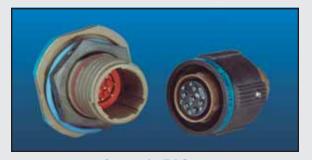
Table of Contents Page	No.
Series III - The Highest Performance MIL-DTL-38999 Connector	
_	
Tri-Start Series III Versatility and Options	
Test Data	
Specifications	
Insert Availability and Identification	
Alternate Positioning	
Insert Arrangements	
Crimp	9-13
TVP00R/CTVP00R Wall Mounting Receptacle	16
TVP02R/CTVP02R Box Mounting Receptacle	
TV06R/CTV06R Straight Plug	
TV26/MTV26 CLUTCH-LOK® Straight Plug	
TV07R/CTV07R Jam Nut Receptacle	
TV01R/CTV01R Line Receptacle	
TV09R Flange Mounting Plug	
Hermetic	
TVPS02Y Box Mounting Receptacle	23
TVS07Y Jam Nut Receptacle	
TVSIY Solder Mounting Receptacle	
TVSHIY Weld Mounting Recepacle	
Fail Safe, Lanyard Release	
Design Features, Types	27
D38999/29, D38999/30 Lanyard Release Plug	28-30
D38999/31 TV Fail Safe Lanyard Release Plug for MIL-STD-1760 3	
Accessories for Lanyard Release Connectors	33
Accessories	
Receptacle Protection Caps	
Plug Protection Caps	
Dummy Receptacles	
Cable Clamps	
Universal Header Assembly for Flex Print or PC Board Connectors 3	
Contacts, Sealing Plugs, Plastic/Metal Protection Caps	
Contacts (Printed Circuit Board, Wire wrap)	
Application Tools	42
How to Order	40
Amphenol® TV, Metal and Amphenol® TV26 CLUTCH-LOK®	
D38999, TV Military, Metal and MTV26 CLUTCH-LOK®	
Amphenol® CTV, Composite	
D38999, CTV Military, Composite	
Specials (Fiber Optics, Filter Protection, Flex Assemblies,	41
PCB Applications)	10
Specials (Coax, Twinax, Triax Contacts, Ground Plane Connectors,	40
Press Fit Connectors)	49
Specials (Quadrax Contacts)	
Specials (Deep Reach Shells, Stand-off Flange Shells, Connectors with	00
Integral Strain Reliefs, ESD Protection, RJ Field Connectors	51
Sales Office and Distributor Listing	
3	
For additional information concerning Amphenol Tri-Start Connectors, or if t	here
are special application requirements, contact your local sales office or	
Amphenol Aerospace	
40-60 Delaware Ave.	
Sidney, New York 13838-1395	
Phone: 607-563-5011 Fax: 607-563-5157	
www.amphenol-aerospace.com	
Amphenol Aerospace is a Certified ISO9001 Manufacturer.	

Amphenol® Tri-Start

Series III - the highest performance


MIL-DTL-38999 connector

Tri-Start™ MIL-DTL-38999 Series III with Metal Shells - Aluminum, Stainless Steel, Class K Firewall

Amphenol® Tri-Start MIL-DTL-38999* Series III Connectors offer the highest performance capabilities for both general duty and severe environment applications. Meeting or exceeding MIL-DTL-38999 Series III requirements, the Tri-Start connector with standard metal shells (aluminum or stainless steel with several finish options) offers these features:

- EMI Shielding solid metal to metal coupling, grounding fingers, electroless nickel plating, and thicker wall sections provide superior EMI shielding capability of 65dB minimum at 10 GHz
- Contact Protection recessed pins in this 100% scoopproof connector minimize potential contact damage
- Moisture Resistance improved interfacial seal design helps prevent electrolytic erosion of contacts
- Corrosion Resistance shells of stainless steel or cadmium over nickel plating withstand a 500 hour salt spray exposure
- Vibration/Shock operates under severe high temperature vibration, through 200°C
- Firewall Capability available in a stainless steel shell, class RK, RS
- Lockwiring Eliminated unique, self-locking, quick coupling connector eliminates lockwiring
- Quick Coupling completely mates and self-locks in a 360° turn of the coupling nut
- Inventory Support Commonality uses standard MIL-DTL-38999 contacts, application tools, insert arrangements
- Electrostatic Discharge Protection (ESD) protection for sensitive circuitry without diodes, varistors, etc., with the use of the Faraday Cage principal which shunts high voltage, high current discharge events (see page 51)
- Ground Plane Connectors with metallic insert for common grounding of coax, triax or twinax contact outer shield (see page 49)
- Hermetic- air leakage limited to 1 X 10⁻⁷ cm³ per second optional

Composite Tri-Start, Qualified to MIL-DTL-38999, Rev. J

MIL-Qualified to MIL-DTL-38999, Rev. K, the Amphenol® Composite Tri-Start Connector offers a lightweight, corrosion resistant connector with the same high performance features as its metal counterpart. The Composite Tri-Start Connector also includes the following features:

- Lightweight 17% 70% weight savings (17–40% weight savings vs. aluminum) (60–70% weight savings vs. stainless steel)
 See Composite weight comparison chart, pg. 47.
- Corrosion Resistance available in standard MIL-DTL-38999 olive drab cadmium (175°C) and electroless nickel plating (200°C), both withstanding 2000 hours of salt spray exposure. The base material is able to withstand an indefinite exposure to salt spray.
- Durability 1500 couplings minimum (in reference to connector couplings, not contacts)
- Extended Life Contact Mil-approved plating process which provides 1500 couplings minimum

CLUTCH-LOK™ MIL-DTL-38999 Series III High Vibration Connector

The latest offering from Amphenol in MIL-DTL-38999, the CLUTCH-LOK connector offers:

All advantages of stainless steel/Class K firewall Tri-Start connectors plus a unique clutch design that actually tightens itself under vibration. Features include:

- High degree of differential torque
- No settling back to the next ratchet tooth
- Completely intermateable with all existing MIL-DTL-38999 Series III connectors
- Offers advantage in inaccessible, hard to reach areas where mating torque is difficult to apply and complete coupling is not verifiable by inspection See page 19 for description, 43 and 44 for ordering.

 $^{^{\}star}$ MIL-DTL-38999 Series III supersedes MIL-C-38999 Series III.

Amphenol® Tri-Start

offers more versatility & options than any other interconnection family

The Tri-Start Connector is the high performance choice in the D38999 Family.

Originally designed in order to increase the performance levels of MIL-DTL-38999 Series I and II, the Series III was created to meet high performance connector criteria.

Dynamic features for performance and reliability that were needed for military, aerospace and ground vehicle applications were designed into the Series III that include:

- Rapid coupling via a triple-start thread
- Shell-to-shell or metal-to-metal bottoming
- Improved EMI shielding

The Tri-Start Family of connectors has grown and expanded since its original addition to the 38999 series in order to meet ever-evolving interconnection product needs. Today, the Tri-Start family has styles and options that cover a very wide range to meet not only the highest performance needs of space applications, but also general duty connector needs.

The Tri-Start Connector Series is second to none in terms of versatility and customer options.

The broad porfolio includes Tri-Starts with:

- Aluminum and nickel plated stainless steel shells
- · Class K Firewalls
- · Composite shells
- Clutch-Lok® high vibration design
- Fiber Optics
- Fail-Safe Lanyard Release connectors
- · Variety of contact options: shielded, coax, matched impedance coax, triax, twinax, quadrax, thermocouple, PCB tail and
- Ground plane versions and Press-fit® with compliant pins
- ESD (Electrostatic Discharge) protection
- Filter/Transient protection
- Hermetic versions
- Long reach receptacle styles · Numerous shell geometries,
- finishes and accessories

See more on Tri-Start specials on pages 48-51.

Hermetic Tri-Start MIL-DTL-38999 Series III

MIL-DTL-38999 Lanyard "Breakaway" Connector **Qualified for MIL-STD-1760**

Fiber Optic Multi-Channel D38999

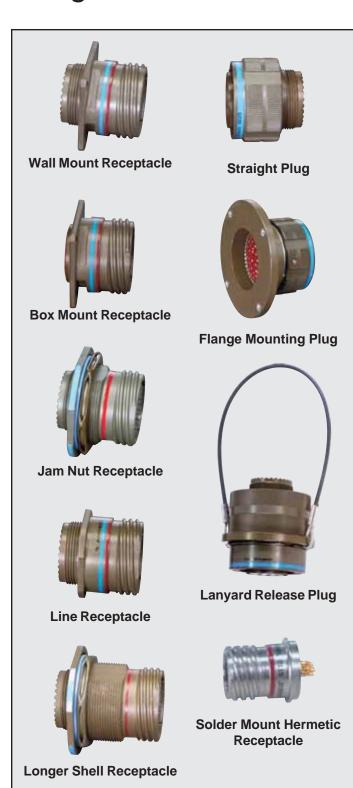
MIL-DTL-38999 with **Shielded Coax Contacts**

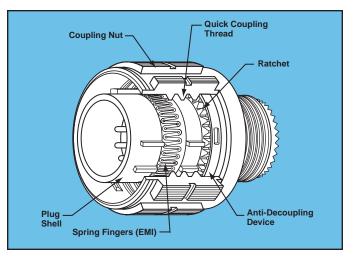
D38999 Ground Plane with Metallic Insert, Power

Contacts

Contacts and **Shielded Twinax**

D38999 with PC Tail **Coax Contacts and Alignment Disc**




D38999 with Flex **Termination for** Attachment to PCB **Boards**

Amphenol® Tri-Start

shell styles and key design features

Designed for Performance

Numerous advantages in performance capability are designed into the Amphenol Tri-Start Connector. A positive metal to metal coupling design, grounding fingers, and electroless nickel plating provide superior EMI shielding capability of 65 dB minimum at 10 GHz.

Acme threads provide coupling durability. Thicker wall sections and a greater coupling surface area improve strength and shock resistance. Blunting of the thread on both the coupling nut and receptacle eliminates cross coupling. The connector quickly mates and self locks in a 360° turn of the coupling nut.

Elongated mounting holes permit the Tri-Start Connector to intermount with various existing MIL-spec box or wall mount receptacles, giving it a design replacement advantage.

Shells of stainless steel, or cadmium over nickel plating prevent severe corrosion. Resistance is tested through exposure to a 500 hour salt spray. Composite versions provide protection from salt spray exposure for 2000 hours. Other finish options are available; see how to order Tri-Start metal and Tri-Start Composite.

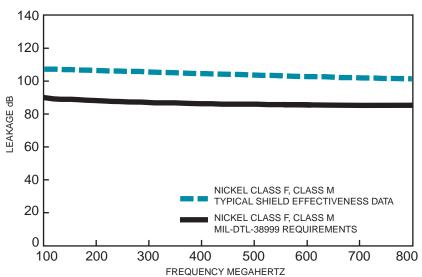
Recessed pins minimize potential contact damage in this 100% scoop-proof connector. In a blind mating application, mating shells cannot "scoop" the pins and cause a shorting or bending of contacts.

The design of the Amphenol Tri-Start interfacial seal meets the MIL-DTL-38999 Series III requirements for electrolytic erosion resistance.

A rigid dielectric insert with excellent electrical characteristics provides durable protection to the contacts. The socket contacts are probe proof, and all contacts are rear removable. They are plated in the standard 50 micro inches minimum gold, with 100 micro inches as an option and are available in standard Tri-Start insert arrangements and special Pyle® insert arrangements in sizes 10 power, 12, 16, 20 and 22D contacts. Special insert patterns are also available with larger contacts in sizes 4 and 0.

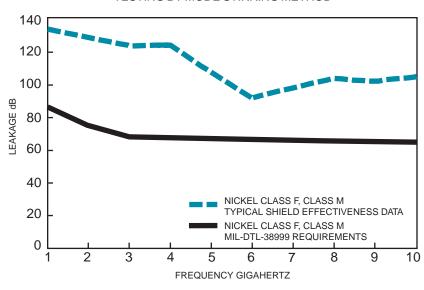
Applicable Patents:

Tri-Start[™] Connector Patent 4,109,990.


Composite Connector Patents:
4,268,103; 4,648,670; 4,682,832; 4,703,987.

Clutch-Lok[®] Patent 6,152,753.

test data

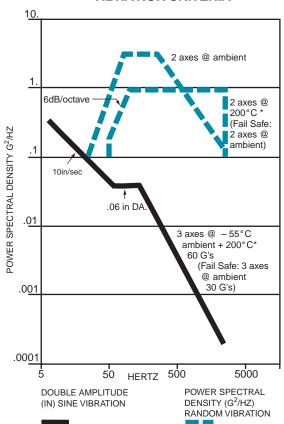

TRI-START, SERIES III TYPICAL SHIELDING EFFECTIVENESS TEST DATA

EMI/EMP SHIELDING EFFFECTIVENESS dB **TESTING BY TRIAXIAL METHOD**

TRI-START, SERIES III TYPICAL SHIELDING EFFECTIVENESS TEST DATA

EMI/EMP SHIELDING EFFFECTIVENESS dB TESTING BY MODE STIRRING METHOD

Test data beyond 2GHz is subject to equipment variation.


Amphenol® Tri-Start connectors provide **EMI/EMP** shielding capability which exceeds MIL-DTL-38999 Series III requirements.

The TV and CTV Series III connector with standard solid metal to metal coupling, EMI grounding fingers and conductive finishes has proven to be the ultimate in EMI/EMP shielding effectiveness. The charts illustrate shielding effectiveness data which is typical of Tri-Start connectors tested with the nickel finish (Class F-metal, Class M-composite) over a wide frequency range.

The vibration capability of the Tri-Start Series is shown in the chart below. This illustrates the most severe vibration envelope of any qualified connector available today.

These capabilities along with a 200°C temperature rating and superior moisture sealing protection provide the user with a connector that can withstand the most rigorous application.

TRI-START **VIBRATION CRITERIA**

* Dependant on shell finish

NOTE: for test data information on the new Clutch-Lok Tri-Start, high vibration connectors, consult Amphenol Aerospace.

specifications

CONTACT RATING

	Test Curre	nt (Amps)	Maximum	Maximum	
Contact Size	Crimp	Hermetic	Millivolt Drop Crimp*	Millivolt Drop Hermetic*	
22D	5	3	73	85	
20	7.5 5		55	60	
16	13	10	49	85	
12	23	17	42	85	
10 (Power)	33	NA	33	NA	
8 (Power)	46	NA	26	NA	
4	80	NA	23	NA	
0	150 NA		21	NA	

	Crimp V	/ell Data	Hermeti	c Data
Contact Size	Well Diameter	Nominal Well Depth	Well Diameter	Min. Well Depth
22D	.0345 ± .0010	.141	.036 + .004	.094
20	.047 ± .001	.209	.044 + .004	.125
16	.067 ± .001	.209	.078 + .004 002	.141
12	.100 ± .002	.209	.116 + .004 002	.141
10 (Power)	.137 ± .002	.355	NA	NA
8	.181 ± .002	.490	NA	NA
4	.281 ± .002	.490	NA	NA
0	.453 ± .002	.585	NA	NA

SERVICE RATING

Service		d Oper. Voltage Level)	Test Voltage	Test Voltage	Test Voltage	Test Voltage
Rating	AC (RMS)	DC	(Sea Level)	50,000 Ft.	70,000 Ft.	110,000 Ft.
М	400	550	1300 VRMS	550 VRMS	350 VRMS	200 VRMS
N	300	450	1000 VRMS	400 VRMS	260 VRMS	200 VRMS
I	600	850	1800 VRMS	600 VRMS	400 VRMS	200 VRMS
II	900	1250	2300 VRMS	800 VRMS	500 VRMS	200 VRMS

Please note that the establishment of electrical safety factors is left entirely in the designer's hands, since he is in the best position to know what peak voltage, switching surges, transients, etc. can be expected in a particular circuit.

FINISH DATA

Non-Hermetic Shell Components									
Service Class									
Finish	Military	Proprietary							
Anodic Coating (Non-Conductive)	С	RX**							
Electroless Nickel	F (Metal) M (Composite)	- RF							
Olive Drab Cadmium Plate Nickel Base	W (Metal) J (Composite)	RW							
Stainless Steel with Nickel Plate	S	RS							
Stainless Steel	К	RK							

^{**} Add Suffix (005) to part number.

Hermetic Shell Components								
Service Class								
Material / Finish	Military	Proprietary						
Stainless Steel	Υ	Υ						
Stainless Steel with Nickel Plate	N	YN						

^{*} When using silver plated wire.

insert availability and identification

AMPHENOL TRI-START INSERT ARRANGEMENTS

										Contact Siz	ze		
Shell Size/Arrg.	Military Shell	Crimp	Hermetics*	Service Rating	Total Contacts	22D	20	16	12	12 (Coax)	10 (Power)	8 (Coax)	8†† (Twinax)
9-5★■	Α			Grounded	1								1
9-35	Α	X	Р	М	6	6							
9-94 ■	Α	+		М	2		2						
9-98	Α	Х	Р	I	3		3						
11-2★	В	+		I	2			2					
11-5	В	+	Р	I	5		5						
11-35	В	Х	Р	М	13	13							
11-54 ■	В	Х		II	4	4							
11-98	В	Х	Р	I	6		6						
11-99	В	Х		I	7		7						
13-4★	С	Х	Р	I	4			4					
13-8	С	Х	Р	I	8		8						
13-13 ■	С			I, Fiber Optic	4			2**	2				
13-35	С	Х	Р	М	22	22							
13-98	С	Х	Р	I	10		10						
15-4 ■	D	+		ı	4				4				
15-5★	D	Х	Р	II	5			5					
15-15	D	Х	Р	I	15		14	1					
15-18	D	Х	Р	1	18		18						
15-19	D	+	Р	1	19		19						
15-35	D	X	Р	М	37	37							
15-97	D	Х	Р	1	12	_	8	4					
17-2	E	X		M	39	38							1
17-6	E	X	Р	1	6				6				-
17-8★	E	X	P	II	8			8					
17-22★■	E	+		Coax	4					2		2	
17-26	E	X	Р	I	26		26						
17-35	E	X	P	M	55	55							
17-99	E	X		1	23		21	2					
19-11★	F	X	Р	i ii	11			11					
19-18	F	X		M	18	14		1					4
19-28	F	X		1	28		26	2					
19-31 ■	F	+		M	15	12			1			2	
19-32	F	X	P	1	32		32						
19-35	F	X	P	M	66	66	02						
21-11★	G	X		I	11	- 50			11				
21-11★	G	X	Р	ı II	16			16					
21-10 ★	G	X	'	l l	27		19	4	4				
21-25	G	X	Р	M	79	79	1.5	+ -	-т				
21-33	G	X	P	I	39	, ,	37	2					
21-39	G	X	P	ı	41		41						
21-41	G	X	I ⁻	M	4		71					4	(See note)
21-75★ ✓	G	X		II	19	17						2	(See Hote)
23-6 ★■	Н	P		M	6	17							6
23-14 ■	Н	+		IVI	14				14				U
								04	14				
23-21★	Н	Х	Р	II	21			21					

6

- X Completely tooled.
- Majority of tooling is completed (contact Amphenol Aerospace for availability).

- Not tobled for 02-rx.
 Pin inserts only (contact Amphenol Aerospace for socket availability).
 Ground plane proprietary option available. Arrg. 9-5 is exclusively ground plane type. See pg. 49 for further information on ground plane connectors.
 Not Mil-Qualified.
- ♦ 21-75 is Mil-Qualified with twinax contacts only.

Note: MS connector 21-75 is supplied with size 8 twinax.

Proprietary connector 21-75 is supplied with size 8 coax.

- * Hermetic inserts solder termination standard. (Contact Amphenol Aerospace for optional PCB or eyelet termination).
- ** Two size 16 contacts dedicated to fiber optics. Consult Amphenol Aerospace catalog 12-352 for fiber optic information.
- *** For use in MIL-STD-1760 applications (see pages 31 & 32).

 † For RG 180/U and RG 195/U cables only.
- †† Size 8 Coax and Twinax are interchangeable.

Tri-Start and Specials

insert availability and identification

TRI-START ARRANGEMENTS, CONT.

								C	ontact Si	ze			
Shell Size/Arrg.	Military Shell	Crimp	Hermetics*	Service Rating	Total Contacts	22D	20	16	12	12 (Coax)	10 (Power)	8 (Coax)	8†† (Twinax)
23-35	Н	Х	Р	М	100	100							
23-53	Н	Х	Р	I	53		53						
23-54 ■	Н	+		М	53	40		9	4				
23-55	Н	+	Р	I	55		55						
25-4	J	Х	Р		56		48	8					
25-7	J	+		Twinax	99	97							2
25-8★	J	+		Twinax	8								8
25-11***	J	+		Ν	11		2				9		
25-17 ■	J	+		М	42	36							6
25-19★	J	Х	Р	I	19				19				
25-20***	J	+		Ν	30		10	13		4			3
25-24★	J	Х	Р		24			12	12				
25-26 ■	J	+		I	25		16		5			4	
25-29★	J	Х			29			29					
25-35	J	Х	Р	М	128	128							
25-37★■	J	+		I	37			37					
25-41 ■	J	Х		N/Inst.	41	22	3	11		2			3
25-43	J	+		I	43		23	20					
25-46	J	+		I	46		40	4				2†	
25-61	J	Х	Р	I	61		61						
25-90	J	Х		I	46		40	4					2
25-F4 ■	J	+		M/I	66	49		13	4				

SPECIAL ARRANGEMENTS (Not Mil-Spec Qualified)

							Contact Size				
Shell Size/Arrg.	Military Shell	Crimp	Hermetics*	Service Rating	Total Contacts	Comments	22D	20	16	12	8†† (Twinax)
9-2	А	Х		I	2	formerly Pyle		2			
15-4	D	Х		II	4	formerly Pyle			4		
15-25	D	Х		М	25	formerly Pyle	22		3		
17-20	Е	Х		М	20	formerly Pyle	16			4	
21-12	G	Х		I	12	formerly Pyle		3		9	
21-21	G	Х		M/Inst.	41	improved sealing	32			9	
21-99	G	Х		М	16	formerly Pyle	5			11	
25-92	J	Х		М	101	formerly Pyle	92		9		
25-97	J	Х		М	42	formerly Pyle	26		3	13	

SPECIAL ARRANGEMENTS (Not Mil-Spec Qualified)

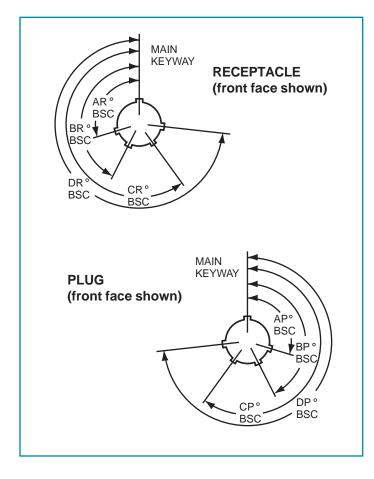
(insert arrangements requiring non-standard shells or larger contacts)

					Contact Size				
Shell Size/Arrg.	Crimp	Hermetics*	Service Rating	Total Contacts	22D	20	8	4	0
25-16	Х		М	8		6		2	
25L-3	Х		II	3			1		2
25L-7	Х		II	7			7		
33-3	Х		II.	3				1	2
33-5	Х		II	5				5	
33-6	Х		II.	6			2		4
37-5	Х		II	4					4

- X Completely tooled
- Majority of tooling is completed (contact Amphenol Aerospace for availability).
- ♦ Not tooled for 02-R.
- P Pin inserts only (contact Amphenol Aerospace for socket availability).
- ★ Ground plane proprietary option available.
- Arrangement 9-5 is exclusively ground plane type.
- Not Mil-Qualified.
- Hermetic inserts solder termination standard. (Contact Amphenol Aerospace for optional PCB or eyelet termination).
- ** Two size 16 contacts dedicated to fiber optics.

 Consult Amphenol Aerospace catalog 12-352 for fiber optic information.
- *** For use in MIL-STD-1760 applications (pgs. 31 & 32).
- † For RG 180/U and RG 195/U cables only.
- †† Size 8 Coax and Twinax are interchangeable. Note: 25L-3 and 25L-7 require longer shells.

7



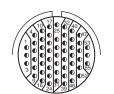
alternate positioning

Master Key/Keyway Position

	Rey/Reyway Posit				
Shell Size	Key & keyway arrangement identification letter	AR° or AP° BSC	BR° or BP° BSC	CR° or CP° BSC	DR° or DP° BSC
9	N A B C D E	105 102 80 35 64 91	140 132 118 140 155 131	215 248 230 205 234 197	265 320 312 275 304 240
11, 13, and 15	N A B C D E	95 113 90 53 119 51	141 156 145 156 146 141	208 182 195 220 176 184	236 292 252 255 298 242
17 and 19	N A B C D E	80 135 49 66 62 79	142 170 169 140 145 153	196 200 200 200 180 197	293 310 244 257 280 272
21, 23, and 25	N A B C D E	80 135 49 66 62 79	142 170 169 140 145 153	196 200 200 200 180 197	293 310 244 257 280 272
25L, 33, and 37	N A B C D E	80 135 49 66 62 79	142 170 169 140 145 153	188 188 188 188 188 188	293 310 244 257 280 272

A plug with a given rotation letter will mate with a receptacle with the same rotation letter. The angles for a given connector are the same whether it contains pins or sockets. Inserts are not rotated in conjunction with the master key/keyway.

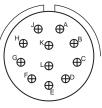
insert arrangements

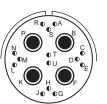

front face of pin inserts illustrated

			GA OB	B A	$\begin{bmatrix} E_{\Theta} & \Theta^A \\ D_{\Theta} & C & \Theta^B \end{bmatrix}$	0001 0011 02 013 012 03 0 0 0 0	DO OA
Insert Arrangement	9-5	9-35 9-94	9-98	11-2	11-5	11-35	11-54
Service Rating	Grounded	M M	I	1	1	M	II
Number of Contacts	1	6 2	3	2	5	13	4
Contact Size	8 Twinax	22D 20	20	16	20	22D	22D
	A _⊕ E _⊕ ⊝F ⊕B D⊖ ⊖C	E G G G G G G G G G G G G G G G G G G G	DA B⊕ B⊕ CC CC CG O _A B⊕ F _O H O EO O _C CC CC				D OA
Insert Arrangement	11-98	11-99 13-	4 13-8	13-13	13-35	13-98	15-4
Service Rating	I	1 1	ı	I, Fiber Option	: M	1	1
Number of Contacts	6	7 4	8	2 2	22	10	4
Contact Size	20	20 16	20	16 12	22D	20	12
				Dedicated to Fiber Optics			
				Fiber Optics			
		(A) B B B C C C C C C C C C C C C C C C C	Гента (С. 18 г.) Гента	M G G F	OB P OC OR OR S OB E		KO QA QB COMMENT OF THE COMMENT OF T
Insert Arrangement	15-5	15-15	15-18	15-19	9	15-35	15-97
Service Rating	II	1	1	1		M	1
Number of Contacts	5	14 1	18	19		37	8 4
Contact Size	16	20 16	20	20		22D	20 16
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			∯ ⊕) '	D A C	B	RO GA GB GC GA GC GA GB GC GA GC GA GB GC GA GC
Insert Arrangement	17-2	17-6		17-8	17-22		17-26
Service Rating Number of Contacts	M 38 1	I 6		II 8	Coax 2	2	I 26
Contact Size	22D 8 Twinax			16		Coax	20
Solitact Size	ZZD O I WIIId)	12		10	12 OUAX 0	JJax	20
						● ⊕	9 ⊖ •

CONTACT LEGEND 8 10 12 16 20 22D

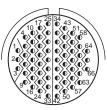
insert arrangements


front face of pin inserts illustrated

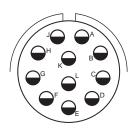

17-35 **Insert Arrangement** Service Rating 55 **Number of Contacts Contact Size** 22D

17-99 21 20

19-11 11 16



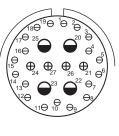
19-18 22D 8 Twinax


Insert Arrangement 19-28 Service Rating **Number of Contacts** 2 20 **Contact Size** 16

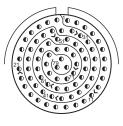
19-31 12 8 Coax 12 22D

19-32 32 20

19-35 66 22D



Insert Arrangement 21-11 Service Rating 11 **Number of Contacts Contact Size** 12

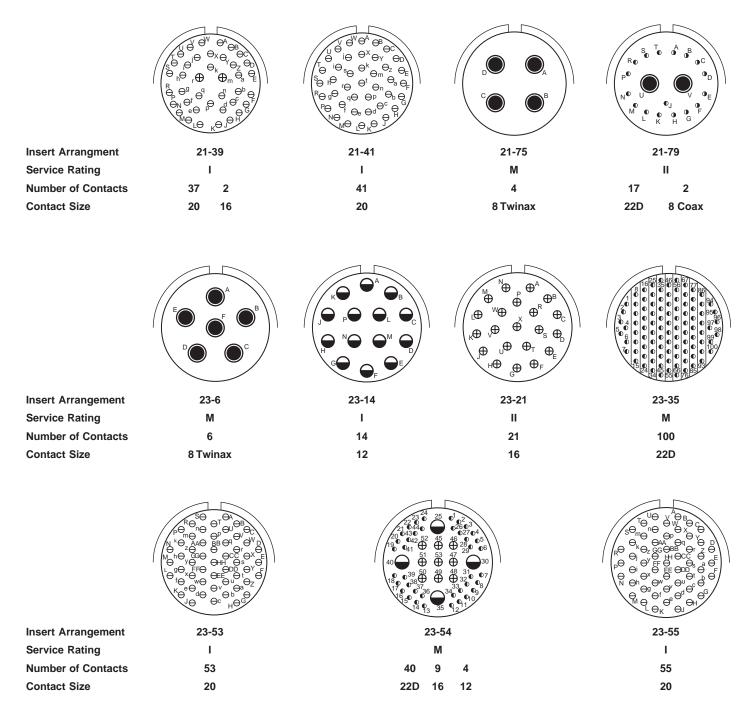

ıΦ к⊕ ⊕м ⊕в , ¹⊕ ≥⊕ _*q* ´⊕^N⊕_C \bigoplus_{D} G⊕ ⊕_F

> 21-16 Ш 16 16

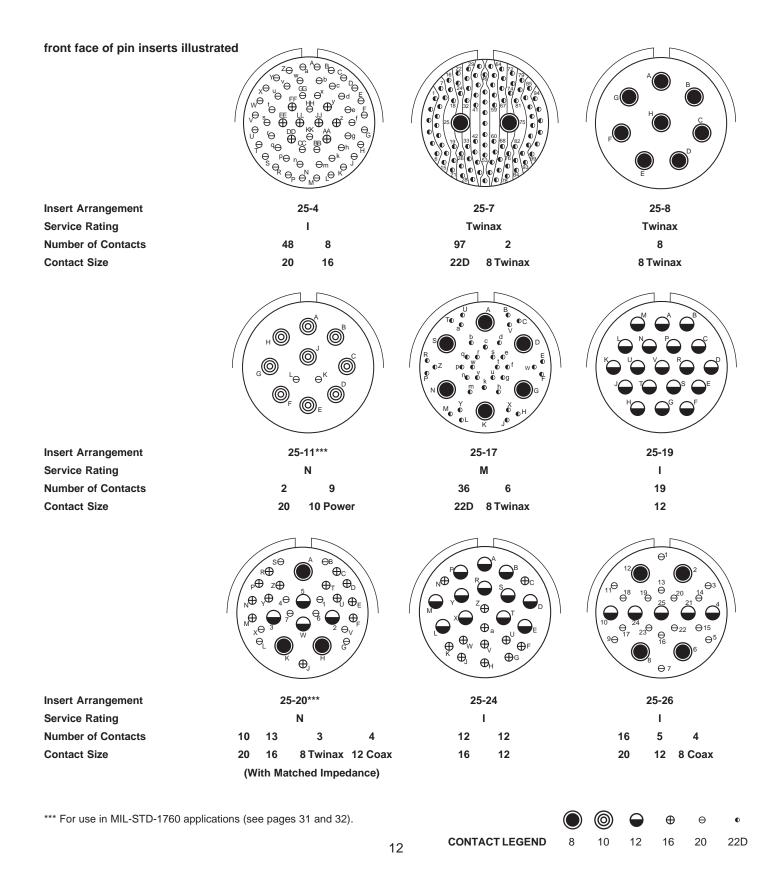
> > 10

21-29 4 4 19 20 16 12

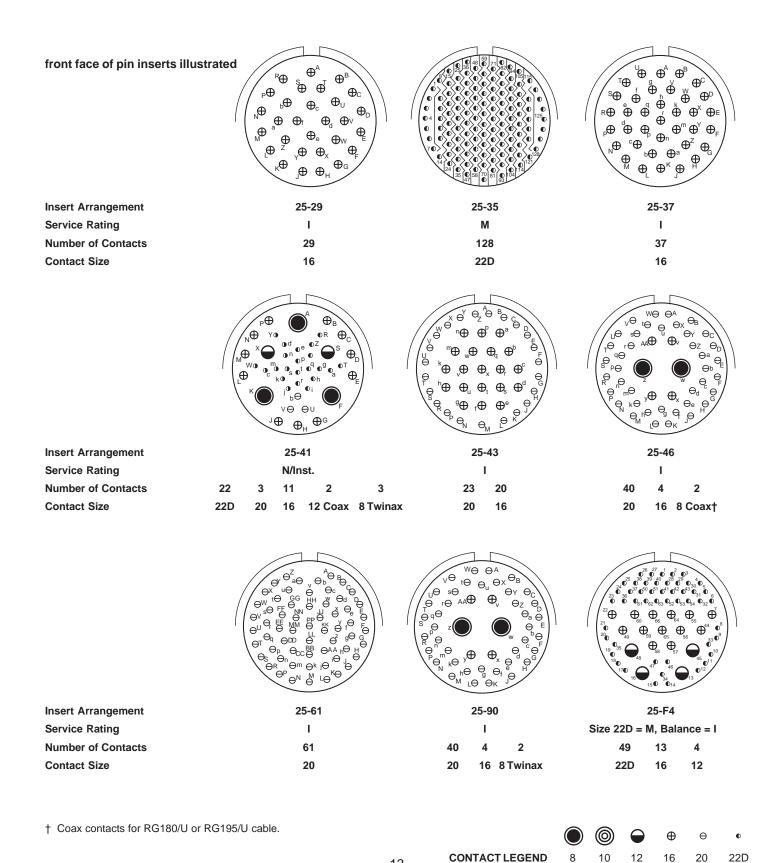
21-35 79 22D



insert arrangements

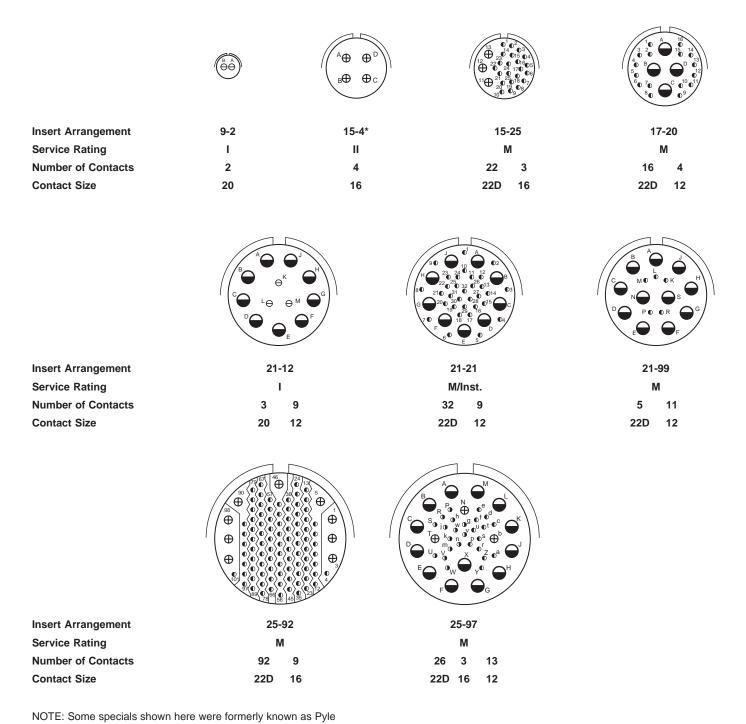

front face of pin inserts illustrated

11



insert arrangements

insert arrangements


13

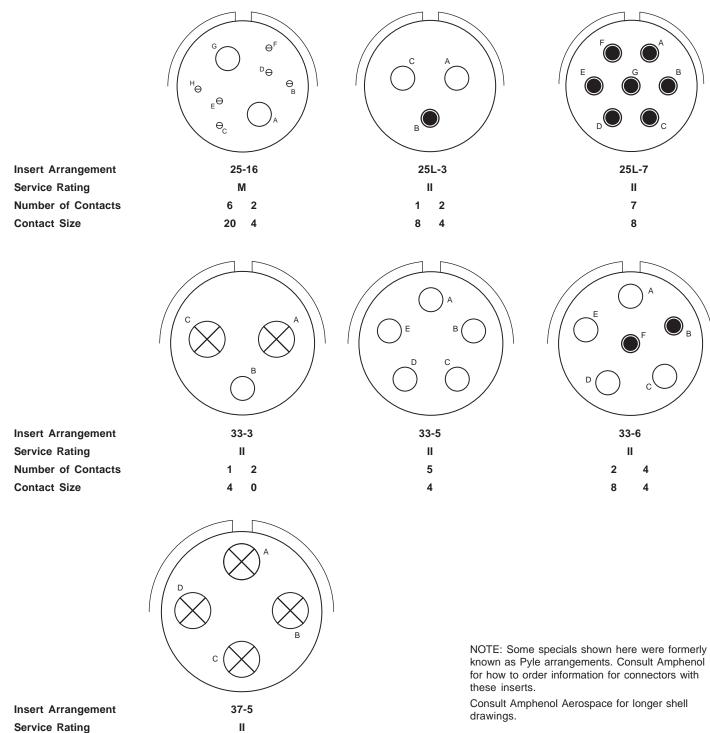
Special

insert arrangements

front face of pin inserts illustrated

arrangements. Consult Amphenol for how to order information for connectors with these inserts.

For further information on special arrangements consult Amphenol Aerospace, Sidney NY.


* Pyle 15-4 does not mate with Amphenol Tri-Start 15-4 insert.

CONTACT LEGEND 8 10 12 16 20 22D

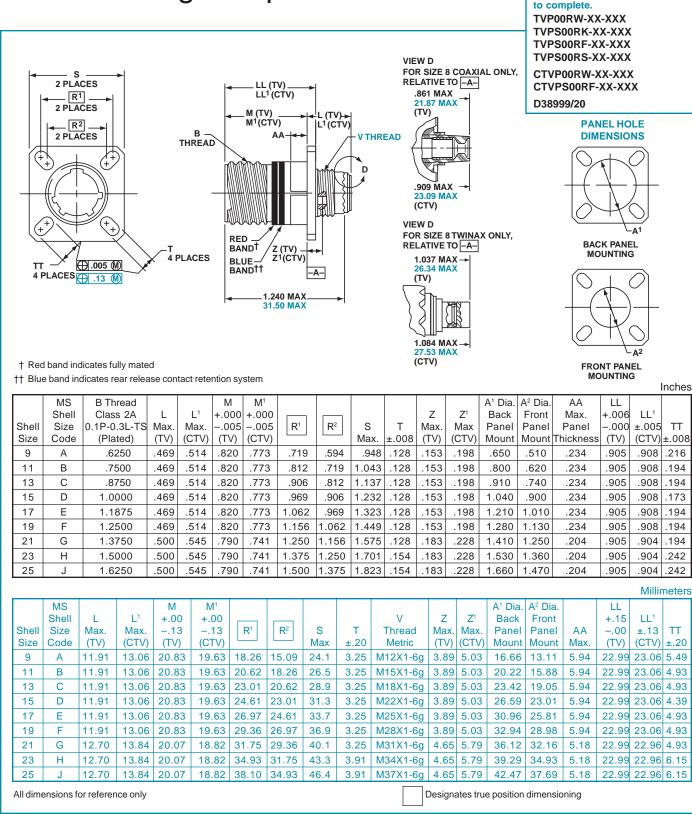
Special

insert arrangements requiring non-standard shells or larger contacts

front face of pin inserts illustrated

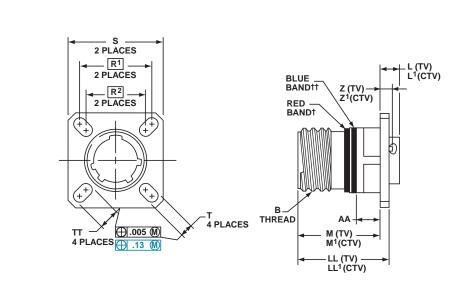
15

CONTACT LEGEND


Downloaded from Arrow.com.

Number of Contacts Contact Size

TVP00R (D38999/20) – crimp, metal **CTVP00R (D38999/20) –** crimp, composite

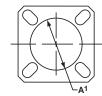

Part number reference. See how to order, pages 43-46

wall mounting receptacle

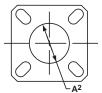
TVP02R - crimp, metal CTVP02R - crimp, composite

box mounting receptacle

† Red band indicates fully mated


All dimensions for reference only

Part number reference. See how to order, pages 43-46


TVP02RW-XX-XXX TVPS02RK-XX-XXX TVPS02RF-XX-XXX TVPS02RS-XX-XXX

CTVP02RW-XX-XXX CTVPS02RF-XX-XXX

PANEL HOLE DIMENSIONS

BACK PANEL MOUNTING

TT Blue band indicates rear release contact retention system
$\label{thm:consult} \textbf{Consult Amphenol Aerospace for availability of composite box mount receptacles}.$

	MS	B Thread			M	M ¹							A ¹	A^2	AA	LL		
	Shell	Class 2A	L	L ¹	+.000	+.000		l			Z	Z^1	Back	Front	Max.	+.006	LL ¹	
Shell	Size	0.1P-0.3L-TS	Max.	Max.	005	005	R ¹	R ²	S	Т	Max.	Max.	Panel	Panel	Panel	000	±.005	TT
Size	Code	(Plated)	(TV)	(CTV)	(TV)	(CTV)			Max.	±.008	(TV)	(CTV)	Mount	Mount	Thickness	(TV)	(CTV)	±.008
9	Α	.6250	.205	.250	.820	.773	.719	.594	.948	.128	.153	.198	.650	.510	.234	.905	.908	.216
11	В	.7500	.205	.250	.820	.773	.812	.719	1.043	.128	.153	.198	.800	.620	.234	.905	.908	.194
13	С	.8750	.205	.250	.820	.773	.906	.812	1.137	.128	.153	.198	.910	.740	.234	.905	.908	.194
15	D	1.0000	.205	.250	.820	.773	.969	.906	1.232	.128	.153	.198	1.040	.900	.234	.905	.908	.173
17	Е	1.1875	.205	.250	.820	.773	1.062	.969	1.323	.128	.153	.198	1.210	1.010	.234	.905	.908	.194
19	F	1.2500	.205	.250	.820	.773	1.156	1.062	1.449	.128	.153	.198	1.280	1.130	.234	.905	.908	.194
21	G	1.3750	.235	.280	.790	.741	1.250	1.156	1.575	.128	.183	.228	1.410	1.250	.204	.905	.904	.194
23	Н	1.5000	.235	.280	.790	.741	1.375	1.250	1.701	.154	.183	.228	1.530	1.360	.204	.905	.904	.242
25	J	1.6250	.235	.280	.790	.741	1.500	1.375	1.823	.154	.183	.228	1.660	1.470	.204	.905	.904	.242

																Mill	imeters
	MS			М	M ¹							A ¹	A ²		LL		
	Shell	L	L¹	+.00	+.00					Z	Z^1	Back	Front		+.15	LL ¹	
Shell	Size	Max.	Max.	13	13	R ¹	R ²	S	Т	Max.	Max.	Panel	Panel	AA	00	±.13	TT
Size	Code	(TV)	(CTV)	(TV)	(CTV)			Max	±.20	(TV)	(CTV)	Mount	Mount	Max.	(TV)	(CTV)	±.20
9	Α	5.21	6.35	20.83	19.63	18.26	15.09	24.1	3.25	3.89	5.03	16.66	13.11	5.94	22.99	23.06	5.49
11	В	5.21	6.35	20.83	19.63	20.62	18.26	26.5	3.25	3.89	5.03	20.22	15.88	5.94	22.99	23.06	4.93
13	С	5.21	6.35	20.83	19.63	23.01	20.62	28.9	3.25	3.89	5.03	23.42	19.05	5.94	22.99	23.06	4.93
15	D	5.21	6.35	20.83	19.63	24.61	23.01	31.3	3.25	3.89	5.03	26.59	23.01	5.94	22.99	23.06	4.39
17	Е	5.21	6.35	20.83	19.63	26.97	24.61	33.7	3.25	3.89	5.03	30.96	25.81	5.94	22.99	23.06	4.93
19	F	5.21	6.35	20.83	19.63	29.36	26.97	36.9	3.25	3.89	5.03	32.94	28.98	5.94	22.99	23.06	4.93
21	G	5.97	7.11	20.07	18.82	31.75	29.36	40.1	3.25	4.65	5.79	36.12	32.16	5.18	22.99	22.96	4.93
23	Н	5.97	7.11	20.07	18.82	34.92	31.75	43.3	3.91	4.65	5.79	39.29	34.93	5.18	22.99	22.96	6.15
25	J	5.97	7.11	20.07	18.82	38.10	34.92	46.4	3.91	4.65	5.79	42.47	37.69	5.18	22.99	22.96	6.15

Designates true position dimensioning

TV06R (D38999/26) - crimp, metal CTV06R (D38999/26) - crimp, composite

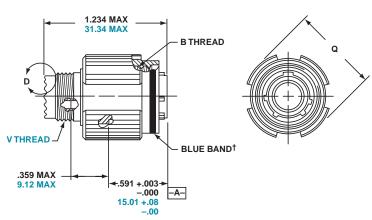
straight plug

METAL

Part number reference. See how to order, pages 43-46

TV06RW-XX-XXX TVS06RK-XX-XXX TVS06RF-XX-XXX TVS06RS-XX-XXX

CTV06RW-XX-XXX CTVS06RF-XX-XXX


D38999/26

1.234 MAX 31.34 MAX 1.220 MAX BTHREAD BLUE BAND† .359 MAX -9.12 MAX **←**.591 +.003→

VIEW D FOR SIZE 8 COAXIAL ONLY, RELATIVE TO __A_

← 1.656 MAX

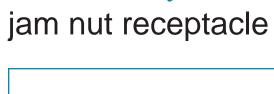
COMPOSITE

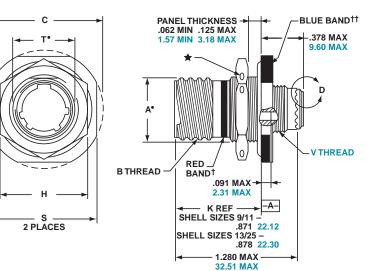
FOR SIZE 8 TWINAX ONLY, RELATIVE TO -A-

← 1.797 MAX

† Blue band indicates rear release contact retention system

MS B Thread Q Shell Size 0.1P-0.3L-TS-2B (Plated) Max. Size Code .6250 .858 9 Α .7500 .984 11 В 13 .8750 1.157 С 1.0000 1.280 15 D 17 1.1875 1.406 19 1.2500 1.516 21 1.3750 1.642 G 1.5000 1.768 23 25 1.6250 1.890

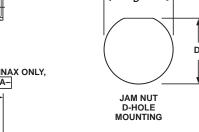

	MS		V
Shell	Shell Size	Q	Thread
Size	Code	Max.	Metric
9	Α	21.8	M12X1-6g
11	В	25.0	M15X1-6g
13	С	29.4	M18X1-6g
15	D	32.5	M22X1-6g
17	Е	35.7	M25X1-6g
19	F	38.5	M28X1-6g
21	G	41.7	M31X1-6g
23	Н	44.9	M34X1-6g
25	J	48.0	M37X1-6g


19

Downloaded from Arrow.com.

_U¯		-LOK® st	crimp, traight			igh v	ribration
nd h	narsh	n enviror	nment a	applio	catio	ns	Part number reference. See how to order, pages 43, 4 to complete. TV26RKXXXXX TV26RSXXXXX
high vil al choice unique mpromis	bration and ce for demai e clutch des	-38999, Series III Cor harsh environments s nding applications suc- ign of the Amphenol (for quick, smooth ma torque.	uch as aircraft gas ch as aircraft, spac CLUTCH-LOK me	s turbine eng e and militar ans that you	ines, it is als y ground ve don't have t	so an hicles. o	For parts with MS Stamping use MTV26() part number as follow: MTV26RKXXXXX MTV26RSXXXXX
n requir werful a K is als	ements - it a idvantage o so a tremen	is proven to not only railso has proven to activer the traditionally high dous advantage in inapply and complete cou	ually tighten itself gh vibration applica accessible, hard to	under vibrati ation connec reach areas	on. This is a tors. The CL where mati	UTCH-	
-	· -	s and benefits:		, ,			
-	•	rential torque					
		and positive metal-to-	metal bottoming wit	h each mating	g		
	•	he next ratchet tooth ess steel shells and Cla	oo K firowell incort	•			
		of MIL-DTL-38999 Ser			na electrolyti	c erosion	
	_	act protection with rece	•	II/TXI I SIIIGIGII	ig, electrolyth	C GIOSIOII	
		r performance at afford	•				
		eable with all existing I	•	ies III connec	tors		
Fully QF	PL'd						
	-	1.234 MAX	→				
		1.220 MAX				VIEW D	
	VTHRE359 N 9.12 N	31.00 MAX AD AD					IAX
	3.12 IV	000 15.01 +.08 00	 -A-				
Blue band	d indicates rear	release contact retention sy	stem				
	MS	B Thread	Q Inches		MS		Millimeters V
Shell	Shell Size	0.1P-0.3L-TS-2B	Dia.	Shell	Shell Size	Q	Thread
Size	Code	(Plated)	Max.	Size	Code	Max.	Metric
9	A	.6250	.858	9	A	21.8	M12X1-6g
11	B C	.7500 .8750	.984 1.157	11	B C	25.0 29.4	M15X1-6g M18X1-6g
15	D	1.0000	1.137	15	D	32.5	M22X1-6g
17	E	1.1875	1.406	17	E	35.7	M25X1-6g
19	F	1.2500	1.516	19	F	38.5	M28X1-6g
21	G	1.3750	1.642	21	G	41.7	M31X1-6g
	Н	1.5000	1.768	23	Н	44.9	M34X1-6g

TV07R (D38999/24) - crimp, metal **CTV07R (D38999/24) - crimp, composite**



FOR SIZE 8 COAXIAL ONLY RELATIVE TO -A-.794 MAX 20.17 MAX

FOR SIZE 8 TWINAX ONLY, RELATIVE TO -A-.940 MAX → 23.88 MAX

See how to order, pages 43-46 to complete. TV07RW-XX-XXX TVS07RK-XX-XXX TVS07RF-XX-XXX TVS07RS-XX-XXX CTV07RW-XX-XXX CTVS07RF-XX-XXX D38999/24 PANEL HOLE **DIMENSIONS**

Part number reference.

- † Red band indicates fully mated
- †† Blue band indicates rear release contact retention system
- ★ .059 dia min. 1.5 dia min. 3 lockwire holes Formed lockwire hole design (6 holes) is optional

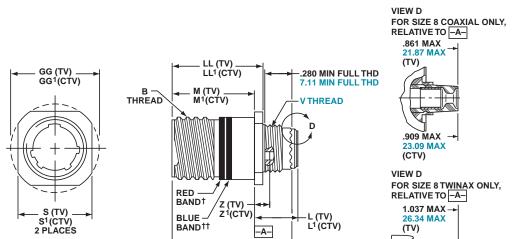
Inches

	MS		B Thread				H		
	Shell	A•	Class 2A		D¹	D ²	Hex		T•
Shell	Size	+.000	0.1P-0.3L-TS	С	+.010	+.000	+.017	S	+.010
Size	Code	010	(Plated)	Max.	000	010	016	±.010	000
9	Α	.669	.6250	1.199	.700	.670	.875	1.062	.697
11	В	.769	.7500	1.386	.825	.770	1.000	1.250	.822
13	С	.955	.8750	1.511	1.010	.955	1.188	1.375	1.007
15	D	1.084	1.0000	1.636	1.135	1.085	1.312	1.500	1.134
17	Е	1.208	1.1875	1.761	1.260	1.210	1.438	1.625	1.259
19	F	1.333	1.2500	1.949	1.385	1.335	1.562	1.812	1.384
21	G	1.459	1.3750	2.073	1.510	1.460	1.688	1.938	1.507
23	Н	1.575	1.5000	2.199	1.635	1.585	1.812	2.062	1.634
25	J	1.709	1.6250	2.323	1.760	1.710	2.000	2.188	1.759

Millimeters

	MS								
	Shell	A•		D^1	D^2	H Hex		T•	V
Shell	Size	+.00	С	+.25	+.00	+.43	S	+.25	Thread
Size	Code	25	Max.	00	25	41	±.25	00	Metric
9	А	16.99	30.45	17.78	17.02	22.23	26.97	17.70	M12X1-6g
11	В	19.53	35.20	20.96	19.59	25.40	31.75	20.88	M15X1-6g
13	С	24.26	38.38	25.65	24.26	30.18	34.93	25.58	M18X1-6g
15	D	27.53	41.55	28.83	27.56	33.32	38.10	28.80	M22X1-6g
17	Е	30.68	44.73	32.01	30.73	36.53	41.28	31.98	M25X1-6g
19	F	33.86	49.50	35.18	33.91	39.67	46.02	35.15	M28X1-6g
21	G	37.06	52.65	38.35	37.08	42.80	49.23	38.28	M31X1-6g
23	Н	40.01	55.85	41.53	40.26	46.02	52.37	41.50	M34X1-6g
25	J	43.41	59.00	44.70	43.43	50.80	55.58	44.68	M37X1-6g

 D shaped panel cut-out dimensions All dimensions for reference only NOTE: Deep reach receptacles are available for panel thicknesses up to .750 max.


TV01R - crimp, metal CTV01R - crimp, composite

line receptacle

Part number reference. See how to order, 43-45 to TV01RW-XX-XXX TVS01RF-XX-XXX

CTV01RW-XX-XXX

CTVS01RF-XX-XXX

FOR SIZE 8 TWINAX ONLY, RELATIVE TO -A-

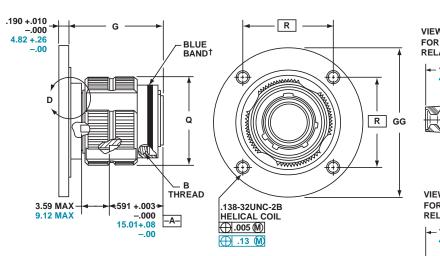
1.084 MAX -27.53 MAX (CTV)

† Red band indicates fully mated

†† Blue band indicates rear release contact retention system

Inches

	MS		M	M ¹									LL	
	Shell	B Thread	+.000	+.000	L	L ¹	S	S ¹	Z	Z^1	GG	GG ¹	+.006	LL ¹
Shel	Size	0.1P-0.3L-TS-2A	005	005	Max.	Max.	±.010	±.010	Max.	Max.	±.010	±.010	000	±.005
Size	Code	(Plated)	(TV)	(CTV)	(TV)	(CTV)	(TV)	(CTV)	(TV)	(CTV)	(TV)	(CTV)	(TV)	(CTV)
9	А	.6250	.820	.773	.469	.514	.675	.635	.153	.198	.812	.699	.905	.908
11	В	.7500	.820	.773	.469	.514	.800	.765	.153	.198	.905	.875	.905	.908
13	С	.8750	.820	.773	.469	.514	.925	.885	.153	.198	1.093	1.007	.905	.908
15	D	1.0000	.820	.773	.469	.514	1.050	1.100	.153	.198	1.219	1.140	.905	.908
17	E	1.1875	.820	.773	.469	.514	1.238	1.197	.153	.198	1.375	1.229	.905	.908
19	F	1.2500	.820	.773	.469	.514	1.300	1.260	.153	.198	1.469	1.380	.905	.908
21	G	1.3750	.790	.741	.500	.545	1.425	1.385	.183	.228	1.625	1.493	.905	.904
23	Н	1.5000	.790	.741	.500	.545	1.550	1.510	.183	.228	1.750	1.626	.905	.904
25	J	1.6250	.790	.741	.500	.545	1.675	1.635	.183	.228	1.875	1.777	.905	.904


													Mil	llimeters
	MS	М	M ¹										LL	
	Shell	+.00	+.00	L	L¹	S	S ¹	V	Z	Z^1	GG	GG ¹	+.15	LL1
Shell	Size	13	13	Max	Max	±.25	±.25	Thread	Max	Max	±.25	±.25	00	±.13
Size	Coded	(TV)	(CTV)	(TV)	(CTV)	(TV)	(CTV)	Metric	(TV)	(CTV)	(TV)	(CTV)	(TV)	(CTV)
9	Α	20.83	19.63	11.91	13.06	17.15	16.13	M12X1-6g	3.89	5.03	20.62	17.75	22.99	23.06
11	В	20.83	19.63	11.91	13.06	20.32	19.43	M15X1-6g	3.89	5.03	22.99	22.22	22.99	23.06
13	С	20.83	19.63	11.91	13.06	23.50	22.47	M18X1-6g	3.89	5.03	27.76	25.57	22.99	23.06
15	D	20.83	19.63	11.91	13.06	26.67	27.94	M22X1-6g	3.89	5.03	30.96	28.95	22.99	23.06
17	Е	20.83	19.63	11.91	13.06	31.45	30.40	M25X1-6g	3.89	5.03	34.93	31.21	22.99	23.06
19	F	20.83	19.63	11.91	13.06	33.02	32.00	M28X1-6g	3.89	5.03	37.31	35.05	22.99	23.06
21	G	20.07	18.82	12.70	13.84	36.20	35.18	M31X1-6g	4.65	5.79	41.28	37.92	22.99	22.96
23	Н	20.07	18.82	12.70	13.84	39.37	38.35	M34X1-6g	4.65	5.79	44.45	41.30	22.99	22.96
25	J	20.07	18.82	12.70	13.84	42.55	41.53	M37X1-6g	4.65	5.79	47.63	45.13	22.99	22.96

TV09R - crimp, metal

flange mounting plug

Part number reference. See how to order, page 43 to

TV09RW-XX-XXX TVS09RF-XX-XXX

VIEW D FOR SIZE 8 COAXIAL ONLY, RELATIVE TO A

VIEW D FOR SIZE 8 TWINAX ONLY, RELATIVE TO -A-

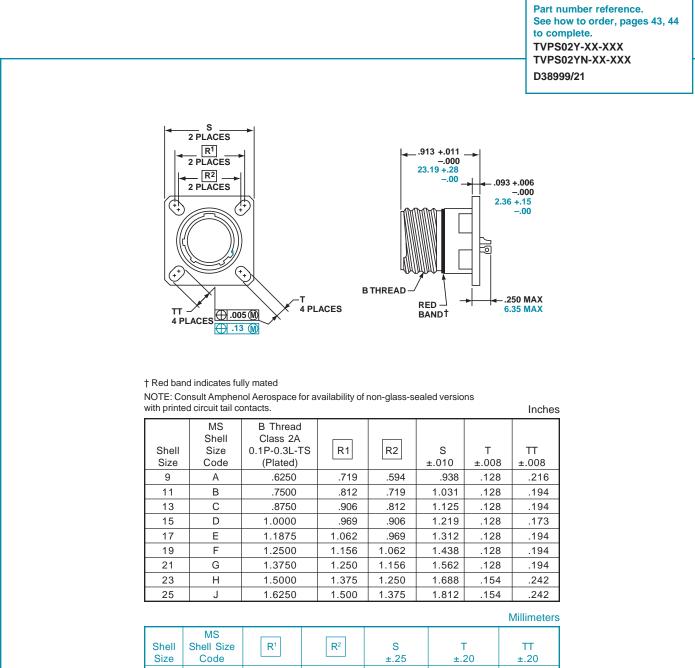
† Blue band indicates rear release contact retention system

Inches

Shell	MS Shell Size	B Thread 0.1P-0.3L-TS-2A	G	Q Dia.	R	GG Dia.
Size	Coded	(Plated)	±.060	Max		±.005
9**	Α	.6250	1.106	.859	1.038	1.838
11	В	.7500	1.106	.969	1.115	1.948
13**	С	.8750	1.106	1.141	1.240	2.124
15	D	1.0000	1.106	1.266	1.327	2.248
17	Е	1.1875	1.106	1.391	1.417	2.375
19	F	1.2500	1.356	1.500	1.557	2.495
21	G	1.3750	1.356	1.625	1.624	2.568
23	Н	1.5000	1.356	1.750	1.713	2.723
25	J	1.6250	1.356	1.875	1.801	2.848

Millimeters

Shell Size	MS Shell Size Code	G ±1.52	Q Dia. Max	R	GG Dia. ±.13
9**	А	28.09	21.82	26.37	46.69
11	В	28.09	24.62	28.32	49.48
13**	С	28.09	28.98	31.50	53.95
15	D	28.09	32.16	33.71	57.10
17	Е	28.09	35.33	35.99	60.33
19	F	34.44	38.10	39.55	63.37
21	G	34.44	41.28	41.25	65.23
23	Н	34.44	44.45	43.51	69.16
25	J	34.44	47.63	45.75	72.34


Designates true position dimensioning

All dimensions for reference only

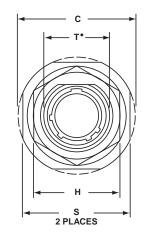
** Partially tooled. Consult Amphenol Aerospace for availability

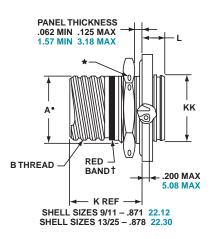
TVPS02Y (D38999/21) - hermetic, metal

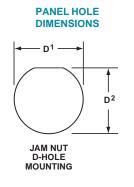
box mounting receptacle

	MS					
Shell	Shell Size	R ¹	R ²	S	Т	TT
Size	Code			±.25	±.20	±.20
9	Α	18.26	15.09	23.83	3.25	5.49
11	В	20.62	18.26	26.19	3.25	4.93
13	С	23.01	20.62	28.58	3.25	4.93
15	D	24.61	23.01	30.96	3.25	4.39
17	Е	26.97	24.61	33.32	3.25	4.93
19	F	29.36	26.97	36.53	3.25	4.93
21	G	31.75	29.36	39.67	3.25	4.93
23	Н	34.93	31.75	42.88	3.91	6.15
25	.1	38 10	34 93	46.02	3 91	6.15

All dimensions for reference only


Designates true position dimensioning


TVS07Y (D38999/23) - hermetic, metal


jam nut receptacle

Part number reference.
See how to order, pages 43, 44 to complete.
TVS07Y-XX-XXX
TVS07YN-XX-XXX

D38999/23

- † Red band indicates fully mated
- ★ . 059 dia min. 1.5 dia min.

Formed lockwire hole design (6 holes) is optional.

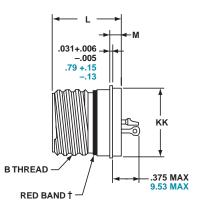
Inches

	MS		B Thread				Н				
	Shell	A•	Class 2A		D ¹	D ²	Hex			T•	KK
Shell	Size	+.000	0.1P-0.3L-TS	С	+.010	+.000	+.017	L	S	+.010	+.011
Size	Code	010	(Plated)	Max	000	010	016	Max	±.010	000	000
9	Α	.669	.6250	1.199	.700	.670	.875	.357	1.062	.697	.642
11	В	.769	.7500	1.386	.825	.770	1.000	.357	1.250	.822	.766
13	С	.955	.8750	1.511	1.010	.955	1.188	.357	1.375	1.007	.892
15	D	1.084	1.0000	1.636	1.135	1.085	1.312	.357	1.500	1.134	1.018
17	Е	1.208	1.1875	1.761	1.260	1.210	1.438	.357	1.625	1.259	1.142
19	F	1.333	1.2500	1.949	1.385	1.335	1.562	.381	1.182	1.384	1.268
21	G	1.459	1.3750	2.073	1.510	1.460	1.688	.381	1.938	1.507	1.392
23	Н	1.575	1.5000	2.199	1.635	1.585	1.812	.381	2.062	1.634	1.518
25	J	1.709	1.6250	2.323	1.760	1.710	2.000	.381	2.188	1.759	1.642

Millimeters

	MS	A•		D ¹	D ²	H Hex			T•	KK
Shell	Shell Size	+.00	С	+.25	+.00	+.43	L	S	+.25	+.28
Size	Code	25	Max	00	25	41	Max	±.25	00	00
9	Α	16.99	30.45	17.78	17.02	22.23	9.07	26.97	17.70	16.31
11	В	19.53	35.20	20.96	19.59	25.40	9.07	31.75	20.88	19.46
13	С	24.26	38.38	25.65	24.26	30.18	9.07	34.93	25.58	22.66
15	D	27.53	41.55	28.83	27.56	33.32	9.07	38.10	28.80	25.86
17	Е	30.68	44.73	32.01	30.73	36.53	9.07	41.28	31.98	29.01
19	F	33.86	49.50	35.18	33.91	39.67	9.68	46.02	35.15	32.21
21	G	37.06	52.65	38.35	37.08	42.80	9.68	49.23	38.28	35.36
23	Н	40.01	55.85	41.53	40.26	46.02	9.68	52.37	41.50	38.56
25	J	43.41	59.00	44.70	43.43	50.80	9.68	55.58	44.68	41.71


[•] D shaped panel cut-out dimensions


TVSIY (D38999/25) - hermetic, metal

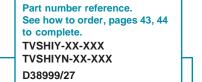
solder mounting receptacle

Part number reference.
See how to order, pages 43, 44 to complete.
TVSIY-XX-XXX
TVSIYN-XX-XXX

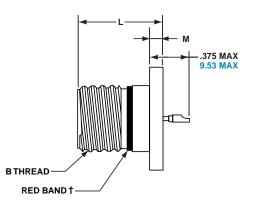
D38999/25

† Red band indicates fully mated

Inches


	MS	B Thread			GG	KK
	Shell	Class 2A	L	M	Dia.	Dia.
Shell	Size	0.1P-0.3L-TS	+.011	+.006	+.011	+.001
Size	Code	(Plated)	005	005	010	005
9	Α	.6250	.806	.125	.750	.672
11	В	.7500	.806	.125	.844	.781
13	С	.8750	.806	.125	.969	.906
15	D	1.0000	.806	.125	1.094	1.031
17	Е	1.1875	.806	.125	1.218	1.156
19	F	1.2500	.806	.125	1.312	1.250
21	G	1.3750	.806	.125	1.438	1.375
23	Н	1.5000	.838	.156	1.563	1.500
25	J	1.6250	.838	.156	1.688	1.625

Millimeters


				GG	KK
	MS	L	M	Dia.	Dia.
Shell	Shell Size	+.28	+.15	+.28	+.03
Size	Code	00	13	25	13
9	А	20.47	3.18	19.05	17.07
11	В	20.47	3.18	21.44	19.84
13	С	20.47	3.18	24.61	23.01
15	D	20.47	3.18	27.79	26.19
17	Е	20.47	3.18	30.94	29.36
19	F	20.47	3.18	33.32	31.75
21	G	20.47	3.18	36.53	34.93
23	Н	21.29	3.96	39.70	38.10
25	J	21.29	3.96	42.88	41.28

TVSHIY (D38999/27) - hermetic, metal

weld mounting receptacle

† Red band indicates fully mated

Inches

	MS	B Thread			GG
	Shell	Class 2A	L	М	Dia.
Shell	Size	0.1P-0.3L-TS	+.011	+.006	+.010
Size	Code	(Plated)	000	005	000
9	Α	.6250	.806	.125	.973
11	В	.7500	.806	.125	1.095
13	С	.8750	.806	.125	1.221
15	D	1.0000	.806	.125	1.347
17	Е	1.1875	.806	.125	1.434
19	F	1.2500	.806	.125	1.579
21	G	1.3750	.806	.125	1.721
23	Ι	1.5000	.838	.156	1.886
25	J	1.6250	.838	.156	1.973

Millimeters

				GG
	MS	L	M	Dia.
Shell	Shell Size	+.28	+.15	+.25
Size	Code	00	13	00
9	А	20.47	3.18	24.71
11	В	20.47	3.18	27.81
13	С	20.47	3.18	31.01
15	D	20.47	3.18	34.21
17	Е	20.47	3.18	36.42
19	F	20.47	3.18	40.11
21	G	20.47	3.18	43.71
23	Н	21.29	3.96	47.90
25	J	21.29	3.96	50.11

TV Breakaway Fail Safe Connectors

quick-disconnect with an axial pull of lanyard

Amphenol Tri-Start Breakaway Fail Safe Connectors provide unequalled performance in environments requiring instant disengagement.

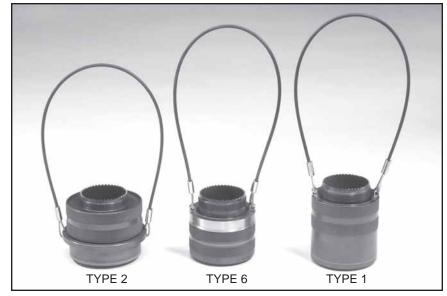
Designed to provide quick disconnect of a connector plug and receptacle with an axial pull on the lanyard, the "Breakaway" Fail Safe connector family offers a wide range of electrical and mechanical features:

- Instant decoupling and damage free separation
- Completely intermateable with standard receptacles (D38999/20 and /24)
- Inventory support commonality through the use of standard insert arrangements and contacts

Breakaway un-mating is initiated by applying a pull force to the lanyard which causes the operating sleeve on the plug to move away from the

receptacle. Coupling segments on the plug then move away from the mating receptacle while expanding, thus releasing the receptacle. After completion of the un-mating sequence, spring compression returns the sleeve and segments to their original positions. Un-mating of the plug may also be accomplished by normal rotation of the coupling ring without affecting the breakaway capability.

- Solid metal-to-metal coupling
- EMI grounding fingers
- Conductive finishes


Amphenol Breakaway Fail Safe connectors are qualified to MIL-DTL-38999/29, /30 and /31 (for MIL-STD-1760 Stores Management applications). In fact, Amphenol offers more qualified Breakaway shell size and insert combinations than any other QPL supplier.

In addition to standard Breakaway connectors, Amphenol also manufactures custom breakaway connectors including those with:

- Highly durable non-metallic operating sleeves in a variety of lengths and diameters
- · Increased pull-force capability
- · Low-profile designs
- Custom lanyard lengths and backshells
- Low force separation capabilities
- Low insertion/separation force contacts
- Non-cadmium finishes

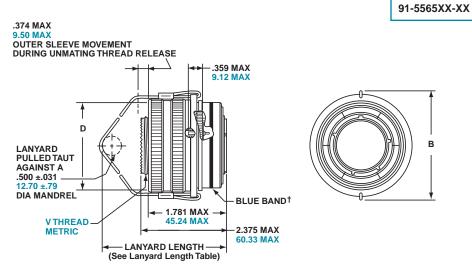
Whether you need a standard Breakaway, one of our custom Breakaways or, a unique Breakaway design, please contact your local Amphenol representative.

Contact Amphenol Aerospace for more information on breakaway, quick-disconnect connectors. Other Amphenol cylindrical families (MIL-DTL-38999 Series I & II, MIL-C-26482, MIL-C-83723) also offer breakaway quick-disconnect connectors.

Amphenol offers a variety of lanyard plug styles including MIL-STD-1760 types 1, 2 and 6 for Stores Management applications.

Breakaway with Coax Contacts

Special configuration Fail Safe used on space telescope application. Lanyard is replaced by a swivel ring for remote disconnect and "wing arms" have been added for manual actuation accessibility by gloved astronauts.


27

D38999/29 & D38999/30 TV Breakaway Fail Safe – crimp, metal

lanyard release plug

Part number reference. See how to order, pages 29, 30 to complete. D38999/29 (Pins Only) D38999/30 (Sockets Only) 88-5565XX-XX

† Blue band indicates rear release contact retention system

Inches

	MS		D
Shell	Shell Size	В	Max
Size	Code	Max	Accessory Dia.
11	В	1.846	1.109
13	С	1.972	1.250
15	D	2.079	1.375
17	E	2.205	1.500
19	F	2.301	1.625
21	G	2.472	1.750
23	Н	2.594	1.875
25	J	2.705	2.000

Millimeters

	MS		D Max	V
Shell	Shell Size	В	Accessory	Thread
Size	Code	Max	Dia.	Metric
11	В	46.89	28.17	M15X1.0-6g
13	С	50.09	31.75	M18X1.0-6g
15	D	52.81	34.93	M22X1.0-6g
17	E	56.01	38.10	M25X1.0-6g
19	F	58.45	41.28	M28X1.0-6g
21	G	62.79	44.45	M31X1.0-6g
23	Н	65.89	47.63	M34X1.0-6g
25	J	68.71	50.08	M37X1.0-6g

D38999/29 & D38999/30 TV Breakaway Fail Safe

lanyard release plug insert availability, how to order

INSERT AVAILABILITY

						Co	ntact S	ize	
Insert Arrangement	Service Rating	Total Contacts	22D	20	16	12	12 Coax	8 Coax*	8 Twinax
11-2	I	2			2				
11-35	М	13	13						
11-98	I	6		6					
13-4	I	4			4				
13-8	I	8		8					
13-35	М	22	22						
13-98	I	10		10					
15-5	П	5			5				
15-15	I	15		14	1				
15-18	I	18		18					
15-19	I	19		19					
15-35	М	37	37						
15-97	I	12		8	4				
17-6	I	6				6			
17-8	П	8			8				
17-26	I	26		26					
17-35	М	55	55						
17-99	I	23		21	2				
19-11	II	11			11				
19-32	I	32		32					
19-35	М	66	66						
21-11	I	11				11			
21-16	II	16			16				
21-35	М	79	79						
21-39	I	39		37	2				
21-41	I	41		41					
23-21	II	21			21				
23-35	М	100	100						
23-53	I	53		53					
23-54	М	53	40		9	4			
23-55	I	55		55					
25-4	I	56		48	8				
25-19	I	19				19			
25-20	N	30		10	13		4		3
25-24	I	24			12	12			
25-29	I	29			29				
25-35	М	128	128						
25-43	I	43		23	20				
25-46	I	46		40	4			2*	
25-61	I	61		61					

Tri-Start	Tri-Start Lanyard Separation Forces						
Shell	Straight Pull	15 Degree Pull					
Size	(lbs. max.)	(lbs. max.)					
11							
13	45	55					
15							
17							
19							
21	90	100					
23							
25							

* For RG 180/U and RG 195/U cables only. (Check Amphenol, Sidney, NY for other cable applications.

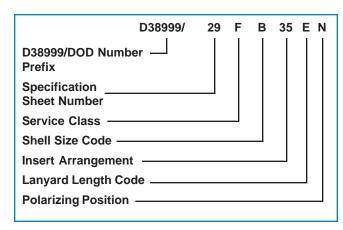
For availability of other insert arrangements consult Amphenol, Sidney, NY.
For accessories for lanyard release plugs see page 33.

29

TABLE I INSERT ARRANGEMENT CODE

Basic	MIL-DTL-38999				
Part	Insert				
Number	Arrangement				
88/91-556508	11-2				
06	11-35				
07	11-98				
10	13-4				
11	13-8				
13	13-98				
14	13-35				
18	15-5				
23	15-15				
22	15-18				
19	15-19				
20	15-35				
27	17-6				
28	17-8				
29	17-26				
30	17-35				
31	17-99				
37	19-11				
39	19-32				
40	19-35				
47	21-11				
48	21-16				
49	21-35				
50	21-41				
51	21-39				
57	23-21				
58	23-35				
59	23-53				
61	23-54				
60	23-55				
66	25-19				
74	25-20				
67	25-29				
68	25-35				
69	25-43				
70	25-61				
71	25-4				
72	25-24				

TABLE II LANYARD LENGTH CODES


Lanyard Length (in.) ± .236	Lanyard Length (mm) ± 6.0	Lanyard Length Code For Part Number
4.016	102	А
4.528	115	В
5.000	127	С
5.512	140	D
6.024	153	Е
6.535	166	F
7.008	178	G
7.520	191	Н
7.992	203	I
8.503	216	J
9.016	229	K
9.528	242	L
10.000	254	М
10.512	267	N
11.024	280	Р
11.535	293	R
12.008	305	S
12.520	318	Т
13.031	331	U
14.016	356	V
15.000	381	W
16.024	407	X
17.008	432	Y
18.031	458	Z

D38999/29 & D38999/30 TV Breakaway Fail Safe

lanyard release plug - how to order, cont.

HOW TO ORDER - BY MILITARY PART NUMBER FAIL SAFE D38999/29 & D38999/30

Ordering procedure for example part number D38999/29FB35EN is shown below:

DOD Number Prefix

D38999/ designates MIL-DTL-38999, Series III Tri-Start Connectors

Specification Sheet Number

29 designates Lanyard Release Plug with pin contacts 30 designates Lanyard Release Plug with socket contacts

Service Class

- F designates electroless nickel plated aluminum, optimum EMI shielding effectiveness –65dB @ 10 GHz specification min., 48 hour salt spray, 200°C
- W designates corrosion resistant olive drab cadmium plate aluminum, 500 hour extended salt spray, EMI –50dB @ 10 GHz specification min., 175°C

Shell Size Code

MIL-DTL-38999, Sizes 11 thru 25

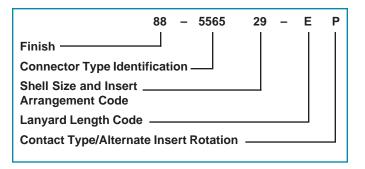
ĺ	Α*	В	С	D	Е	F	G	Н	J	MIL Shell Size
I	9*	11	13	15	17	19	21	23	25	Amphenol Shell Size

^{*} Shell size 9 not available

Insert Arrangement

MIL-DTL-38999, see insert availability chart on page 29.

Lanyard Length Code


See Table II (page 29) for lanyard length code number.

Polarizing Position

For alternate positions of connector (to prevent crossmating) see alternate positioning on page 8. (N indicates normal)

HOW TO ORDER - BY PROPRIETARY PART NUMBER FAIL SAFE 88-5565() & 91-5565()

Ordering procedure for example part number 88-556529-EP is shown below:

Finish

- 88 designates corrosion resistant olive drab cadmium plate over nickel, 500 hour extended salt spray, EMI –50dB @ 10 GHz specification min., 175°C
- 91 designates electroless nickel plated aluminum, optimum EMI shielding effectiveness –65dB @ 10 GHz specification min., 48 hour salt spray, 200°C

These are standard finishes. Consult Amphenol Aerospace, Sidney, NY for variations.

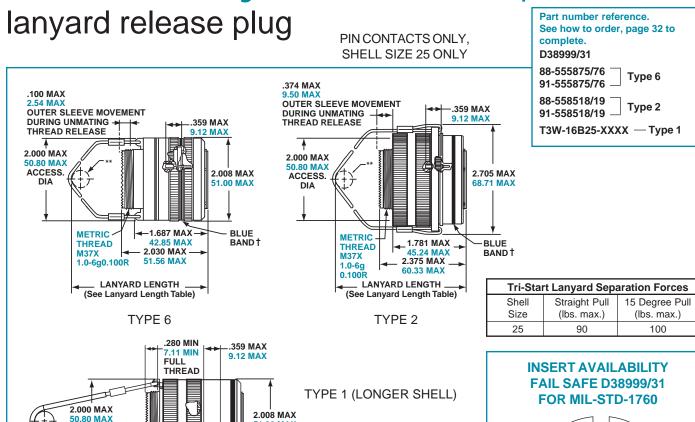
Connector Type Identification

88/91-5565 designates MIL-DTL-38999, Series III Tri-Start Lanyard Release Plug

Shell Size and Insert Arrangement Code

Shell sizes are MIL-DTL-38999, Series III from 11 thru 25. The basic part number selected specifies the insert arrangement. See Table I (page 29) for coded part number that correlates to insert arrangement.

Lanyard Length Code


See Table II (page 29) for lanyard length code number.

Contact Type/Alternate Rotations

P designates pin, S designates socket for normal positioning of contacts. When an alternate position of the connector is required to prevent cross-mating, a different letter (other than P or S) is used. See alternate positioning on page 8, then convert to Amphenol proprietary coding by the following chart.

Pin (Contacts	Socket Contacts			
MS Letter	Amphenol Letter	MS Letter	Amphenol Letter		
PN	P (normal)	SN	S (normal)		
PA	G	SA	Н		
PB	I	SB	J		
PC	K	SC	L		
PD	M	SD	N		
PE	R	SE	Т		

D38999/31 for MIL-STD-1760 TV Breakaway Fail Safe – crimp, metal

† Blue band indicates rear release

contact retention system
** Lanyard pulled taut against a

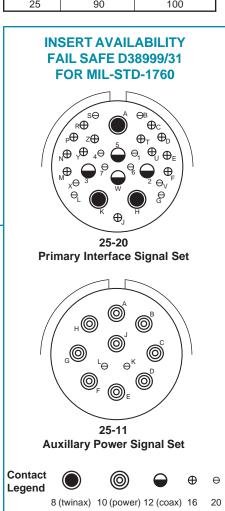
.500 ± .13 dia. mandrel

All dimensions for reference only

Pin Contact Data for MIL-STD-1760

M37X ← 2.499 MAX → 1.0-6g0.100R 63.47 MAX

LANYARD LENGTH

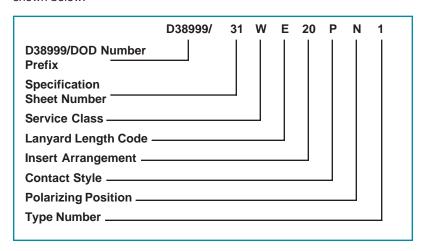

(See Lanyard Length Table)

ACCESS.

Insert	Insert Service Total Contact					
Arrangement	Rating	Contacts	20	16	12 (coax)	8 (twinax)
25-20	N	30	10	13	4	3

	Contacts for 25-20 Pattern							
0111	A	Nivershaa	0:	0	044	Standard Contact		
Shell Size	Arrangement Number	Number of Contacts	Size Contacts	Service Rating	Contact Location	Pin	Socket	
		3	8	Twinax	A, H, K	M39029/90-529	M39029/91-530	
		4	12	Coax	2, 3	M39029/28-211	M39029/75-416	
					W, 5	M39029/102-558	M39029/103-559	
25	-20	13	16	N	C, D, E, F,	M39029/58-364	M39029/56-352	
					J, M, N, P R, T, U, Y, Z			
		10	20	N	B, G, L, S V, X, 1, 4	M39029/58-363	M39029/56-351	
					6, 7			

Insert	Service	Total	Conta	act Size
Arrangement	Rating	Contacts	20	10 (power)
25-11	N	11	2	9



D38999/31 for MIL-STD-1760 TV Breakaway Fail Safe for Stores Management applications

lanyard release plug – how to order

HOW TO ORDER - BY MILITARY PART NUMBER FAIL SAFE D38999/31

Ordering procedure for example part number D38999/31WE20PN1 is shown below:

DOD Number Prefix

D38999/ designates MIL-DTL-38999, Series III Tri-Start Connectors

Specification Sheet Number

31 designates Lanyard Release Plug for MIL-STD-1760 with pin contacts

Service Class

- F designates electroless nickel plated aluminum, optimum EMI shielding effectiveness –65dB @ 10 GHz specification min., 48 hour salt spray, 200°C
- W designates corrosion resistant olive drab cadmium plate aluminum, 500 hour extended salt spray, EMI –50dB @ 10 GHz specification min., 175°C

Lanyard Length Code

See Table III for lanyard length code number.

Insert Arrangement

Only 11 or 20 are available contact arrangement numbers. See page 31.

Contact Style

Only P and A are valid contact style options. P replaces the "no designation" option in the PIN on revision C and eariler revisions of the Mil-Spec. A designates supplied less contacts.

Polarizing Positions

N is required for normal position.

Type Number

Type 1, 2 or 6. See drawings on page 31.

For accessories for lanyard release plugs see page 33.

TABLE III LANYARD LENGTH CODES

Lanyard Length (in.) ± .236	Lanyard Length (mm.) ± 6.0	Lanyard Length Code For Part Number
6.024	153.0	E
6.535	166.0	F
7.008	178.0	G
7.520	191.0	Н
7.992	203.0	I
8.504	216.0	J
9.016	229.0	K
9.528	242.0	L

TV Breakaway Fail Safe - accessories

backshells, dummy contacts, wire combs

Amphenol offers a full range of accessories that are designed to enhance the performance of Amphenol Breakaway connectors.

Low Profile Backshells in shell size 25 with the following features:

- Olive drab cadmium finish
- 90 degree termination
- Low profile design with three heights ranging from 1.010 to 1.660
- Rear access covers to help ease harness assembly and repairability
- Amphenol part numbers: 10-640000-XXX and 10-559672-XXX

Backshells are offered for use with Breakaway Fail Safe Connectors in three heights.

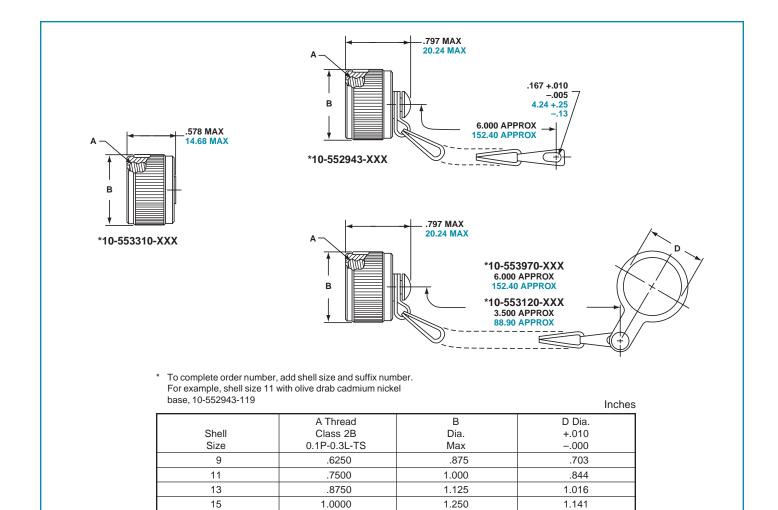
Dummy Contacts

- Available in size 12 and size 8
- Provide a cost effective alternative for sealing unused contact cavities
- Size 8 part number: T3-4008-59PSize 12 part number: T3-4012-59P

Wire Combs

- Available for the 25-20 insert pattern to help to stabilize and prevent contact side loading
- Amphenol part number: 21-33626-XXX

For information on how to order these accessory products for Breakaway Fail Safe connectors consult Amphenol Aerospace.



Accessory products for Breakaway Connectors:

Dummy Contacts and Wire Combs

Tri-Start - accessories

receptacle protection cap

1.1875

1.2500

1.3750

1.5000

1.6250

Finish	10-No Suffix
Olive drab, cadmium, nickel base	-XX9
Electroless nickel	-XXG

17

19

21

23

25

Consult Amphenol Aerospace for availability of stainless steel protection caps.

All dimensions for reference only. For MS protection caps, see page 40.

			Millimeters
	MS	В	D Dia.
Shell	Shell Size	Dia.	+.25
Size	Code	Max	00
9	Α	22.23	17.86
11	В	25.40	21.44
13	С	28.58	25.81
15	D	31.75	28.98
17	Е	36.53	32.16
19	F	38.10	35.33
21	G	41.28	38.51
23	Н	44.45	41.68
25	J	47.63	44.86

1.266

1.391

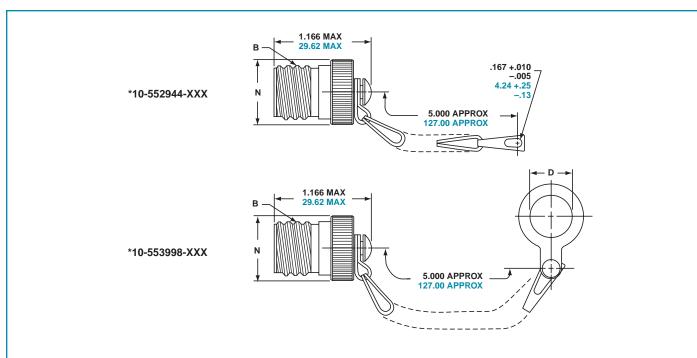
1.516

1.641

1.766

1.438

1.500


1.625

1.750

1.875

Tri-Start - accessories

plug protection cap

* To complete order number, add shell size and suffix number. For example, shell size 11 with olive drab cadmium nickel base, 10-552944-119

Inches

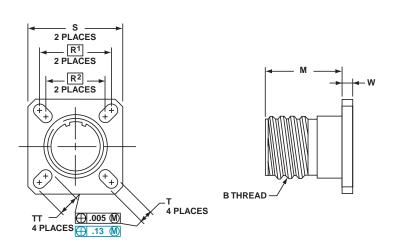
	A Thread	D Dia.	N
Shell	Class 2B	+.010	Dia.
Size	0.1P-0.3L-TS	000	Max
9	.6250	.516	.895
11	.7500	.641	1.000
13	.8750	.766	1.171
15	1.0000	.891	1.299
17	1.1875	1.016	1.436
19	1.2500	1.141	1.543
21	1.3750	1.266	1.670
23	1.5000	1.343	1.787
25	1.6250	1.516	1.914

Millimeters

Finish	10-No Suffix
Olive drab, cadmium, nickel base	-XX9
Electroless nickel	-XXG

Consult Amphenol Aerospace for availability of stainless steel protection caps.

All dimensions for reference only. For MS protection caps, see page 40.


			Millimeters
Shell Size	MS Shell Size Code	D Dia. +.25 00	N Dia. Max
9	А	13.11	22.73
11	В	16.28	25.40
13	С	19.46	29.74
15	D	22.63	32.99
17	Е	25.81	36.47
19	F	28.98	39.19
21	G	32.16	42.42
23	Н	34.11	45.39
25	J	38.51	48.62

Tri-Start – accessories

dummy receptacle

Part number reference. See note below to complete.

* 10-553974-XXX

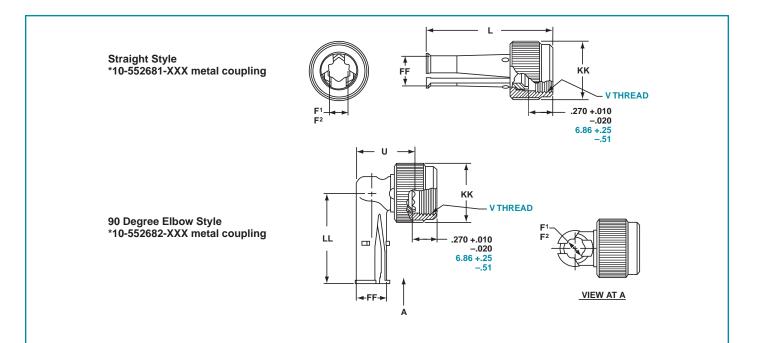
* To complete order number, add shell size and suffix number. For example, shell size 11 with olive drab cadmium nickel base, 10-553974-119

Inches

Finish	10-No Suffix
Olive drab, cadmium, nickel base	-XX9
Electroless nickel	-XXG

Shell Size	MS Shell Size Coded	B Thread Class 2A 0.1P-0.3L-TS (Plated)	M +.020 000	R ¹	R ²	S ±.010	T +.008 006	W ±.010	TT +.008 006
9	А	.6250	.822	.719	.594	.938	.128	.098	.216
11	В	.7500	.822	.812	.719	1.031	.128	.098	.194
13	С	.8750	.822	.906	.812	1.125	.128	.098	.194
15	D	1.0000	.822	.969	.906	1.219	.128	.098	.173
17	E	1.1875	.822	1.062	.969	1.312	.128	.098	.194
19	F	1.2500	.822	1.156	1.062	1.438	.128	.098	.194
21	G	1.3750	.791	1.250	1.156	1.562	.128	.125	.194
23	Н	1.5000	.791	1.375	1.250	1.688	.154	.125	.242
25	J	1.6250	.791	1.500	1.375	1.812	.154	.125	.242

Millimeters


	MS	M				Т		TT
Shell	Shell Size	+.51	R ¹	R ²	S	+.20	W	+.20
Size	Code	00			±.25	15	±.25	15
9	Α	20.88	18.26	15.09	23.83	3.25	2.49	5.49
11	В	20.88	20.62	18.26	26.19	3.25	2.49	4.93
13	С	20.88	23.01	20.62	28.58	3.25	2.49	4.93
15	D	20.88	24.61	23.01	30.96	3.25	2.49	4.93
17	E	20.88	26.97	24.61	33.32	3.25	2.49	4.93
19	F	20.88	29.36	26.97	36.53	3.25	2.49	4.93
21	G	20.09	31.75	29.36	39.67	3.25	3.18	4.93
23	Н	20.09	34.93	31.75	42.88	3.91	3.18	6.15
25	J	20.09	38.10	34.93	46.02	3.91	3.18	6.15

All dimensions for reference only

Designates true position dimensioning

Tri-Start – accessories

cable clamps

Finish	10-No Suffix
Olive drab, cadmium, nickel base	-XX9
Flectroless nickel	-XXG

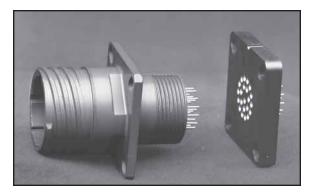
		F¹	F ²					
	MS	Min.	Max.			FF	KK	
Shell	Shell Size	Dia.	Dia.	L	U	Dia.	Dia.	LL
Size	Code	Cable	Cable	Max.	Max.	Max.	Max.	Max.
9	Α	.094	.203	1.431	.656	.347	.629	1.015
11	В	.141	.250	1.431	.688	.394	.756	1.062
13	С	.172	.323	1.431	.750	.467	.883	1.125
15	D	.203	.422	1.431	.859	.566	1.011	1.328
17	E	.234	.500	1.431	.937	.644	1.138	1.392
19	F	.265	.562	1.431	1.000	.706	1.265	1.453
21	G	.297	.625	1.492	1.062	.769	1.393	1.609
23	Н	.328	.703	1.492	1.141	.847	1.488	1.656
25	J	.359	.765	1.492	1.203	.909	1.616	1.719

Inches

To complete order number, see suffix chart below. Examples:
 Clamp with metal coupling nut for shell size 11 with olive drab cadmium nickel base, 10-552681-119.

								IVII	IIIIIIeters
	MS	F¹	F ²			V	FF	KK	
Shell	Shell Size	Min. Dia.	Max. Dia.	L	U	Thread	Dia.	Dia.	LL
Size	Code	Cable	Cable	Max.	Max.	Metric	Max.	Max.	Max.
9	Α	2.39	5.16	36.35	16.66	M12X1-6H	8.81	15.98	25.78
11	В	3.58	6.35	36.35	17.48	M15X1-6H	10.01	19.20	26.97
13	С	4.37	8.20	36.35	19.05	M18X1-6H	11.86	22.43	28.58
15	D	5.16	10.72	36.35	21.82	M22X1-6H	14.38	25.68	33.73
17	Е	5.94	12.70	36.35	23.80	M25X1-6H	16.36	28.91	35.36
19	F	6.73	14.27	36.35	25.40	M28X1-6H	17.93	32.13	36.91
21	G	7.54	15.88	37.90	26.97	M31X1-6H	19.53	35.38	40.87
23	Н	8.83	17.86	37.90	28.98	M34X1-6H	21.51	37.80	42.06
25	J	9.12	19.43	37.90	30.56	M37X1-6H	23.09	41.05	43.66

37


All dimensions for reference only.

Tri-Start - accessories

universal "header assembly" for flex print or PC board mounting

Mounts to all MIL-DTL-38999 and MIL-C-26482 Connectors

The use of connectors with printed circuit termination is rapidly gaining popularity due to the rise of high volume, vapor phase or wave solder manufacturing processes. Termination of this style of connector to flex print or a printed circuit board represents a major cost in the manufacturing process for users. When adding flex or printed circuit board assemblies to an expensive filter or filter/transient protection connector, the total cost of a failed

solder joint, a bent pin, or an unanticipated electrical failure becomes prohibitive. The universal header assembly from Amphenol will provide for easy separation of the connector from the board on these occasions.

Header Assemblies Provide Cost Savings

Incorporation of the header assembly provides the user with time and cost saving potentials. These header assemblies can be vapor phase or wave soldered to flex or printed circuit boards prior to the receipt of the EMI/EMP connector. Headers can be installed to standard connectors, allowing for electrical testing that would adversely affect the sensitive diodes, MOV's or capacitors in the EMI/EMP connectors. Expensive connector assemblies can be easily removed from and reattached to the header assembly as the manufacturing process dictates.

Mounting Applications

Shell modifications are recommended, but are not necessary. The header assembly can be attached to connectors with standard flange placement or directly to the circuit board. The ideal application would involve either a single flange moved all the way to the rear of the connector or a double flange. Cinch nuts can be installed in either flange to allow easier mounting to the panel or the header assembly. The forward flange would mount the connector to the panel; the rear flange would be used to mount the header assembly. Various types of captivated or loose attaching screws can be utilized for unique applications.

Amphenol universal headers are slotted to allow mounting to all series of MIL-DTL-38999 or MIL-C-26482 connectors without special alterations. They are of similar dimension as the flange of the mounting connector and would be approximately .185 inches (4.70 mm) thick.

Incorporates a Shorter Pin/Socket Contact

The heart of the header assembly is a short pin/socket contact. The tail of the contact would accommodate standard through-hole diameters and thickness of the flex or printed circuit board materials. The socket is imbedded in the molded material, making electrical engagement with the printed circuit tail of the connector.

Headers provide easy separation of the connector from the PC board.

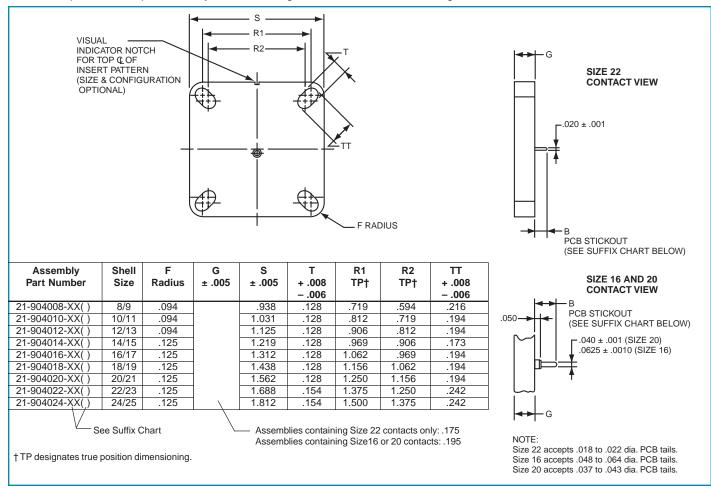
Cylindrical Configuration

- 3 PCB stickout dimensions are available.
- Size 22 contacts use .175 thick headers
- Size 16 to 20 contacts use .195 thick headers
- Consult Amphenol, Sidney NY for additional configurations.
- Headers for cylindrical connectors accommodate up to 128 pins. Consult Amphenol catalogs for mating connector contact layouts (12-092 and 12-090 for MIL-DTL-38999 and 12-070 for MIL-C-26482)

Mounting to Rectangular ARINC Connectors

- Headers for ARINC connector arrangements accommodate up to 150 pins
- Consult Amphenol, Sidney, NY for ARINC configurations and detailed dimensions.

Materials


- Body is molded from Torlon or PPS (Polyphenylene Sulfide)
- Electrical engagement areas of the header contact are plated with .00003 inches minimum of gold over .00005 inches minimum of nickel.

See drawing of standard header on next page.

Tri-Start - accessories

universal "header assembly" for flex print or PC board mounting, cont.

The drawing below shows the standard universal adapter for use with MIL-DTL-38999 and MIL-C-26482 connectors. Consult Amphenol Aerospace, Sidney NY for drawings of headers for ARINC configurations.

HOW TO ORDER INFORMATION

For Universal Adapter Used with MIL-DTL-38999 Connectors Use coded number as follows:

21-9040 XX - XX X Designates Amphenol Interface Adapter Shell size designation for MIL-DTL-38999 Series III. See Suffix chart. Arrangement number - See MIL-STD-1560 or MIL-STD-1669. See insert availability charts on pages 6 and 7. Contact PCB Stickout designation -See Suffix chart.

Universal adapters are also used with MIL-DTL-38999 Series I and II and with MIL-C-26482, Series 1 and 2. For how to order information on adapters to be used with ARINC consult Amphenol, Sidney NY.

ASSEMBLY NUMBER SUFFIX CHART

Shell Size Designation*	Arrangement Number	Contact PCB Stickout**		
-	Suffix***	Suffix	B ± .015 Stickout	
08		1	.120	
10	Insert	2	.185	
12	Arrangement	3	.270	
14	Suffix			
16	from			
18	MIL-STD-1560			
20	or MIL-STD-1669			
22				
24				

^{*}Shell size designation for MIL-DTL-38999 Series I, II, III and IV and MIL-C-26482 Series 1 and 2.

Examples: Shell size 9 use 08. Shell size 25 use 24.

connectors,	Size 16 and 20 contacts available only in .185 and .270 leng
39	*** Insert arrangement 14-97 and 15-97 are not available at this Consult Amphenol, Sidney NY for information.

^{**} Size 22 contacts available in all 3 stickout lengths.

Tri-Start - accessories

contacts, sealing plugs, protection caps

STANDARD 500 CYCLE CONTACTS FOR TV AND CTV, P & S

Contact	TV/CT\	/ Pins	TV/CTV Sockets	
Size	Military No.	Supersedes	Military No.	Supersedes
8 (Coax)*	M39029/60-367	MS27536	M39029/59-366	MS27535
8 (Power)	N/A	N/A	N/A	N/A
8 (Twinax)	M39029/90-529**	N/A	M39029/91-530	N/A
10 (Power)	M39029/58-528	N/A	M39029/56-527	N/A
12	M39029/58-365	MS27493-12	M39029/56-353	MS27490-12
16	M39029/58-364	MS27493-16	M39029/56-352	MS27490-16
20	M39029/58-363	MS27493-20	M39029/56-351	MS27490-20
22D	M39029/58-360	MS27493-22D	M39029/56-348	MS27490-22D
4	N/A	N/A	N/A	N/A
0	N/A	N/A	N/A	N/A

Above part numbers include standard 500 cycle finish designation - gold plating over suitable underplate in accordance with MIL-C-39029. For other finish variations, consult Sidney, NY. *For use with RG180B/U and RG195A/U cable. For other size 8 coax or optional sizes 12 and 16 coax contacts available for use in Tri-Start connectors, see catalog 12-130 or consult Amphenol, Sidney, NY

1500 CYCLE CONTACTS FOR CTV, CLASSES H & J

Contact		CTV Pins		CTV Sockets		
Size	Proprietary No	Military No	Supersedes	Proprietary No	Military No	Supersedes
12	10-597072-2X	M39029/107-623	_	10-597073-2X	M39029/106-617	-
16	10-597068-2X	M39029/107-622	-	10-597069-2X	M39029/106-616	-
20	10-597064-2X	M39029/107-621	_	10-597065-2X	M39029/106-615	-
22D	10-597058-3X	M39029/107-620	_	10-597061-2X	M39029/106-614	_

PLASTIC PROTECTION CAPS

Shell Size	Plug	Rececptacle
9	10-70506-14	10-70500-10
11	10-70506-16	10-70500-12
13	10-70500-18	10-70500-14
15	10-70500-20	10-70500-16
17	10-70500-22	10-70500-19
19	10-70500-24	10-70500-20
21	10-70524-1	10-70500-22
23	10-70506-28	10-70500-24
25	10-70500-28	10-70524-1

SEALING PLUGS

Contact Size	Proprietary No.	Military No.
8 (Coax)	10-482099-8	N/A
8 (Twinax)	T3-4008-59P	N/A
8 (Power)	10-405996-81	MS27488-8-1
10 (Power)	10-576225	N/A
12	10-405996-121	MS27488-12-1
16	10-405996-161	MS27488-16-1
20	10-405996-201	MS27488-20-1
22D	10-405996-221	MS27488-22-1
4	10-405996-41	MS27488-4-1
0	10-405996-01	MS27488-0-1

MS METAL PROTECTION CAPS

Shell Size	MS Shell Size Code	MS Plug Protection Cap	MS Receptacle Protection Cap
9	Α	D38999/32W9X*	D38999/33W9X*
11	В	D38999/32W11X*	D38999/33W11X*
13	С	D38999/32W13X*	D38999/33W13X*
15	D	D38999/32W15X*	D38999/33W15X*
17	E	D38999/32W17X*	D38999/33W17X*
19	F	D38999/32W19X*	D38999/33W19X*
21	G	D38999/32W21X*	D38999/33W21X*
23	Н	D38999/32W23X*	D38999/33W23X*
25	J	D38999/32W25X*	D38999/33W25X*

 $^{^{\}star}\,$ To complete order number, replace X with applicable letter as follows:

MS metal protection caps are supplied with service class W which designates corrosion resistant olive drab cadmium plate aluminum.

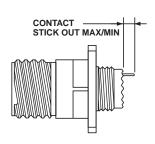
Consult Amphenol, Sidney, NY for more detailed information on ordering MS Metal protection caps.

40

^{**} For use with M17/M176-00002 cable.

[†] Optional design - see slash sheet MS39029.

For other contact options available for use in Tri-Start connectors, (wire wrap, thermocouple, fiber optic) consult Amphenol. Wire wrap data given on next page.


R - designates eyelet type

N - designates washer type

contacts - printed circuit board, wire wrap

SOCKETS

			Contact Stickout Max/Min						
			(Se	e Illustration					
PCB						3999/24			
Socket		Tail	D38999/20	D38999/26		V07			
Contacts	Size	Dia	TVP00	TV06	Metal				
10-497623-15	22D	.019	.291	.316	.285	.242			
40 407000 05	000	040	.226	.251	.222	.182			
10-497623-25	22D	.019	.868 .803	.893 .828	.862 .802	.819 .759			
10-497623-35	22D	.019	.803	.828	.802	.759			
10-49/623-35	220	.019	.283	.308	.282	.239			
10-497623-45	22D	.019	.208	.233	.202	.159			
10-49/023-43	220	.019	.143	.168	.202	.099			
10-497623-75	22D	.019	.146	.171	.140	.097			
437023373	220	.013	.081	.106	.080	.037			
10-497623-105	22D	.019	.028	.053	.022	.021			
			NS	.000	NS	NS			
10-497623-145	22D	.019	.609	.634	.603	.560			
			.539	.564	.538	.495			
10-497623-155	22D	.019	.423	.448	.417	.374			
			.358	.383	.357	.314			
10-497643-15	20	.019	.348	.373	.342	.299			
			.294	.319	.293	.250			
10-497643-25	20	.019	.213	.238	.207	.164			
			.159	.184	.158	.115			
10-497643-35	20	.019	.555	.580	.549	.506			
			.501	.526	.500	.457			
10-497643-45	20	.019	.138	.163	.132	.089			
			.084	.109	.083	.040			
10-497650-15	16	.040	.255	.280	.249	.206			
			.201	.226	.200	.157			
Wire Wrap		Tail							
Contacts	225	Square		400	4.40	100			
10-497577-15	22D	.025	.155 .090	.180 .115	.149 .089	.106 .046			
10-497577-25	22D	025		.027	.089 NS	.046 NS			
10-49/5/7-25	220	.025	.002 NS	.027 NS	NS NS	NS NS			
10-897577-35	22D	.025	.201	.226	.195	.152			
10-08/3/7-33	220	.023	.136	.161	.135	.092			
10-497577-55	22D	.025	.566	.591	.560	.517			
10 49/0/1/00	220	.020	.501	.526	.500	.457			
10-497621-15	20	.025	.151	.176	.145	.102			
10 40/021-10	20	.020	.101	.126	.100	.057			
10-497621-25	20	.025	.605	.630	.599	.556			
	_0		.555	.580	.554	.511			
10-497621-35	20	.025	.308	.333	.302	.259			
	-		.258	.283	.257	.214			

All dimensions for reference only. Consult Sidney, NY for specific contact contour stickout data. NS designates No Stickout.

See also catalog 12-170, Amphenol Cylindrical Connectors for PCB Applications. This catalog provides the most commonly used insert pattern pin-out drawings which have been tooled for the purpose of attaching cylindrical connectors to printed circuit

PINS

			Cor	ntact Stickou	t Max/l	Min
			(Se	e Illustration	below))
PCB			,		D38	3999/24
Pin		Tail	D38999/20	D38999/26	Т	V07
Contacts	Size	Dia	TVP00	TV06	Metal	
10-407552-15	22M	.019	.335	.360	.329	.286
			.280	.305	.279	.236
10-407552-55	22M	.019	.224	.249	.218	.175
.0.002.00			.169	.194	.168	.125
10-407552-85	22M	.019	.060	.085	.054	.011
.0.002.00			.010	.035	.009	NS
10-407552-95	22M	.019	NS	NS	NS	NS
10 101002 00		.010	110	''	''	110
10-407552-115	22M	.019	.002	.023	NS	NS
10 107 002 110		.010	NS	NS	''	110
10-497640-15	20	.019	.348	.373	.342	.299
10 107010 10		.010	.298	.323	.297	.254
10-497640-25	20	.019	.213	.238	.207	.164
10-401040-20	20	.019	.163	.188	.162	.104
10-497640-45	20	.019	NS	NS	NS	NS
10-497040-45	20	.019	INS	INS	INS	INO
10-497640-65	20	.019	.138	.163	.132	.089
10-497040-05	20	.019	.088	.113	.087	.069
10 107500 15	20	005				
10-497596-15	20	.025	.058	.083	.052	.009 NS
40 407500 05	00	005	.012	.037	.011	_
10-497596-25	20	.025	.148	.173	.142	.099
40 407500 05		005	.102	.127	.101	.058
10-497596-35	20	.025	.229	.254	.223	.180
			.183	.208	.182	.139
10-497596-55	20	.025	.346	.371	.340	.297
			.300	.325	.299	.256
10-497695-15	16	.040	.255	.280	.249	.206
			.205	.230	.204	.161
10-497630-25	16	.062	.348	.373	.342	.299
			.298	.323	.297	.254
10-497630-35	16	.062	.060	.085	.054	.011
			.010	.035	.009	NS
10-497630-45	16	.062	.108	.133	.102	.059
			.062	.087	.061	.018
10-597502-15	12	.081	.228	.252	.222	.179
			.178	.203	.177	.134
Wire Wrap		Tail		<u> </u>		<u> </u>
Contacts		Square				
10-407572-15	22D	.025	.014	.498	.008	NS
			NS	.007	NS	NS
10-407572-35	22D	.025	.155	.180	.149	.106
			.105	.130	.104	.061
10-407572-45	22D	.025	.255	.280	.249	.206
			.205	.230	.204	.161
10-407572-75	22D	.025	.521	.546	.515	.472
			.475	.500	.474	.431
10-407584-25	20	.025	.605	.630	.599	.556
			.559	.584	.558	.515
10-407584-35	20	.025	.308	.333	.302	.259
.5 10,004 00	-0	.020	.262	.287	.261	.218

PCB Socket and pin part numbers include finish designation - gold plating over suitable underplate in accordance with MIL-C-39029. For other finish variations, consult Amphenol, Sidney, NY.

Note: 22M and 22D contacts are interchangeable. For other contact options available for use in Tri-Start connectors (thermocouple, fiber optic), consult Amphenol, Sidney, NY.

application tools

The following data includes information pertaining to the application tools which have been established for crimping, inserting, and removing contacts incorporated in the TV, CTV and MIL-DTL-38999 Series III connectors. For additional information on coax, twinax and triax contact tools see catalog 12-130. All crimping tools included are the "full cycling" type and when

used as specified in the installation instructions (L-624 and L-844) covering the TV, CTV and MS series connectors, will provide reliable crimped wire to contact terminations. There is a possibility of additional crimping tools other than those included being available at present or in the future for this specific appli-

CRIMPING TOOLS

Contact Size/Type	Crimping Tool	Turret Die or Positioner
12 Pin and Socket	M22520/1-01	M22520/1-04
16 Pin and Socket	M22520/1-01	M22520/1-04
	M22520/7-01	M22520/7-04
20 Pin and Socket	M22520/1-01	M22520/1-04
	M22520/2-01	M22520/2-10
	M22520/7-01	M22520/7-08
22D Pin	M22520/2-01	M22520/2-09
	M22520/7-01	M22520/7-07
22D Socket	M22520/2-01	M22520/2-07
	M22520/7-01	M22520/7-05
8 Twinax Center	M22520/2-01	M22520/2-37
Pin and Socket		
8 Twinax Intermediate	M22520/5-01	M22520/5-200
Outer Pin & Socket		

Where 2 or 3 tools are listed for a contact size, only one tool and its die or positioner are required to crimp the contact.

Contact Size/Type	Crimping Tool	Turret Die or Positioner
8 Coaxial Inner	M22520/2-01	M22520/2-31
Pin and Socket		
	M22520/5-01	M22520/5-05
		Die Closure B
8 Coaxial Outer Pin	M22520/5-01	M22520/5-41
and Socket		Die Closure B
	M22520/10-01	M22520/10-07
		Die Closure B
16 Coaxial Inner	M22520/2-01	M22520/2-35
Pin and Socket		
16 Coaxial Outer	M22520/4-01	M22520/4-02
Pin and Socket		
12 Coaxial Inner	M22520/2-01	M22520/2-34
Pin and Socket		
12 Coaxial Outer	M22520/31-01	M22520/31-02
Pin and Socket		
10 (Power)	TP201423	1716P-1

INSERTION TOOLS

	Plastic	Tools	Metal Tools							
Use with			Angle -	Гуре	Straight Type					
Contact	MS		MS	Proprietary	Proprietary					
Size	Part Number	Color	Part Number	Part Number	Part Number	Color				
10 (Power	M81969/14-05*	Gray / (White)	M81969/8-11	†	†	Green				
12	M81969/14-04*	Yellow / (White)	M81969/8-09	11-8674-12	11-8794-12	Yellow				
16	M81969/14-03*	Blue / (White)	M81969/8-07	11-8674-16	11-8794-16	Blue				
20	M81969/14-10*	Red / (Orange)	M81969/8-05	11-8674-20	11-8794-20	Red				
22D	M81969/14-01*	Green / (White)	M81969/8-01	11-8674-24	11-8794-24	Black				
8 Coaxial			None F	Required						
8 Twinax	No	ne	M81969/46-06**	No	ne	Red				

REMOVAL TOOLS

42

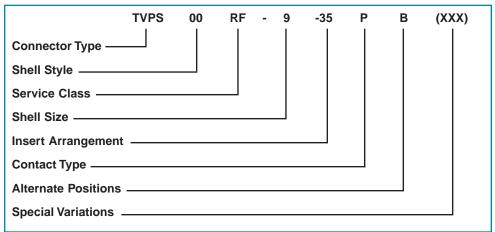
	Plast	ic Tools	Metal Tools									
			For Unwired	Angle	Туре							
Use with Contact Size	MS Part Number	Color	Contacts Proprietary Part Number	MS Part Number	Proprietary Part Number	Straight Type Proprietary Part Number	Color					
10 (Power)	M81969/14-05*	(Gray) / White	†	M81969/8-12	†	†	Green / White					
12	M81969/14-04*	(Yellow) / White	11-10050-11	M81969/8-10	11-8675-12	11-8795-12	Yellow / White					
16	M81969/14-03*	(Blue) / White	11-10050-10	M81969/8-08	11-8675-16	11-8795-16	Blue / White					
20	M81969/14-10*	(Orange) / Red	11-10050-9	M81969/8-06	11-8675-20	11-8795-20	Red / Orange					
22D	M81969/14-01*	(Green) / White	11-10050-7	M81969/8-02	11-8675-24	11-8795-24	Green / White					
8 Coaxial	M81969/14-12	Green	None	None	11-9170	DRK264-8††	N/A					
8 Twinax	M81969/14-12	Green	None	M81969/46-12**	11-9170	N/A	N/A					

The M81969/8, 11-8674, 11-8675, and 11-8794 metal contact insertion and removal tools will accommodate wires having the maximum outside diameter as follows: Contact size 12: dia. is .155, size 16: dia. is .109, size 20: dia. is .077, size 22D: dia. is .050. When wire diameters exceed those specified, the plastic tools must be used.

† To be determined.

The above crimping tools and positioners are available from the approved tool manufacturer.

^{*} Double end insertion/removal tool.


^{**} Twinax insertion tools are available only in a straight type, metal version.

^{††} Contact Daniels Manufacturing Co. for availability.

how to order – (Amphenol® TV, metal) how to order – (Amphenol® TV26 CLUTCH-LOK®)

Proprietary Part Number

Amphenol® Tri-Start Connectors (metal) can be ordered by coded part number. Ordering procedure is illustrated by part number TVPS00RF-9-35PB() as shown below:

Connector Type

TV designates Tri-Start Series Connector
TVP designates back panel mounted receptacle

TVS designates 200°C rated

TVPS designates back panel mounted, 200°C rated receptacle

designates CLUTCH-LOK connector with "MS" stamping (Note: remove dashes in how to order part number when

ordering CLUTCH-LOK)

Shell Style

00 designates wall mount receptacle

01 designates line receptacle

02 designates box mount receptacle

06 designates straight plug

designates proprietary CLUTCH-LOK high vibration straight plug (available in service classes RK and RS only)

07 designates jam nut receptacle

09 designates flange mounted plug

IY designates solder mounted receptacle, hermetic only HIY designates weld mounted receptacle, hermetic only

Service Class

Downloaded from Arrow.com.

RX alternate finish, requires special variation suffix. Example: non-conductive, anodic coated aluminum is defined by variation suffix 005. Consult Amphenol, Sidney NY for details, options and availability of non-cadmium or nickel finishes.

RF electroless nickel plated aluminum, optimum EMI shielding effectiveness –65dB @ 10GHz specification min., 48 hour salt spray, 200°C

RGF** electroless nickel plated ground plane aluminum, 200°C

RGW** olive drab cadmium plated ground plane aluminum, 175°C

RK* corrosion resistant stainless steel, firewall capability, plus 500 hour salt spray resistance, EMI –45 dB @ GHz

specification min., 200°C

corrosion resistant olive drab cadmium plate aluminum, 500 hour extended salt spray, EMI –50 dB @ 10 GHz specification min., 175°C

RQF same as RF except with Quadrax contacts
RGQF same as RGF except with Quadrax contacts
RGQW same as RGW except with Quadrax contacts

RQK same as RK except with Quadrax contacts and not

firewall capable

RQW same as RW except with Quadrax contacts

Y hermetic seal, passivated stainless steel, 200°C RS* (non-hermetic connectors), nickel plated stainles

(non-hermetic connectors), nickel plated stainless steel, optimum EMI shielding effectiveness –65dB @ 10 GHz specification min., 500 hour salt spray, 200°C, firewall barrier

YN (hermetic connectors), nickel plated stainless steel, 200°C

Durmalon plated, Nickel-PTFE alternative to Cadmium. Corrosion resistant, 1,000 hour salt spray, EMI- 50dB at 10GHz specification min., 175 degrees

Shell Size

MIL-DTL-38999, Sizes 9-25

Α	В	С	D	Е	F	G	Н	J	MIL Shell Size
9	11	13	15	17	19	21	23	25	Amphenol Shell Size

Insert Arrangement

MIL-DTL-38999, see insert arrangement charts, pgs. 6 & 7.

Contact Type

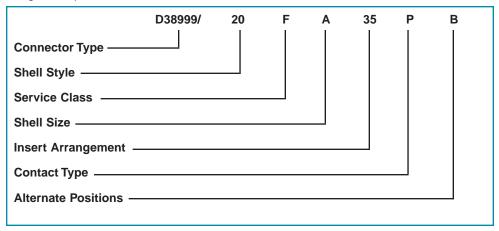
P designates pin contacts S designates socket contacts

Alternate Positions

Locksmith keying - rotation of minor keys. See page 8. "N" not required for normal position.

Special Variations

Consult Amphenol Aerospace, Sidney, NY for variations.


- * Coaxial arrangements are not available in these classes.
- ** For more information on Coax/Triax/Twinax Ground Plane Connectors see page 49.

43

how to order – (D38999, TV military, metal) how to order – (MTV26 CLUTCH-LOK®)

Military Part Number

To more easily illustrate ordering procedure of Tri-Start Connectors (metal) by military designation, part number D38999/20F A35PB is shown as follows:

Connector Type

D38999/ designates MIL-DTL-38999 Series III Connector MTV designates military D38999/26 CLUTCH-LOK high vibration straight plug (available in service class RK only)

Shell Style

- 20 designates wall mount receptacle
- 21 designates box mount receptacle, hermetic
- 23 designates jam nut receptacle, hermetic
- 24 designates jam nut receptacle
- 25 designates solder mount receptacle, hermetic
- 26 designates straight plug
- 27 designates weld mount receptacle, hermetic

Lanyard Release Connectors (See pages 28-32 for ordering) 29 designates lanyard release plug with pin contacts

- 30 designates lanyard release plug with socket contacts
- designates lanyard release plug for MIL-STD-1760 with

Protection Caps (See page 40 for ordering MS protection caps) 32 designates plug protection cap

33 designates receptacle protection cap

Service Class

- C non-conductive, anodic coated aluminum, 500 hour salt spray, 200°C
- F electroless nickel plated aluminum, optimum EMI shielding effectiveness –65dB @ 10GHz specification min., 48 hour salt spray, 200°C
- G space grade, electroless nickel, 48 hour salt spray, 200°C
- K corrosion resistant stainless steel, firewall capability, plus 500 hour salt spray resistance, EMI –45 dB @ GHz specification min., 200°C
- corrosion resistant steel, electrodeposited nickel, 48 hour salt spray, 200°C

- W corrosion resistant olive drab cadmium plate aluminum, 500 hour extended salt spray, EMI –50 dB @ 10 GHz specification min., 175°C
- hermetic seal, passivated stainless steel, 200°C
- S (non-hermetic connectors), nickel plated stainless steel, optimum EMI shielding effectiveness –65dB @ 10 GHz specification min., 500 hour salt spray, 200°C.
- N (hermetic connectors), nickel plated stainless steel, 200°C

Shell Size

MIL-DTL-38999, Sizes 9-25.

Α	В	С	D	Е	F	G	Н	J	MIL Shell Size
9	11	13	15	17	19	21	23	25	Amphenol Shell Size

Insert Arrangement

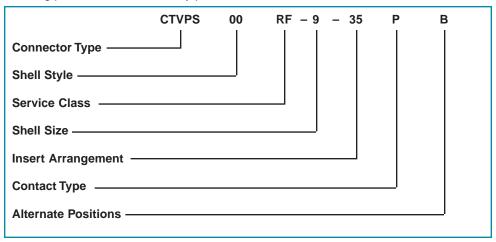
MIL-DTL-38999, see insert arrangement charts, pgs. 6 & 7.

Contact Type

- P designates pin contacts
- S designates socket contacts
- A designates same as "P" except supplied less pin contacts
- B designates same as "S" except supplied less socket contacts (A & B designates non-standard contact applications)
- X designates eyelet contacts, hermetics only

Alternate Positions

Locksmith keying - rotation of minor keys. See page 8. Use N for normal.


Special Variations

Consult Amphenol Aerospace, Sidney, NY for variations.

how to order – (Amphenol® CTV, composite)

Proprietary Part Number

Amphenol® Tri-Start Composite Connectors can be ordered by coded part number. Ordering procedure is illustrated by part number CTVPS00RF-9-35PB as shown below:

Connector Type

designates Tri-Start Series Connector CTVP designates panel mounted receptacle

CTVS designates 200°C rated

CTVPS designates panel mounted, 200°C rated receptacle

00 designates wall mount receptacle

01 designates line receptacle

02 designates box mount receptacle*

designates straight plug

07 designates jam nut receptacle

Service Class

RF electroless nickel plated composite, 200°C, 2000 hour

olive drab cadmium plated composite, 175°C

electroless nickel plated ground plane composite,

RGW** olive drab cadmium plated ground plane composite,

RQF same as RF composite except with Quadrax contacts

same as RW composite except with Quadrax contacts

RGQF same as RGF composite except with Quadrax contacts

RGQW same as RGW composite except with Quadrax contacts

Durmalon plated, Nickel-PTFE alternative to Cadmium. Corrosion resistant, 1,000 hour salt spray, EMI- 50dB at

10GHz specification min., 175 degrees

* Consult Amphenol Aerospace, Sidney, NY for availability.

** For more information on Coax/Triax/Twinax Ground Plane Connectors

Shell Size

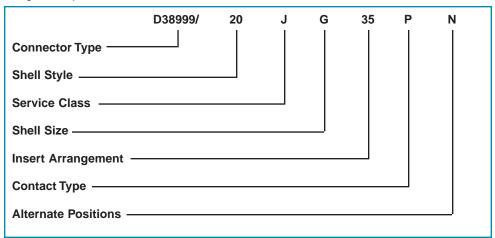
9 thru 25 available

Insert Arrangement

MIL-DTL-38999, see insert arrangement charts, pgs. 6 &7.

Contact Type

- H designates 1500 cycle pin contacts
- J designates 1500 cycle socket contacts
- P designates 500 cycle pin contacts
- S designates 500 cycle socket contacts


Alternate Positions

Locksmith keying - rotation of minor keys. "N" not required for normal position, see page 8.

how to order – (D38999, CTV military, composite)

Military Part Number

To more easily illustrate ordering procedure of Tri-Start Composite Connectors by military designation, part number D38999/20JG35PN is shown as follows:

Connector Type

D38999/ designates MIL-DTL-38999 Series III Connector

Shell Style

- 20 designates wall mount receptacle
- 24 designates jam nut receptacle
- 26 designates straight plug

(Consult Amphenol Aerospace for availability of composite box mount receptacles)

Service Class

- J olive drab cadmium plate (175°C), 2000 hrs. dynamic salt spray
- M electroless nickel plate (200°C), 2000 hrs. dynamic salt spray

Shell Size

MIL-DTL-38999, Sizes 9-25

Α	В	С	D	E	F	G	Н	J	MIL Shell Size
9	11	13	15	17	19	21	23	25	Amphenol Shell Size

Insert Arrangement

MIL-DTL-38999, see insert arrangement charts, pg. 6 & 7.

Contact Type

- H designates 1500 cycle pin contacts
- J designates 1500 cycle socket contacts
- P designates 500 cycle pin contacts
- S designates 500 cycle socket contacts
- A designates same as "P" except supplied less pin contacts
- B designates same as "S" except supplied less socket contacts

(A & B designate non-standard contact applications)

Alternate Positions

Locksmith keying - rotation of minor keys. See page 8. (Use N for normal)

weight comparisons (composite vs. metal)

Depending on the shell style, shell size and contact count, weight savings can range from 17% to 40% compared to standard aluminum product.

Tri-Start Weight in ounces (includes contacts)

		Wall M	ount Re	ceptacle	(00)			Jam	Nut Red	eptacle	(07)		Plug (06)					
Size/ Arrange- ment		nless eel	Alum	ninum	Com	posite		nless eel	Alun	ninum	Com	posite	l	nless teel	Alun	ninum	Com	nposite
mont	Pin	Socket	Pin	Socket	Pin	Socket	Pin	Socket	Pin	Socket	Pin	Socket	Pin	Socket	Pin	Socket	Pin	Socket
9-35	.7216	.7840	.3248	.3777	.2588	.3121	1.1472	1.2096	.4416	.5040	.3489	.4413	1.0736	1.1360	.4236	.4625	.2606	.2994
9-98	.7216	.7776	.2496	.3056	.1664	.2224	1.1472	1.2032	.4416	.4976	.3744	.4640	1.0736	1.1296	.3968	.4624	.2991	.2337
11-35	.9488	1.0800	.3632	.4960	.2753	.4081	1.4304	1.5632	.5936	.7264	.4679	.6007	1.2480	1.3808	.5312	.6389	.3450	.4582
11-98	.9488	1.0620	.3632	.4768	.2753	.3889	1.4304	1.5440	.5936	.7072	.4679	.5815	1.2480	1.3616	.5330	.6283	.3468	.4457
13-8	1.2096	1.3888	.4800	.6592	.3696	.5488	1.9104	2.0896	.7664	.9456	.6560	.8352	1.8048	1.9840	.7936	.9728	.5237	.5952
13-35	1.2160	1.4320	.4864	.7024	.3762	.5922	1.9168	2.1328	.7728	.9888	.6136	.8296	1.8112	2.0272	.8000	.8472	.5301	.6531
13-98	1.2160	1.4016	.4864	.6720	.3762	.5618	1.9168	2.1024	.7728	.9584	.6136	.7992	1.8112	1.9968	.7978	.9856	.5244	.7157
15-5	1.5312	1.7904	.6352	.8944	.5027	.7619	2.3792	2.6384	.9728	1.2320	.7749	1.0341	2.2704	2.5456	.9632	1.1719	.6450	.8467
15-18	1.5456	1.8416	.7760	.9456	.6432	.8128	2.3936	2.6896	.9872	1.2832	.8544	1.1504	2.2848	2.5808	.9776	1.2736	.6594	.8208
15-35	1.5424	1.8768	.6464	.9808	.5139	.8483	2.3904	2.7344	.9840	1.3280	.7861	1.1301	2.2816	2.6256	1.2179	1.3184	.8961	1.0002
17-6	2.1488	2.5904	.9360	1.3776	.7812	1.2228	2.9152	3.3568	1.2336	1.6752	.9940	1.4356	2.5008	3.1024	1.1408	1.7424	.8160	1.4176
17-26	2.1344	2.5600	.9216	1.3472	.7668	1.1924	2.9008	3.3264	1.2192	1.6448	.9796	1.4052	2.4864	2.9120	1.1264	1.3343	.8017	.8062
17-35	2.1360	2.6640	.9232	1.4512	.7684	1.2964	2.9024	3.4304	1.2208	1.7488	.9812	1.5092	2.4880	3.0160	1.1280	1.5497	.8033	1.2144
19-11	2.2592	2.6656	.9696	1.4528	.7925	1.2757	3.4352	3.9184	1.4720	1.9552	1.2033	1.6865	2.9808	3.4640	1.3472	1.8304	.9632	1.4464
19-32	2.1888	2.7264	.9760	1.5136	.7989	1.3365	3.4416	3.9792	1.4784	2.0160	1.2097	1.7473	2.9872	3.5248	1.3536	1.8912	.9696	1.5072
19-35	2.1920	2.8432	.9792	1.6304	.8021	1.4533	3.4448	4.0960	1.4816	2.1328	1.2129	1.8641	2.9904	3.6416	1.3568	2.0080	.9728	1.6240
21-11	2.7456	3.4640	1.3088	2.0272	1.1088	1.8272	3.9712	4.6896	1.8128	2.5312	1.6128	2.3312	3.4448	4.1632	1.7344	2.5312	1.3039	1.8710
21-16	2.6784	3.3168	1.2416	1.8800	1.0422	1.6806	3.9040	4.5424	1.7456	2.3840	1.4505	2.0889	3.3776	4.0160	1.6672	2.3168	1.2352	1.8736
21-35	2.6672	3.4992	1.2304	2.0624	1.0310	1.8630	3.8928	4.7248	1.7344	2.5664	1.4393	2.2713	3.3664	4.1984	1.6560	2.2309	1.2255	1.8003
21-41	2.6768	3.3600	1.2400	1.9232	1.0406	1.7238	3.9024	4.5856	1.7440	2.4272	1.4489	2.1321	3.3760	3.5792	1.6656	1.8688	1.2336	1.4368
23-21	3.0352	3.8624	1.4496	2.2768	1.2279	2.0551	4.2368	5.0640	1.9440	2.7712	1.6368	2.4640	3.7920	4.6192	1.9216	2.7488	1.4637	2.2896
23-35	3.0240	4.0448	1.4384	2.4592	1.2167	2.2375	4.2256	5.2464	1.9328	2.9536	1.6256	2.6464	3.7808	4.8016	1.9104	2.6087	1.4525	2.1507
23-53	2.8992	3.9072	1.4560	2.4816	1.2343	2.2599	4.2432	5.1088	1.9504	2.8160	1.6432	2.5088	3.7984	4.6640	1.9280	2.7936	1.4672	2.2384
25-4	3.4512	4.4800	1.7312	2.8816	1.4864	2.1904	4.8048	5.8272	2.2016	3.2480	1.9568	2.8720	4.2224	5.2496	2.2128	3.2560	1.7133	2.4163
25-19	3.5312	4.7264	1.8112	3.0064	1.5664	2.7616	4.8848	6.0816	2.2816	3.4784	2.0368	3.2336	4.3024	5.4992	2.2928	3.4896	1.7933	2.7058
25-20	3.8190	4.7150	2.0173	3.1125	1.7733	2.8512	5.1430	6.0380	2.4877	3.5421	2.1872	3.2416	4.4350	5.3300	2.2580	3.0182	1.8288	2.8928
25-35	3.4416	4.6656	1.7216	2.9456	1.4776	2.7016	4.7952	6.0192	2.1920	3.4160	1.8915	3.1155	4.2128	5.4368	2.2032	3.4272	1.7037	2.9277
25-61	3.4304	4.4848	1.7282	2.7648	1.4841	2.5208	4.7840	5.8384	2.1808	3.2352	1.8803	2.9347	4.2016	5.2560	2.1920	3.2464	1.6912	2.7456

All weight measurements are for reference only.

fiber optics, filter protection, PCB applications

with MT Ferrule Fiber Optics

FIBER OPTIC

Amphenol multi-channel fiber optic connectors offer a precision optic interconnect system within the high performance MIL-DTL-38999 Series III connector. The metal-to-metal feature of the Tri-Start connector provides protection from damage in severe environmental and physical conditions. Optical performance is optimized utilizing the

ceramic alignment features employed by the termini. Insertion losses are typically .8dB and can range from .5 to 1.5 dB, depending on test conditions.

Ask for publication 12-352 for complete information on Fiber Optic Connectors.

TRANSIENT PROTECTION

EMI/EMP protection devices can be integrated into the MIL-DTL-38999 Series III connector to

provide a cost effective alternative to discrete devices mounted inside the box. These unique, high performance designs provide weight and space savings necessary for modern electronic systems.

Ask for publication 12-120 for complete information on Amphenol Filter/Transient Protection Connectors.

FLEX TERMINATION ASSEMBLIES FOR PRINTED CIRCUIT BOARD APPLICATIONS

Amphenol provides flex termination assemblies for printed circuit board attachment through Amphenol ACT, Advanced Circuit Technology. Flex circuits are available for MIL-DLT-38999 connectors in flat or sculptured styles. Sculptured® Flexible Circuits with built-in terminations eliminate the failures associated with crimped or solder-on contacts, and they are designed to geometrically fit the tight space

requirements within a unit. They plug into a printed circuit board and create a self-locking terminal pad which eliminates the need for an additional interconnect to the PCB.

TRI-START CONNECTORS WITH PC TAIL CONTACTS

Printed circuit tail twinax contacts are currently supplied in 8, 12 and 16 coax type, 8, 10 and 12 twinax type, and 8 triax socket type. These provide a cost effective packaging solution for limited space applications where connectors are attached to printed circuit boards. Ask for catalog 12-170, Amphenol Cylindrical Connectors for PCB Applications and catalog 12-130, Amphenol High Frequency Contacts for Multi-pin Connectors.

Flex Termination Assemblies

Filter/Transient Protection Connectors

PC Tail Contacts

48

coax, twinax and triax contacts, ground plane connectors, press fit connectors

Amphenol MIL-DTL-38999 Series III connectors are the most commonly used connectors for incorporation of shielded contacts along with traditional crimp contacts and also with contacts for data bus, LAN and coax/triax/twinax transmission lines with conductive inserts that ground the outer conductor of the coax, triax, twinax contact to the shell. These connectors are sold "less contacts". They will accommodate size 8 coax, triax or twinax contacts or size 12 and 16 coax contacts.

The insert availability chart on pages 6 and 7 indicates the patterns that are available in a ground plane version, (see those designated with a star symbol), and consult how to order pages for ordering procedures.

CONNECTORS WITH SHIELDED COAX CONTACTS

For shielded wire applications, coaxial contacts can be incorporated into MIL-DTL-38999 connectors. Designed-in crimp or solder types are available to fit various RG and special cables. High performance coaxial contacts eliminate discontinuities or

impedance variations due to movement of parts under axial load.

CONNECTORS WITH CONCENTRIC TWINAX CONTACTS

The size 8 concentric twinax contact was developed for use in MIL-STD-1553 Airborne multiplex data bus applications which require high performance interconnect characteristics in multi-pin connectors. Ideal for this application need is the high performance Tri-Start connector with its fully scoop-proof feature of recessed pins. The concentric twinax contact is crimp terminable to twisted-shielded cable.

SHIELDED TRIAX CONTACTS

Triax contacts have three conductors and are offered in sizes 8, 10 and 12. They provide additional shielding when terminated to triax cable having solid or stranded center conductors. Each of the three conductors of the triax contact is separated by dielectric insulation to isolate ground planes and to improve shielding effectiveness.

High speed data transmission quadrax contacts are now available for use in MIL-DTL-38999 connectors.

PRESS FIT CONNECTORS

Tri-Start connectors are also designed for the application of solderless mounting to printed circuit boards. The Press Fit connector performances are compatible with Series III

Concentric Twinax Contacts
Qualified to M39029/90 and /91

Shielded Coax Contacts

38999 Series III Connector with Twinax Contacts and Standard Contacts

Ground Plane Connector with Twinax Contacts and Insulated Power/Signal Contacts

MIL-DTL-38999 Series III Connectors with Compliant Pin Contacts for Solderless Mounting on Printed Circuit Boards

Consult the following Amphenol literature for further information:

Product Data Sheet 139 for Ground Plane Connectors. Product Data Sheet 188 for Press Fit Connectors. Catalog 12-130 for High Frequency Contacts for Multipin Connectors

quadrax and differential twinax contacts

SIZE 8 HIGH SPEED QUADRAX AND DIFFERENTIAL TWINAX CONTACTS FOR USE IN MIL-DTL-38999 CONNECTORS

Quadrax Contacts consist of an outer contact with four strategically spaced inner contacts forming two 100 or 150 Ohm matched impedance differential pairs.

Differential Twinax Contacts consist of an outer contact with two inner contacts spaced to form one 100 or 150 Ohm matched impedance differential pair.

Both contacts can be used in connectors for Ethernet 100 Base-T-100 Ohm, Fibre-Channel-150 Ohm and IEEE 1394B FireWire-110 Ohm applications.

TYPICAL ELECTRICAL PERFORMANCE

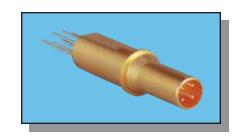
• Bandwidth: Up to 3 Gigahertz

• Data rate: Exceeding 2 Gbits/sec.

• Voltage rating: 500 Vrms max. @ sea level

• Dielectric withstanding voltage:

1000 VACrms between all inner contacts @ sea level 500 VACrms between inner and outer contacts @ sea level

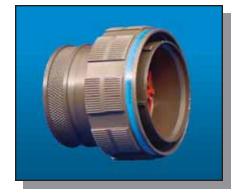


D38999 Series III Groundplane Connector with Quadrax PCB Sockets Installed Contacts front are Differential Twinax (left) and Quadrax (right)

Quadrax contacts are also available in ARINC 600 Rectangular connectors. See photo on right; consult Amphenol Aerospace for further information.

Also available are Quadrax and Twinax Transition Adapters which provide a method of launching from the high speed connectors to PCB boards.

Consult Amphenol Aerospace, Sidney NY for ordering information for MIL-DTL-38999 Series III connectors with quadrax and differential twinax contacts. Below is a chart that provides contact part numbers available, but not limited to, the cables listed. All contacts are available kitted with or installed into specially modified MIL-DTL-38999 connectors. Consult Amphenol for cables not listed.


Quadrax Contact for use in ARINC 600 Connectors

CONTACT PART NUMBERS AND APPLICABLE CABLES FOR USE IN D38999 CONNECTORS										
Description	Part Number	Cable Part Number	Impedance							
Quadrax Socket	21-33385-21	Draka Fileca F-4703-3	100 Ohm							
	21-33385-31	Tensolite 26473/02006X-4(LD)	150 Ohm							
	21-33385-51	Tensolite NF24Q100	100 Ohm							
	21-33385-61	Tensolite NF22Q100 or Thermax 956-5	100 Ohm							
	21-33385-61	Tensolite 24450/03089X-4(LD)	110 Ohm							
	21-33385-71	Tensolite NF26Q100	100 Ohm							
	21-33385-91	JSFY02	110 Ohm							
	21-33397-21	PCB (1.035 length)	100 Ohm							
	21-33397-31	PCB (.866 length	100 Ohm							
Quadrax Pin	21-33384-21	Draka Fileca F-4703-3	100 Ohm							
	21-33384-31	Tensolite 26473/02006X-4(LD)	150 Ohm							
	21-33384-51	Tensolite NF24Q100	100 Ohm							
	21-33384-61	Tensolite NF22Q100 or Thermax 956-5	100 Ohm							
	21-33384-61	Tensolite 24450/03089X-4(LD)	110 Ohm							
	21-33384-71	Tensolite NF26Q100	100 Ohm							
	21-33384-91	JSFY02	110 Ohm							
	21-33398-21	PCB (1.035 length)	100 Ohm							
	21-33398-31	PCB (.866 length)	100 Ohm							
	21-33425-1	Right Angle Special	100 Ohm							
Differential Twinax Socket	21-33388-21	Tensolite 24463/9P025X-2(LD)	100 Ohm							
	21-33388-31	Tensolite 26483/03071X-2(LD)	100 Ohm							
	21-33835-1	PCB (1.035 length)								
Differential Twinax Pin	21-33387-21	Tensolite 24463/9P025X-2(LD)	100 Ohm							
	21-33387-31	Tensolite 26483/03071X-2(LD)	100 Ohm							
	21-33834-1	PCB (1.035 length)								

deep reach and stand-off shells, connectors with integral strain reliefs, ESD protection, RJ Field

OTHER SPECIALS WITHIN THE TRI-START FAMILY OF CONNECTORS:

- Deep Reach Shells for increased panel thicknesses.
- **Stand-off Flange Shells** for attachment to printed circuit boards
- Connectors with Integral Strain Reliefs cost savings through integration of strain relef to the shell.
- Electrostatic Discharge (ESD) Protection -Amphenol has developed a design feature for the Tri-Start connector which will protect sensitive components from Electrostatic Discharge without diodes, varistors, gas tubes, or "experimental" semiconductive materials. These connectors utilize the Faraday Cage principal to shunt electrostatic discharge events to the conductive enclosure on which the connector is mounted, thus never allowing the high voltage, high current discharge event to reside on any contacts. The ESD protected connectors have the same physical envelope as their standard counterparts, and do not require special mounting or terminating techniques. All of the contacts remain fully functional, and electrical characteristics such as capacitance are not effected. For more information on ESD protected connectors, ask for Product Data Sheet 171. Also publication L-2075, "ESD Attenuation Test Procedure for Connectors with Faraday Cage Protective Structures" is available as a reference document.

Tri-Start with Integral Strain Relief

Electrostatic Discharge (ESD) Testing on Tri-Start Filter Connector

Tri-Start Jam Nut Receptacle with Deep Reach Shell

Tri-Start with Stand-off Flange

RJ FIELD CONNECTORS

Amphenol Socapex offers the RJF TV within the MIL-DTL-38999 connector shell for Ethernet connection. The RJ Field is designed for use where it is necessary to go beyond the protected office environment of most Ethernet applications, to the harsher environments of industrial and even mil-aero applications. Allows use of Ethernet Class D/Cat. 5e connection for 10 BaseT, 100 BaseTX, or 1000 Base T networks.

Consult Amphenol Socapex for further information.

RJF TV Connectors for Ethernet Connection

Amphenol Corporation Amphenol Aerospace Amphenol Industrial Operations

40-60 Delaware Avenue Sidney, NY 13838-1395 Phone: 607-563-5011 1-800-678-0141 Fax: 607-563-5157 www.amphenol-aerospace.com www.amphenol-industrial.com

SALES OFFICES

Amphenol Corporation Amphenol Aerospace

23276 South Pointe Drive Suite 113 Laguna Hills, CA 92653 Phone: 949-855-4454 1-800-678-0141 Fax: 949-855-9115

Amphenol Corporation Amphenol Aerospace 2010 Corporate Ridge

2010 Corporate Ridge McLean, VA 22101 Phone: 1-800-678-0141

Amphenol Pcd

Peabody, MA 01960 Phone: 978-532-8800 Fax: 978-532-6800 Web: www.amphenolpcd.com

Amphenol Backplane Systems

18 Celina Avenue Nashua, NH 03063 Phone: 888-318-3553 Fax: 603-883-0247 www.amphenol.abs.com

Amphenol Advance Circuit Technology

118 Northeastern Boulevard Nashua, NH 03062 Phone: 603-880-6000 Fax: 603-880-1785 Web: www.act.flexcircuit.com

Amphenol Canada

20 Melford Drive Scarborough, ON M1B 2X6 Canada Phone: 416-291-4401 Fax: 416-292-0647 Web: www.amphenolcanada.com

DISTRIBUTORS

Corporate Headquarters ARROW ELECTRONICS

7459 S. Lima Street Englewood, CO 80112-5816 Phone: 800-777-2776 Fax: 800-562-3542 Web: www arrow com

AVNET

2211 47th Street Phoenix, AZ 85034 Phone: 800-332-8638 Web: www.avnet.com

PEI GENESIS

2180 Hornig Road Philadelphia, PA 19116 Phone: 800-523-0727 Fax: 215-552-8022 Web: www.peigenesis.com

POWELL ELECTRONICS

200 Commodore Drive Logan Township, NJ 08085 Phone: 800-235-7880 Fax: 215-937-4655 Web: www.powell.com

TTI INC.

2441 Northeast Pkwy. Fort Worth, TX 76106 Phone: 800-225-5884 Fax: 817-740-9494 Web: www.ttiinc.com

SMALL DISADVANTAGED/ MINORITY DISTRIBUTORS

CHEROKEE NATION DISTRIBUTORS

Highway 51 West P.O. Box 1130 Stilwell, OK 74960 Phone: 918-696-2777 Fax: 918-696-3129 Web: www.cnicnd.com

JRH ELECTRONICS INC.

2002 E. Lincoln Drive West Route 73, P.O. Box 264 Marlton, NJ 08053 Phone: 800-467-9309 Fax: 609-988-8728 Web: www.jrhelec.com

INTERNATIONAL

Latin America ARGENTINA

ARGENTINA Amphenol Argentina

Anjherior Argentina Avenida Callao 930 2nd floor Office B Plaza C1023AAP Buenos Aires, Argentina Phone: (54 11) 48 15 68 86 Fax: (54 11) 48 14 57 79 E-mail:vendas@amphenol.com.ar

BRAZIL

Amphenol do Brasil Ltda.

Rua Diogo Moreira 132 CEP 05423-010 Sao Paulo - SP, Brazil Phone: (55-11) 3815.1003 Fax: (55-11) 3815.1629 E-mail: vendas@amphenol.com.br

MEXICO

Amphenol Mexico

Prolongacion Reforma 61-6 B2 Col. Paseo de las Lomas C.P. 01330 Mexico D.F., Mexico Phone: (52-55) 5258.9984 Fax: (52-55) 5081.6890 E-mail: info@amphenolmexico.com

Europe

ENGLAND

Amphenol Limited

Thanet Way, Whitstable Kent CT5 3JF, United Kingdom Phone: (44-1-227) 773200 Fax: (44-1-227) 276571 E-mail: info@amphenol.co.uk

FRANCE

Amphenol Socapex

Promenade de l'Arve, BP29 Thyez 74311 948 Cedex, France Phone: (33-4) 50892800 Fax: (33-4) 50961941 Web: www.amphenol-socapex.com

GERMANY

Amphenol-Tuchel Elect. GmbH August-Haeusser Strasse 10

Postfach 1110 74001 Heilbronn, Germany Phone: (49-7131) 929 0 Fax: (49-7131) 929 414

GERMANY

Amphenol-Air LB GmbH

Am Kleinbahnhof 4 D-66740 Saarlouis, Germany Phone: (49-6831) 9810-87 Fax: (49-6831) 9810-30 Web: www.amphenol-airlb.com

ITALY & REST OF EUROPE Amphenol Italia S.p.A.

Via Barbaiana 5 20020 Lainate (Milano), Italy Phone: 39-02-932541 Fax: 39-02-93254444 E-mail: info@amphenol-it.com

Middle East / Africa ISRAEL

Bar-Tec Ltd.

3 Hagavish St., P.O.B. 279 Kfir-Barkan Bldg., East Industrial Zone Kfar Sava 44102, Israel Phone: (972-9) 764.4100 Fax: (972-9) 7674324 E-mail: www.bar-tec.com

SOUTH AFRICA

Amphenol South Africa

30 Impala Road Chislehurston Sandton, 2146, South Africa Tel: (27-11) 783-9517 Fax: (27-11) 783-9519 E-mail: amphenol_africa@csi.com

TURKEY Amphenol Turkiye

Ayazaga Mah. Meydan Sk. No. 28 Beybi Giz Plaza, Kat. 26 Maslak 34396 Istanabul Phone: 90 (212) 335 25 01 Fax: 990 (212) 335 25 00

Asia / Pacific

AUSTRALIA Amphenol Australia LTD

2 Fiveways Blvd.
Melbourne, Victoria 3173
Australia
Phone: 613 8796 8888
Fax: 613 8796 8801
E-mail: info@amphenol.com.au

RUSSIA

Amphenol Russia Office

8-2 Yaroslavskaja Str. 129164 Moscow, Russia Phone: 7495 937 634 E-mail: russia@amphenol.com

CHINA

Amphenol Aerospace China Office Phone: +607-563-4060

E-mail: ChinaSales@amphenolaao.com

NDIA

Amphenol Interconnect India Pvt,

105 Bhosari Industrial Area Pune, 411 026, India Phone: (91-20) 27120 481 Fax: (91-20) 27120 581 E-mail: sales@amphenol-in.com

JAPAN

Amphenol Japan Mil/Aero & Industrial

471-1, Debra, Ritto-city Shiga 520-3041, Japan Phone: 81-77-553-8501 Fax: 81-77-551-2200

KOREA

Amphenol Aerospace Korea Office

Phone: +607-563-4061 E-mail: KoreaSales@amphenolaao.com

SOUTHEAST ASIA Amphenol Aerospace South East

Asia Office
Phone: +607-563-4062
E-mail:
SouthEastAsiaSales@amphenol-

TAIWAN

Amphenol Aerospace Taiwan Office

Phone: +607-563-4063 E-mail: TaiwanSales@amphenolaao.com

Notice: Specifications are subject to change without notice. Contact your nearest Amphenol Corporation Sales Office for the latest specifications. All statements, information and data given herein are believed to be accurate and reliable but are presented without guarantee, warranty, or responsibility of any kind expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are typical and may not apply to all connectors.

52

© 2006 Amphenol Corp. Printed in U.S.A. JCP 8/2006