	$V_{CC} = 3V, V_{NO} \text{ or } V_{NC} = 1.5V,$ $R_{L} = 300\Omega, C_{L} = 50\text{pF} \text{ (Figure 3)}$	$T_A = -40^{\circ}C$ to +85°C	2			ns	
Charge Injection	Q	V_{COM} = 1.5V, R_S = 0 Ω , C_L = 1nF	(Figure 4)		8		рС	
Off-Isolation (Note 6)	V _{ISO}	$ f = 100 kHz, V_{COM} = 1V_{RMS}, R_L = C_L = 5 pF (Figure 5) $	50Ω,		-80		dB	
Crosstalk	V _{CT}	f = 1MHz, V_{COM} = 1 V_{RMS} , R_L = 5 (Figure 5)	0Ω, C _L = 5pF		-95		dB	
Total Harmonic Distortion	THD	f = 20Hz to 20kHz, V_{COM} = 1V + 2V _{P-P} , R _L = 600 Ω			0.04		%	
DIGITAL I/O (IN_)								
Input Logia High Voltage	VIH	$V_{CC} = 2V \text{ to } 3.6V$		1.4			V	
Input-Logic High Voltage		$V_{CC} = 3.6V \text{ to } 5.5V$		1.8			V	
Input-Logic Low Voltage	VIL	$V_{CC} = 2V$ to 3.6V				0.5	- V	
		V _{CC} = 3.6V to 5.5V				0.8		
Input Leakage Current	lin	V _{IN_} = 0 or 5.5V		-0.5		+0.5	μA	
COMPARATOR								
Comparator Range				0		5.5	V	
Comparator Threshold	V _{TH}	V _{CC} = 2V to 5.5V, falling input		0.3 x V _{CC}	0.33 x V _{CC}	0.36 x V _{CC}	V	
Comparator Hysteresis		$V_{CC} = 2V$ to 5.5V			50		mV	
Comparator Output High Voltage		ISOURCE = 1mA		V _{CC} - 0.4V			V	
Comparator Output Low Voltage		ISINK = 1mA				0.4	V	
Comparator Switching Time		Rising input (Figure 7)			2.5		110	
Comparator Switching TIME		Falling input (Figure 7)			0.5		μs	
	I							

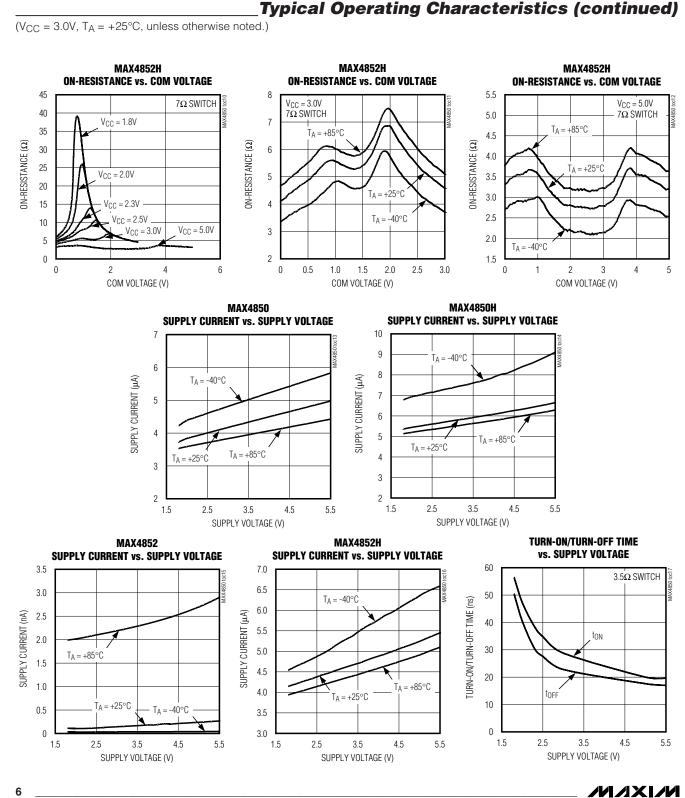
Note 2: Specifications are 100% tested at $T_A = +85^{\circ}C$ only, and guaranteed by design and characterization over the specified temperature range.

Note 3: Guaranteed by design and characterization; not production tested.

Note 4: $\Delta R_{ON} = R_{ON}(MAX) - R_{ON}(MIN)$.

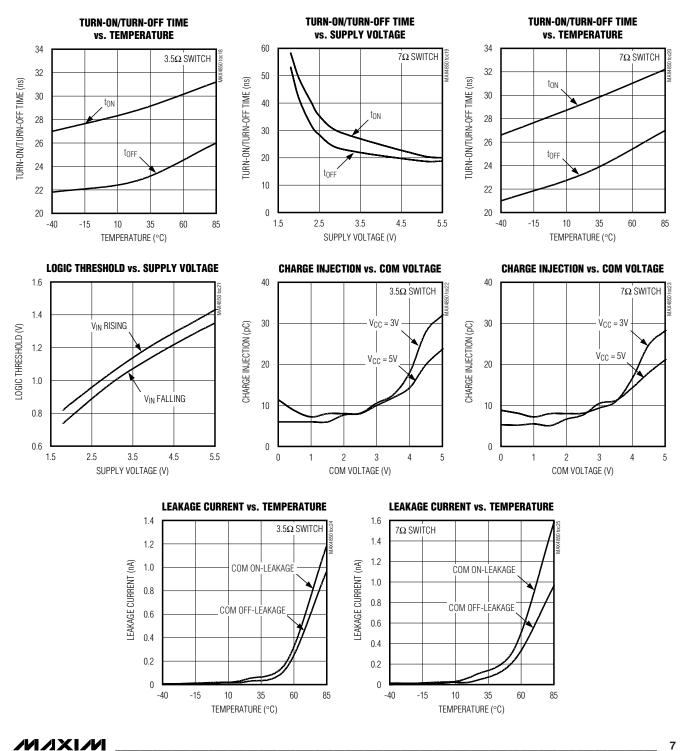

Note 5: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

M/IXI/N

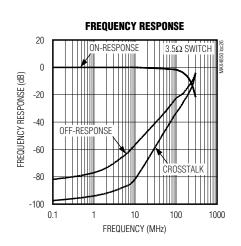

Note 6: Off-isolation = $20\log_{10} (V_{COM_{-}} / V_{NO_{-}}), V_{COM_{-}} = output, V_{NO_{-}} = input to off switch.$

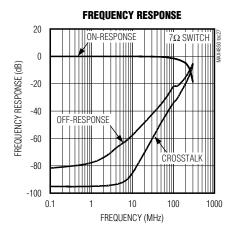
Typical Operating Characteristics

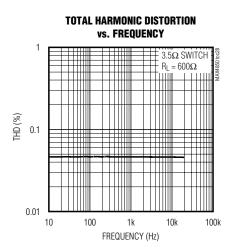
 $(V_{CC} = 3.0V, T_A = +25^{\circ}C, unless otherwise noted.)$

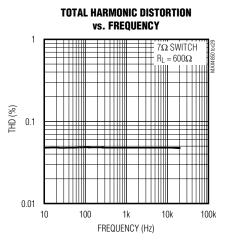


MAX4850/MAX4850H/MAX4852/MAX4852H

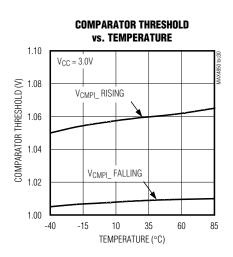


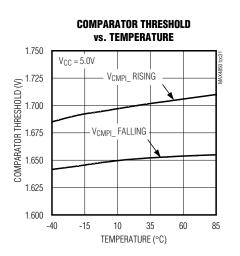

 $(V_{CC} = 3.0V, T_A = +25^{\circ}C, unless otherwise noted.)$

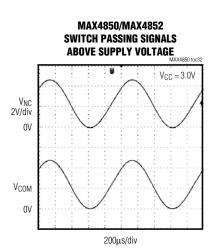


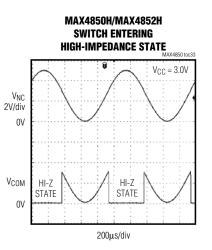

_Typical Operating Characteristics (continued)

 $(V_{CC} = 3.0V, T_A = +25^{\circ}C, unless otherwise noted.)$








Typical Operating Characteristics (continued)

 $(V_{CC} = 3.0V, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Descriptions

MAX4850/MAX4850H

PIN	NAME	FUNCTION	
1, 8	N.C.	No Connection. Not internally connected.	
2	CIN1	Inverting Input for Comparator 1	
3	CIN2	Inverting Input for Comparator 2	
4	COM1	Common Terminal for Analog Switch 1	
5	NO1	Normally Open Terminal for Analog Switch 1	
6	GND	Ground	
7	NC2	Normally Closed Terminal for Analog Switch 2	
9	IN2	Digital Control Input for Analog Switch 2. A logic LOW on IN2 connects COM2 to NC2 and a logic HIGH connects COM2 to NO2.	
10	COM2	Common Terminal for Analog Switch 2	
11	COUT1	Output for Comparator 1	
12	NO2	Normally Open Terminal for Analog Switch 2	
13	COUT2	Output for Comparator 2	
14	Vcc	Supply Voltage. Bypass to GND with a 0.01µF capacitor as close to the pin as possible.	
15	IN1	Digital Control Input for Analog Switch 1. A logic LOW on IN1 connects COM1 to NC1 and a log HIGH connects COM1 to NO1.	
16	NC1	Normally Closed Terminal for Analog Switch 1	
EP		Exposed Paddle. Connect to PC board ground plane.	

MAX4852/MAX4852H

PIN	NAME	FUNCTION			
1, 2, 3, 8, 11, 13	N.C.	No Connection. Not internally connected.			
4	COM1	Common Terminal for Analog Switch 1			
5	NO1	Normally Open Terminal for Analog Switch 1			
6	GND	Ground			
7	NC2	Normally Closed Terminal for Analog Switch 2			
9	IN2	Digital Control Input for Analog Switch 2. A logic LOW on IN2 connects COM2 to NC2 and a logic HIGH connects COM2 to NO2.			
10	COM2	Common Terminal for Analog Switch 2			
12	NO2	Normally Open Terminal for Analog Switch 2			
14	V _{CC}	Supply Voltage. Bypass to GND with a 0.01µF capacitor as close to the pin as possible.			
15	5 IN1 Digital Control Input for Analog Switch 1. A logic LOW on IN1 connects COM1 to NC1 and a log HIGH connects COM1 to NO1.				
16	NC1	Normally Closed Terminal for Analog Switch 1			
EP	_	Exposed Paddle. Connect to PC board ground plane.			

Detailed Description

The MAX4850/MAX4850H/MAX4852/MAX4852H are low on-resistance, low-voltage, analog switches that operate from a +2V to +5.5V single supply and are fully specified for nominal 3.0V applications. These devices feature over-rail signal capability that allows signals up to 5.5V with supply voltages down to 2.0V. These devices are configured as dual SPDT switches.

These switches have low 50pF on-channel capacitance, which allows for 12Mbps switching of the data signals for USB 2.0 full speed/1.1 applications. The MAX485__ are designed to switch D+ and D- USB signals with a guaranteed skew of less than 1ns (see Figure 1), as measured from 50% of the input signal to 50% of the output signal.

The MAX4850_ feature a comparator that can be used for headphone or mute detection. The comparator threshold is internally generated to be approximately 1/3 of V_{CC}.

Applications Information

Digital Control Inputs

The logic inputs (IN_) accept up to +5.5V even if the supply voltages are below this level. For example, with a +3.3V V_{CC} supply, IN_ can be driven low to GND and high to +5.5V, allowing for mixing of logic levels in a system. Driving IN_ rail-to-rail minimizes power con-

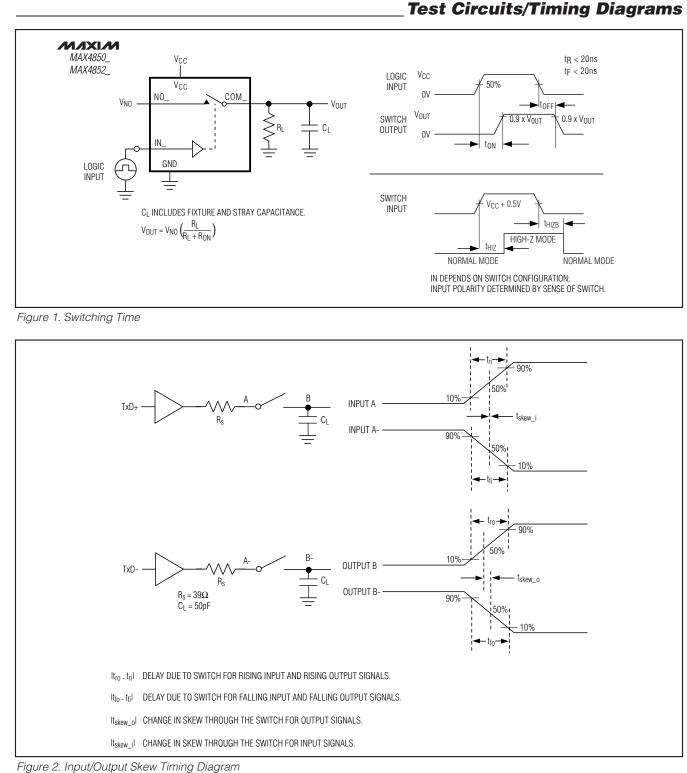
sumption. For a +2V supply voltage, the logic thresholds are 0.5V (low) and 1.4V (high); for a +5V supply voltage, the logic thresholds are 0.8V (low) and 1.8V (high).

Analog Signal Levels

The on-resistance of these switches changes very little for analog input signals across the entire supply voltage range (see *Typical Operating Characteristics*). The switches are bidirectional, so NO_, NC_, and COM_ can be either inputs or outputs.

Comparator

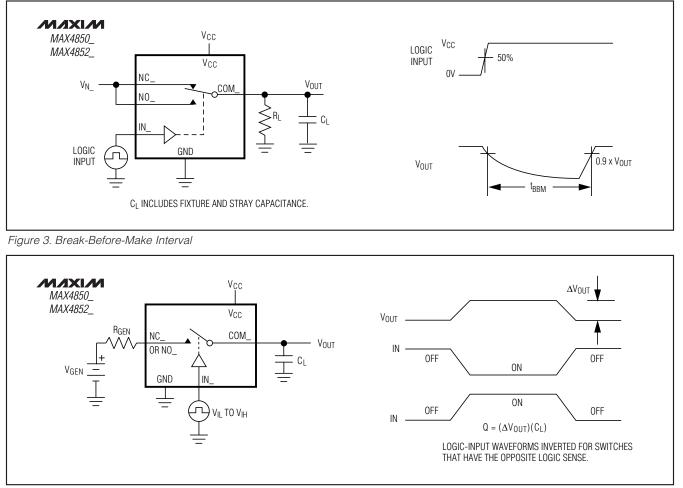
The positive terminal of the comparator is internally set to $V_{CC}/3$. When the negative terminal (CIN_) is below the threshold ($V_{CC}/3$), the comparator output (COUT_) goes high. When CIN_ rises above $V_{CC}/3$, COUT_ goes low.


The comparator threshold allows for detection of headphones since headphone audio signals are typically biased to $V_{CC}/2$.

Power-Supply Sequencing

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V_{CC} before applying analog signals, especially if the analog signal is not current-limited.



Į

MAX4850/MAX4850H/MAX4852/MAX4852H

12

M XXI M

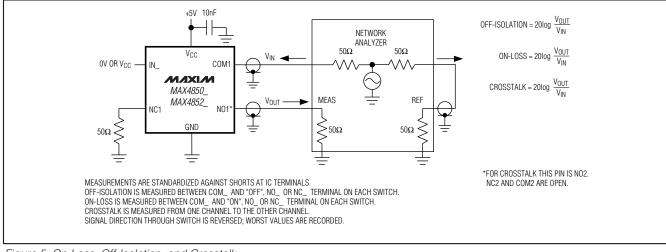


Figure 5. On-Loss, Off-Isolation, and Crosstalk

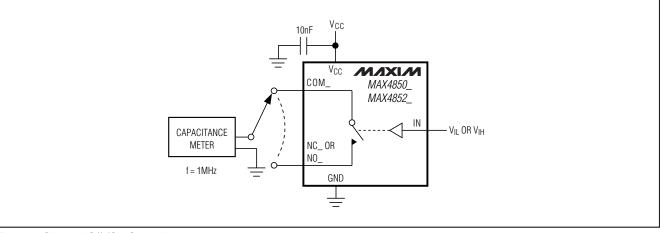


Figure 6. Channel Off-/On-Capacitance

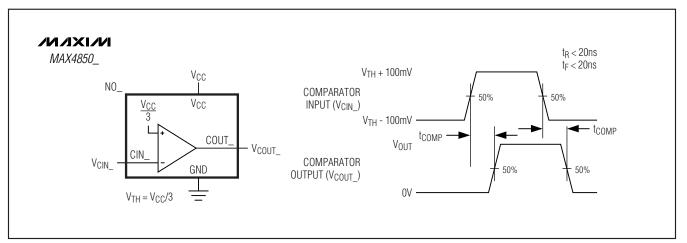
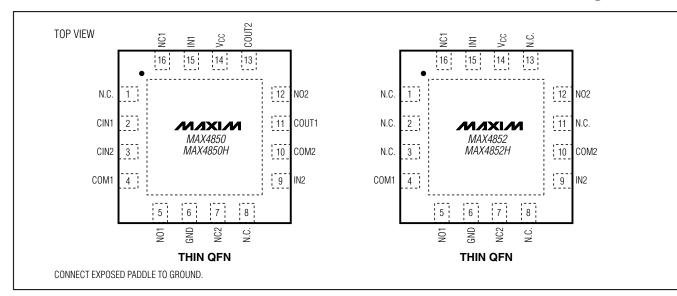
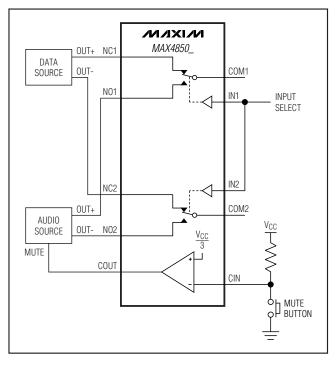



Figure 7. Comparator Switching Time

MAX4850/MAX4850H/MAX4852/MAX4852H

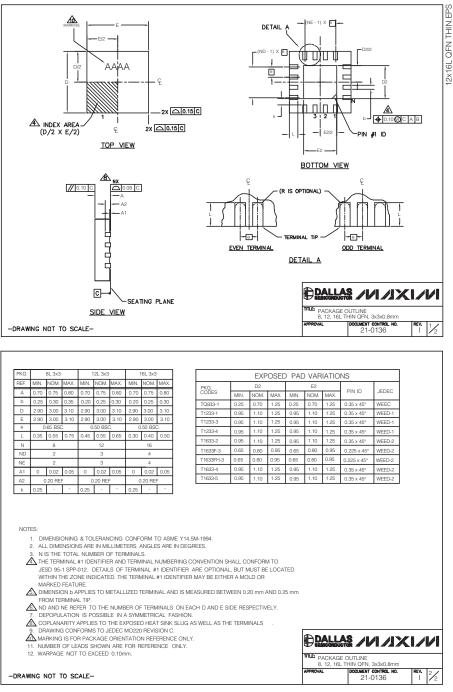
_Pin Configurations


Selector Guide

PART	Ron NC_/NO_ (Ω)	COMPARATORS	OVER-RAIL HANDLING
MAX4850	3.5/3.5	2	Input signal passes through the switch
MAX4850H	3.5/3.5	2	High-impedance switch input
MAX4852	3.5/7	_	Input signal passes through the switch
MAX4852H	3.5/7	_	High-impedance switch input

Chip Information

TRANSISTOR COUNT: 735 PROCESS: CMOS


Typical Operating Circuit

M/X/M

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>www.maxim-ic.com/packages</u>.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16

MAX4850/MAX4850H/MAX4852/MAX4852H

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2004 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products.