
ABSOLUTE MAXIMUM RATINGS

(Note 1)

V_{CC} , V_{OUT} , \overline{SHDN} , V_{M}	.3V to 6.5V
RF _{IN} Voltage(V _{CC} ±	1.5V) to 7V
RF _{IN} Power (RMS)	12dBm
I _{VOUT}	5mA
Operating Temperature Range (Note 2) – 40	O°C to 85°C
Maximum Junction Temperature	125°C
Storage Temperature Range – 65°	°C to 150°C
Lead Temperature (Soldering, 10 sec)	300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25^{\circ}C$. $V_{CC} = 3.6V$, $\overline{SHDN} = V_{CC} = HI$, $\overline{SHDN} = 0V = LO$, RF Input Signal is Off, $R_A = R_B = 1k$, $\overline{SHDN} = HI$ unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{CC} Operating Voltage		•	2.7		6	V
I _{VCC} Operating Current	$I_{VOUT} = 0mA$	•		0.5	0.7	mA
I _{VCC} Shutdown Current	SHDN = LO	•		0.01	2	μΑ
V _{OUT} (No RF Input)	$R_{LOAD} = 2k$ $SHDN = LO$	•	85	100 to 140 1	155	mV mV
V _{OUT} Output Current	$V_{OUT} = 1.75V$, $V_{CC} = 2.7V$, $\Delta V_{OUT} < 10$ mV	•	2	4		mA
V _{OUT} Enable Time	SHDN = LO to HI, C _{LOAD} = 33pF, R _{LOAD} = 2k	•		8	20	μS
V _{OUT} Bandwidth	$C_{LOAD} = 33pF, R_{LOAD} = 2k \text{ (Note 4)}$			2		MHz
V _{OUT} Load Capacitance	(Notes 6, 7)	•			33	pF
V _{OUT} Slew Rate	V _{RFIN} = 1V Step, C _{LOAD} = 33pF, R _{LOAD} = 2k (Note 3)			3		V/µs
V _{OUT} Noise	V_{CC} = 3V, Noise BW = 1.5MHz, 50Ω RF Input Termination			1		mV _{P-P}
V _M Voltage Range		•	0		V _{CC} – 1.8V	V
V _M Input Current		•	-0.5		0.5	μА
SHDN Voltage LO, Chip Disabled	V _{CC} = 2.7V to 6V	•			0.35	V
SHDN Voltage HI, Chip Enabled	V _{CC} = 2.7V to 6V	•	1.4			V
SHDN Input Current	SHDN = 3.6V	•		22	36	μΑ
RF _{IN} Input Frequency Range	(Note 8)			300 to 7000		MHz
RF _{IN} Input Power Range	RF Frequency = 300MHz to 7GHz (Note 5, 6) V_{CC} = 2.7V to 6V			-32 to 10		dBm
RF _{IN} AC Input Resistance	F = 1000MHz, Pin = -25dBm			220		Ω
RF _{IN} Input Shunt Capacitance	F = 1000MHz, Pin = -25dBm			0.65		pF

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: Specifications over the –40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.

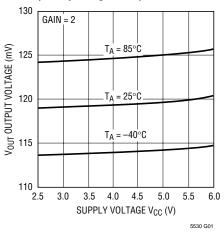
Note 3: The rise time at V_{OUT} is measured between 1.3V and 2.3V.

Note 4: Bandwidth is calculated based on the 10% to 90% rise time

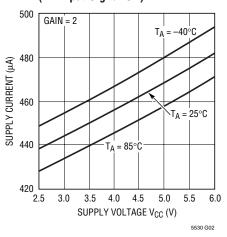
equation: BW = 0.35/rise time.

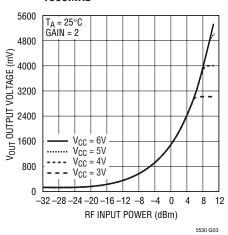
Note 5: RF performance is tested at 1800MHz

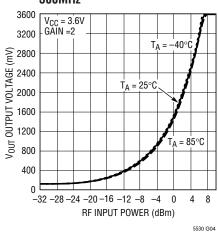
Note 6: Guaranteed by design.

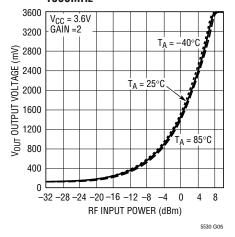

Note 7: Capacitive loading greater than this value may result in circuit instability.

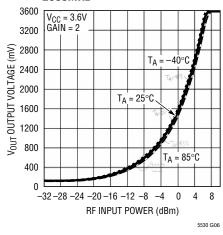
Note 8: Higher frequency operation is achievable with reduced performance. Consult factory for more information.

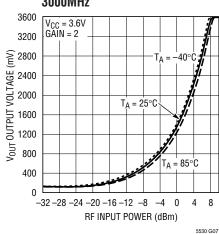

5530f

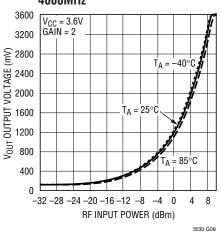

Output Voltage vs Supply Voltage (RF Input Signal Off)

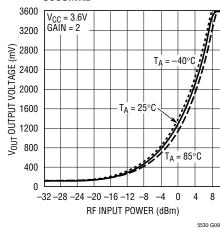

Supply Current vs Supply Voltage (RF Input Signal Off)


$V_{OUT}\, vs$ RF Input Power and $V_{CC}\,$ 1000MHz

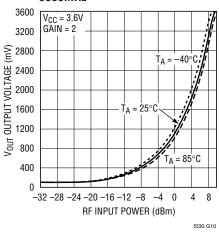

Typical Detector Characteristics, 300MHz


Typical Detector Characteristics, 1000MHz

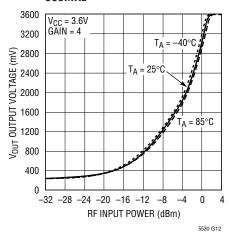

Typical Detector Characteristics, 2000MHz


Typical Detector Characteristics, 3000MHz

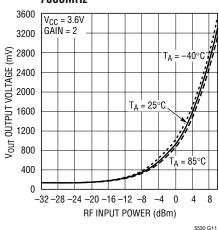
Typical Detector Characteristics, 4000MHz

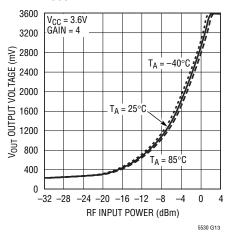


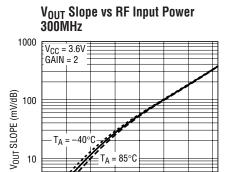
Typical Detector Characteristics, 5000MHz



55301

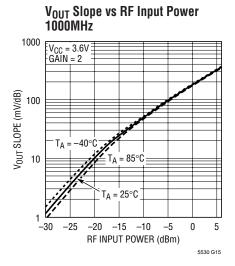


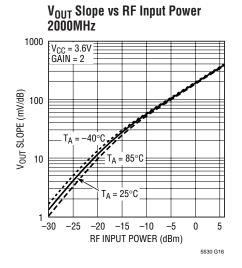

Typical Detector Characteristics, 300MHz

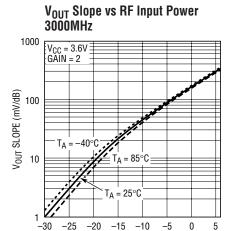


Typical Detector Characteristics, 7000MHz

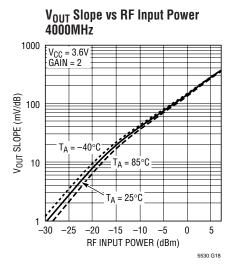
Typical Detector Characteristics, 1000MHz

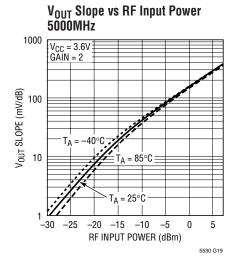

= 25°C

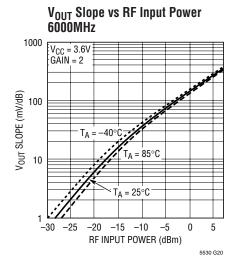

-15 -10

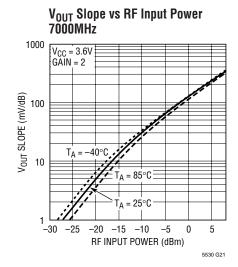

RF INPUT POWER (dBm)

-5 0 5

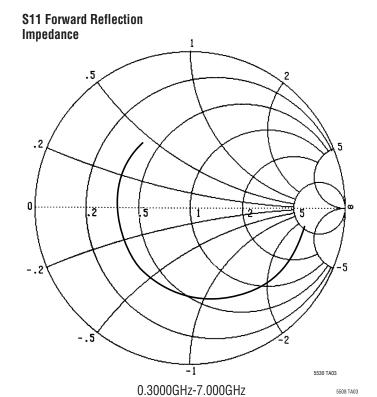

-30 -25 -20



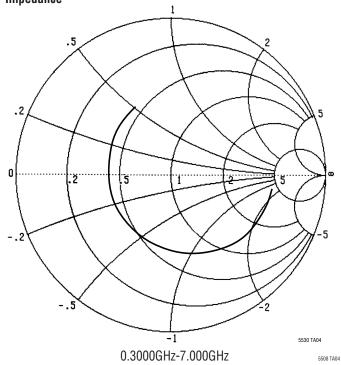




RF INPUT POWER (dBm)



 RF_{IN} Input Impedance (Pin = 0dBm, V_{CC} = 3.6V, T_A = 25°C)


FREQUENCY RESISTANCE		REACTANCE
(GHz)	(Ω)	(Ω)
0.30	290.45	-136.22
0.50	234.41	-162.54
0.70	178.25	-170.53
0.90	137.31	-159.89
1.10	109.17	-147.57
1.30	86.30	-136.18
1.50	68.65	-121.74
1.70	57.48	-107.60
1.90	49.79	-96.72
2.10	43.56	-86.70
2.30	38.67	-77.91
2.50	34.82	-70.13
2.70	31.68	-62.86
2.90	29.13	-56.01
3.10	27.17	-49.83
3.30	25.73	-44.24
3.50	24.56	-39.74
3.70	23.18	-35.35
3.90	22.31	-30.62
4.10	20.73	-26.88
4.30	19.88	-22.31
4.50	19.40	-18.23
4.70	19.05	-14.25
4.90	19.08	-10.21
5.10	19.55	-6.30
5.30	20.85	-2.84
5.50	21.94	-1.49
5.70	20.60	-0.07
5.90	19.29	2.99
6.10	18.69	6.61
6.30	18.53	10.39
6.50	18.74	14.35
6.70	19.79	17.91
6.90	19.75	20.77
7.00	19.99	22.47

RF_{IN} Input Impedance (Pin = -25dBm, $V_{CC} = 3.6V$, $T_A = 25$ °C)

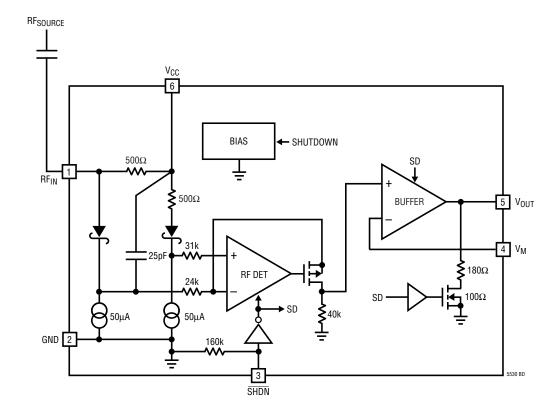
FREQUENCY (GHz)	RESISTANCE	REACTANCE	
0.30	(Ω) 216.45	(Ω) -76.47	
0.50	190.63	-98.28	
0.70	161.98	-112.03	
0.90	133.17	-111.53	
1.10	113.08	-109.05	
1.30	94.55	-107.08	
1.50	75.33	-98.50	
1.70	63.52	-88.19	
1.90	55.19	-80.05	
2.10	48.64	-72.23	
2.30	43.73	-64.81	
2.50	39.71	-58.31	
2.70	36.47	-52.27	
2.90	33.69	-46.77	
3.10	31.61	-41.25	
3.30	29.78	-36.61	
3.50	28.27	-32.39	
3.70	26.63	-28.12	
3.90	26.12	-23.97	
4.10	24.20	-20.75	
4.30	23.28	-16.69	
4.50	22.60	-12.77	
4.70	22.21	-9.08	
4.90	22.15	-5.24	
5.10	22.61	-1.58	
5.30	23.90	1.53	
5.50	24.97	2.62	
5.70	23.51	4.00	
5.90	22.25	6.94	
6.10	21.57	10.62	
6.30	21.43	14.02	
6.50	21.69	17.77	
6.70	22.68	21.24	
6.90	22.81	24.21	
7.00	23.07	25.56	
	1	l .	

PIN FUNCTIONS

 RF_{IN} (Pin 1): RF Input Voltage. Referenced to $V_{CC}.$ A coupling capacitor must be used to connect to the RF signal source. The frequency range is 300MHz to 7GHz. This pin has an internal 500Ω termination, an internal Schottky diode detector and a peak detector capacitor.

GND (Pin 2): Ground.

SHDN (Pin 3): Shutdown Input. A logic low on the SHDN pin places the part in shutdown mode. A logic high enables the part. SHDN has an internal 160k pulldown resistor to


ensure that the part is in shutdown when no input is applied. In shutdown V_{OUT} is connected to ground via a 280Ω resistor.

V_M (Pin 4): Negative Input to Buffer Amplifier.

V_{OUT} (Pin 5): Detector Output.

V_{CC} (Pin 6): Power Supply Voltage, 2.7V to 6V. V_{CC} should be bypassed appropriately with ceramic capacitors.

BLOCK DIAGRAM

APPLICATIONS INFORMATION

Operation

The LTC5530 RF detector integrates several functions to provide RF power detection over frequencies ranging from 300MHz to 7GHz. These functions include an internal frequency compensated buffer amplifier, an RF Schottky diode peak detector and level shift amplifier to convert the RF input signal to DC and a delay circuit to avoid voltage transients at V_{OUT} when powering up. The LTC5530 has both shutdown and gain setting capabilities.

Buffer Amplifier

The output buffer amplifier is capable of supplying typically 4mA into a load. The negative terminal V_M is brought out to a pin for gain selection. External resistors connected between V_{OUT} and V_M (R_A) and V_M to ground (R_B) will set the amplifier gain.

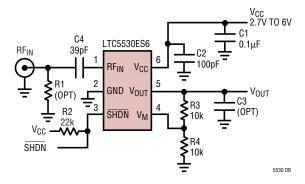
$$GAIN = 1 + \frac{R_A}{R_B}$$

The amplifier is unity gain stable; however a minimum gain of two is recommended to improve low output voltage accuracy. The amplifier bandwidth is 2MHz for a gain of 2.

For increased gain applications, the bandwidth is reduced according to the formula:

$$\mathsf{BANDWIDTH} = \frac{\mathsf{4MHz}}{(\mathsf{GAIN})} = \mathsf{4MHz} \bullet \frac{\mathsf{R}_\mathsf{B}}{(\mathsf{R}_\mathsf{A} + \mathsf{R}_\mathsf{B})}$$

A capacitor can be placed across the feedback resistor RA to shape the frequency response. In addition the amplifier can be used as a comparator. V_M can be connected to a reference voltage. When the internal detector voltage (which is connected to the positive input of the buffer amplifier) exceeds the external voltage of V_M , V_{OUT} will switch high.


RF Detector

The internal RF Schottky diode peak detector and level shift amplifier converts the RF input signal to a low frequency signal. The detector demonstrates excellent efficiency and linearity over a wide range of input power. The Schottky diode is biased at about 55μ A and drives a 25pF internal peak detector capacitor.

Shutdown

The part is in shutdown mode when \overline{SHDN} is low. The supply current is reduced to < $2\mu A$ and V_{OUT} is shorted to ground via a 280Ω resistor. When \overline{SHDN} is asserted high, the part is enabled after about $8\mu s$.

Demo Board Schematic

APPLICATIONS INFORMATION

Applications

The LTC5530 can be used as a self-standing signal strength measuring receiver for a wide range of input signals from -32dBm to 10dBm for frequencies from 300MHz to 7GHz.

Operation at higher frequencies is achievable. Consult factory for more information.

The LTC5530 can be used as a demodulator for AM and ASK modulated signals with data rates up to 2MHz. Depending on specific application needs, the RSSI output can be split between two branches, providing AC-coupled

data (or audio) output and DC-coupled RSSI output for signal strength measurements and AGC.

The LTC5530 can be used for RF power detection and control. Figure 1 is an example of transmitter power control, using the LTC5530 with a capacitive tap to the power amplifier. A 0.5pF capacitor (C1) followed by a 200 Ω resistor (R1) forms a coupling circuit with about 20dB loss at 900MHz referenced to the LTC5530 RF input pin. In the actual product implementation, component values for the capacitive tap may be different depending on parts placement, PCB parasitics and parameters of the antenna.

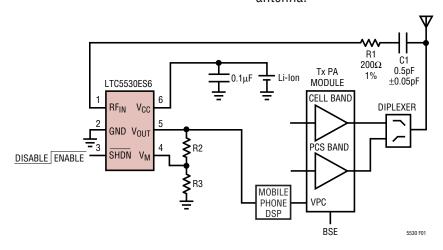
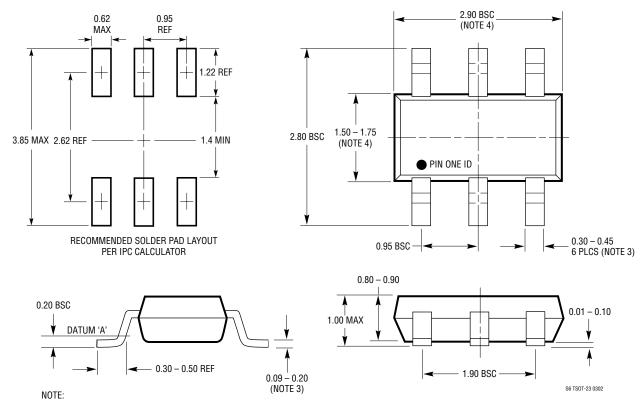



Figure 1. Mobile Phone Tx Power Control Application with a Capacitive Tap

PACKAGE DESCRIPTION

S6 Package 6-Lead Plastic TSOT-23

(Reference LTC DWG # 05-08-1636)

- 1. DIMENSIONS ARE IN MILLIMETERS
- 2. DRAWING NOT TO SCALE
- 3. DIMENSIONS ARE INCLUSIVE OF PLATING 4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
- 5. MOLD FLASH SHALL NOT EXCEED 0.254mm
- 6. JEDEC PACKAGE REFERENCE IS MO-193

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
Infrastructure		
LT5511	High Linearity Upconverting Mixer	RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer
LT5512	DC-3GHz High Signal Level Downconverting Mixer	DC to 3GHz, 21dBm IIP3, Integrated LO Buffer
LT5515	1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator	20dBm IIP3, Integrated LO Quadrature Generator
LT5516	0.8GHz to 1.5GHz Direct Conversion Quadrature Demodulator	21.5dBm IIP3, Integrated LO Quadrature Generator
LT5517	40MHz to 900MHz Direct Conversion Quadrature Demodulator	21dBm IIP3, Integrated LO Quadrature Generator
LT5519	0.7GHz to 1.4GHz High Linearity Upconverting Mixer	17.1dBm IIP3, 50Ω Single Ended RF and LO Ports
LT5520	1.3GHz to 2.3GHz High Linearity Upconverting Mixer	15.9dBm IIP3, 50Ω Single Ended RF and LO Ports
LT5522	600MHz to 2.7GHz High Linearity Downconverting Mixer	4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended RF and LO Ports
RF Power Detect	lors	
LT5504	800MHz to 2.7GHz RF Measuring Receiver	80dB Dynamic Range, Temperature Compensated, 2.7V to 5.25V Supply
LTC [®] 5505	300MHz to 3GHz RF Power Detectors	LTC5505-1: –28dBm to 18dBm Range, LTC5505-2: –32dBm to 12dBm Range, Temperature Compensated, 2.7V to 6V Supply
LTC5507	100kHz to 1000MHz RF Power Detector	-34dBm to 14dBm Range, Temperature Compensated, 2.7V to 6V Supply
LTC5508	300MHz to 7GHz RF Power Detector	-32dBm to 12dBm Range, Temperature Compensated, SC70 Package
LTC5509	300MHz to 3GHz RF Power Detector	36dB Dynamic Range, Temperature Compensated, SC70 Package
LTC5531	300MHz to 7GHz Precision RF Power Detector	Precision V _{OUT} Offset Control and Shutdown
LTC5532	300MHz to 7GHz Precision RF Power Detector	Precision V _{OUT} Offset Control, Adjustable Gain and Offset
RF Building Bloo	eks	
LT5500	1.8GHz to 2.7GHz Receiver Front End	1.8V to 5.25V Supply, Dual-Gain LNA, Mixer, LO Buffer
LT5502	400MHz Quadrature IF Demodulator with RSSI	1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dB Limiting Gain, 90dB RSSI Range
LT5503	1.2GHz to 2.7GHz Direct IQ Modulator and Upconverting Mixer	1.8V to 5.25V Supply, Four-Step RF Power Control, 120MHz Modulation Bandwidth
LT5506	500MHz Quadrature IF Demodulator with VGA	1.8V to 5.25V Supply, 40MHz to 500MHz IF, –4dB to 57dB Linear Power Gain, 8.8MHz Baseband Bandwidth
LT5546	500MHz Ouadrature IF Demodulator with VGA and 17MHz Baseband Bandwidth	17MHz Baseband Bandwidth, 40MHz to 500MHz IF, 1.8V to 5.25V Supply, -7dB to 56dB Linear Power Gain
RF Power Contro	ollers	
LTC1757A	RF Power Controller	Multiband GSM/DCS/GPRS Mobile Phones
LTC1758	RF Power Controller	Multiband GSM/DCS/GPRS Mobile Phones
LTC1957	RF Power Controller	Multiband GSM/DCS/GPRS Mobile Phones
LTC4400	SOT-23 RF PA Controller	Multiband GSM/DCS/GPRS Phones, 45dB Dynamic Range, 450kHz Loop BW
LTC4401	SOT-23 RF PA Controller	Multiband GSM/DCS/GPRS Phones, 45dB Dynamic Range, 250kHz Loop BW
LTC4403	RF Power Controller for EDGE/TDMA	Multiband GSM/GPRS/EDGE Mobile Phones, 250kHz Loop BW

