

Absolute Maximum Ratings @ 25°C

Parameter	Ratings	Units
Blocking Voltage	250	V _P
Reverse Input Voltage	5	V
Input Control Current	50	mA
Peak (10ms)	1	Α
Input Power Dissipation ¹	150	mW
Total Power Dissipation ²	800	mW
Isolation Voltage, Input to Output	3750	V _{rms}
Operational Temperature, Ambient	-40 to +85	°C
Storage Temperature	-40 to +125	°C

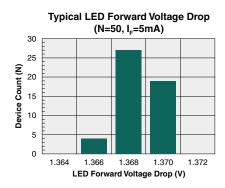
¹ Derate linearly 1.33 mW / °C

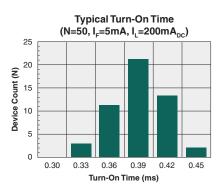
Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

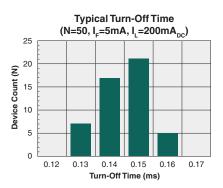
Typical values are characteristic of the device at +25°C, and are the result of engineering evaluations. They are provided for information purposes only, and are not part of the manufacturing testing requirements.

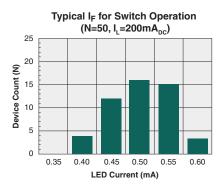
Electrical Characteristics @ 25°C

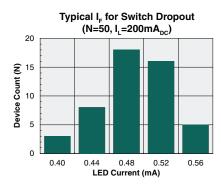
Parameter	Conditions	Symbol	Min	Тур	Max	Units
Output Characteristics						
Blocking Voltage	l _L =1μA	V_{DRM}	250	-	-	V _P
Load Current,						
Continuous 1	-	I_{L}	-	-	200	$\mathrm{mA}_{\mathrm{rms}}$ / $\mathrm{mA}_{\mathrm{DC}}$
Peak	t =10ms	I _{LPK}	-	-	±400	mA _P
On-Resistance ²	I _L =200mA	R _{ON}	-	6.8	10	Ω
Off-State Leakage Current	V _L =250V _P	I _{LEAK}	-	-	1	μА
Switching Speeds						
Turn-On	_EmA \/ _10\/	t_{on}	-	0.39	5	mo
Turn-Off	I _F =5mA, V _L =10V	t _{off}	-	0.15	5	ms
Output Capacitance	I _F =0mA, V _L =50V, f=1MHz	C _{OUT}	-	110	-	pF
Input Characteristics						
Input Control Current to Activate	I _L =200mA	I _F	-	-	5	mA
Input Control Current to Deactivate	-	-	0.4	0.5	-	mA
Input Voltage Drop	I _F =5mA	V_{F}	0.9	1.35	1.5	V
Reverse Input Current	V _R =5V	I _R	-	-	10	μА
Common Characteristics	mmon Characteristics					
Input to Output Capacitance	V _{IO} =0V, f=1MHz	C _{IO}	-	3	-	pF

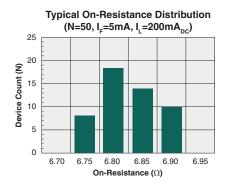

¹ If both poles operate, the load current must be derated so as not to exceed the package power dissipation value.

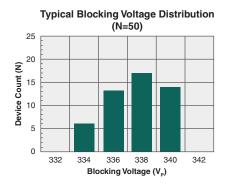

² Derate output power linearly 6.67 mW / °C

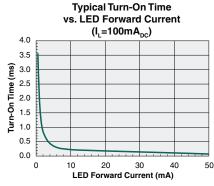

² Measurement taken within one (1) second of on-time.

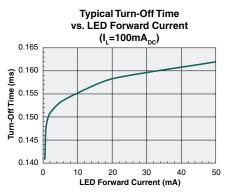


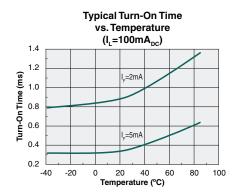

PERFORMANCE DATA*

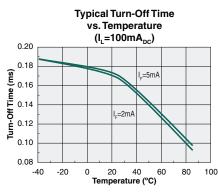


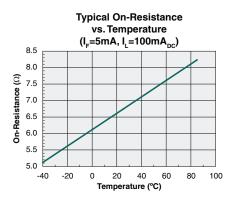


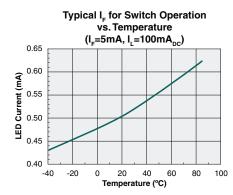


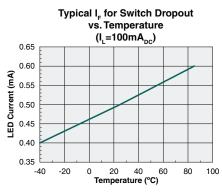


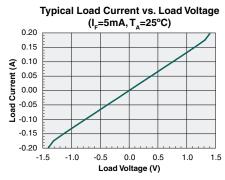


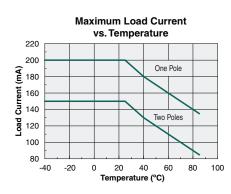


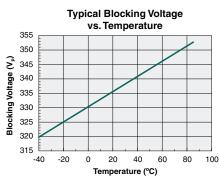

*Unless otherwise noted, data presented in these graphs is typical of device operation at 25°C.

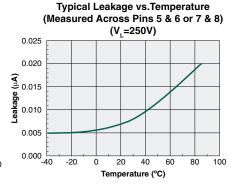


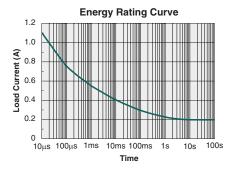

PERFORMANCE DATA*











*Unless otherwise noted, data presented in these graphs is typical of device operation at 25°C.

Manufacturing Information

Moisture Sensitivity

All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits classifies its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a **Moisture Sensitivity Level (MSL)** classification as shown below, and should be handled according to the requirements of the latest version of the joint industry standard **IPC/JEDEC J-STD-033**.

Device	Moisture Sensitivity Level (MSL) Classification		
LAA127S	MSL 1		
LAA127P	MSL 3		

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Soldering Profile

Provided in the table below is the **IPC/JEDEC J-STD-020** Classification Temperature (T_C) and the maximum total dwell time (t_p) in all reflow processes that the body temperature of these surface mount devices may be $(T_C - 5)^{\circ}C$ or greater. The device's body temperature must not exceed the Classification Temperature at any time during reflow soldering processes.

Device	Classification Temperature (T _c)	Dwell Time (t _p)	Max Reflow Cycles	
LAA127S	250°C	30 seconds	3	
LAA127P	245°C	30 seconds	3	

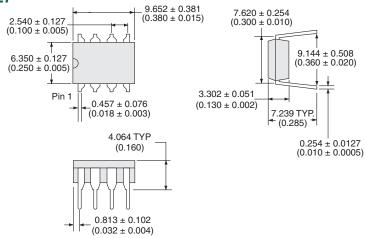
For through-hole devices, the maximum pin temperature and maximum dwell time through all solder waves is provided in the table below. Dwell time is the interval beginning when the pins are initially immersed into the solder wave until they exit the solder wave. For multiple waves, the dwell time is from entering the first wave until exiting the last wave. During this time, pin temperatures must not exceed the maximum temperature given in the table below. Body temperature of the device must not exceed the limit shown in the table below at any time during the soldering process.

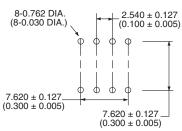
Device	Maximum Pin Temperature	Maximum Body Temperature	Maximum Dwell Time	Wave Cycles
LAA127	260°C	250°C	10 seconds*	1

^{*}Total cumulative duration of all waves.

Board Wash

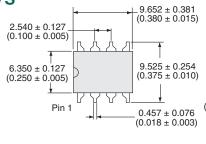
IXYS Integrated Circuits recommends the use of no-clean flux formulations. Board washing to reduce or remove flux residue following the solder reflow process is acceptable provided proper precautions are taken to prevent damage to the device. These precautions include but are not limited to: using a low pressure wash and providing a follow up bake cycle sufficient to remove any moisture trapped within the device due to the washing process. Due to the variability of the wash parameters used to clean the board, determination of the bake temperature and duration necessary to remove the moisture trapped within the package is the responsibility of the user (assembler). Cleaning or drying methods that employ ultrasonic energy may damage the device and should not be used. Additionally, the device must not be exposed to halide flux or solvents.



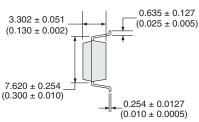


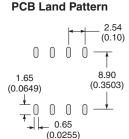
MECHANICAL DIMENSIONS

LAA127



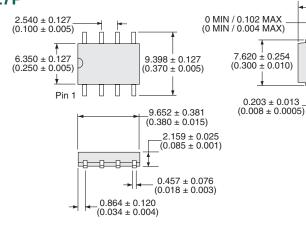
PCB Hole Pattern



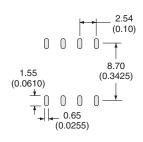

Dimensions mm (inches)

LAA127S

4.445 ± 0.127 (0.175 ± 0.005)


2.286 MAX

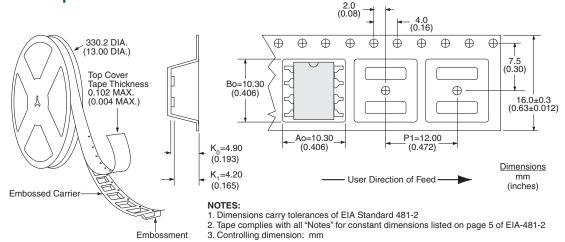
(0.090 MAX.)


 0.635 ± 0.127

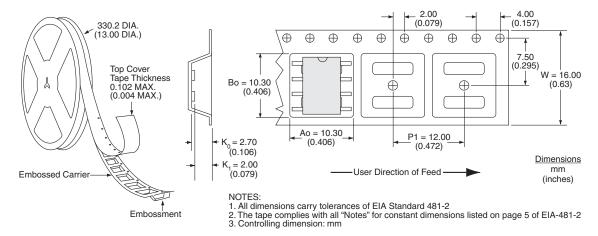
 (0.025 ± 0.005)

LAA127P

PCB Land Pattern


Dimensions mm (inches)

 0.203 ± 0.013



MECHANICAL DIMENSIONS

LAA127STR Tape & Reel

LAA127PTR Tape & Reel

For additional information please visit our website at: https://www.ixysic.com

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at https://www.littelfuse.com/disclaimer-electronics.

Specification: DS-LAA127-R14 ©Copyright 2021, Littelfuse, Inc. OptoMOS® is a registered trademark of IXYS Integrated Circuits All rights reserved. Printed in USA. 9/30/2021