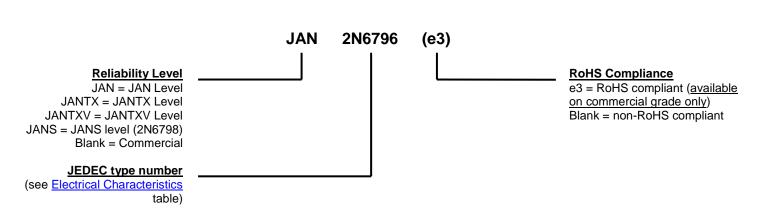


Notes: 1. Derate linearly 0.2 W/ $^{\circ}$ C for $T_{C} > +25 \,^{\circ}$ C.

2. The following formula derives the maximum theoretical I_D limit. I_D is also limited by package and internal wires and may be limited due to pin diameter.


$$I_D = \sqrt{\frac{T_J (max) - T_C}{R_{\theta JC} \ x \ R_{DS(on)} \ @ \ T_J (max)}}$$

3. $I_{DM} = 4 \times I_{D1}$ as calculated in note 2.

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Tin/lead solder dip nickel plate or RoHS compliant pure tin plate (commercial grade only).
- MARKING: Part number, date code, manufacturer's ID.
- WEIGHT: Approximately 1.064 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS					
Symbol	Definition					
di/dt	Rate of change of diode current while in reverse-recovery mode, recorded as maximum value.					
I _F	Forward current					
R_{G}	Gate drive impedance					
V_{DD}	Drain supply voltage					
V_{DS}	Drain source voltage, dc					
V_{GS}	Gate source voltage, dc					

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $V_{GS} = 0 \text{ V}, I_D = 1.0 \text{ mA}$	2N6796 2N6798 2N6800 2N6802	V _{(BR)DSS}	100 200 400 500		V
Gate-Source Voltage (Threshold) $V_{DS} \ge V_{GS}$, $I_D = 0.25$ mA $V_{DS} \ge V_{GS}$, $I_D = 0.25$ mA, $T_J = +125$ °C $V_{DS} \ge V_{GS}$, $I_D = 0.25$ mA, $T_J = -55$ °C	2110002	$\begin{matrix} V_{GS(th)1} \\ V_{GS(th)2} \\ V_{GS(th)3} \end{matrix}$	2.0	4.0 5.0	V
Gate Current $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}, T_{J} = +125^{\circ}\text{C}$	_	I _{GSS1} I _{GSS2}		±100 ±200	nA
$ \begin{array}{l} \text{Drain Current} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 80 \text{ V} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 160 \text{ V} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 320 \text{ V} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 400 \text{ V} \end{array} $	2N6796 2N6798 2N6800 2N6802	I _{DSS1}		25	μA
$\begin{array}{l} \text{Drain Current} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 80 \text{ V}, \text{ T}_{\text{J}} = +125 ^{\circ}\text{C} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 160 \text{ V}, \text{ T}_{\text{J}} = +125 ^{\circ}\text{C} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 320 \text{ V}, \text{ T}_{\text{J}} = +125 ^{\circ}\text{C} \\ \text{V}_{\text{GS}} = 0 \text{ V}, \text{ V}_{\text{DS}} = 400 \text{ V}, \text{ T}_{\text{J}} = +125 ^{\circ}\text{C} \end{array}$	2N6796 2N6798 2N6800 2N6802	I _{DSS2}		0.25	mA
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 5.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 3.5 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 2.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 1.5 \text{ A pulsed}$	2N6796 2N6798 2N6800 2N6802	r _{DS(on)1}		0.18 0.40 1.00 1.50	Ω
Static Drain-Source On-State Resistance $V_{GS} = 10 \text{ V}, I_D = 8.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 3.0 \text{ A pulsed}$ $V_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A pulsed}$	2N6796 2N6798 2N6800 2N6802	r _{DS(on)2}		0.195 0.420 1.100 1.600	Ω
Static Drain-Source On-State Resistance T_J = +125°C V_{GS} = 10 V, I_D = 5.0 A pulsed V_{GS} = 10 V, I_D = 3.5 A pulsed V_{GS} = 10 V, I_D = 2.0 A pulsed V_{GS} = 10 V, I_D = 1.5 A pulsed	2N6796 2N6798 2N6800 2N6802	r _{DS(on)3}		0.35 0.75 2.40 3.50	Ω
Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_D = 8.0 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 5.5 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 3.0 \text{ A pulsed}$ $V_{GS} = 0 \text{ V}, I_D = 2.5 \text{ A pulsed}$	2N6796 2N6798 2N6800 2N6802	V_{SD}		1.5 1.4 1.4 1.4	V

ELECTRICAL CHARACTERISTICS @ T_A = +25 °C, unless otherwise noted (continued)

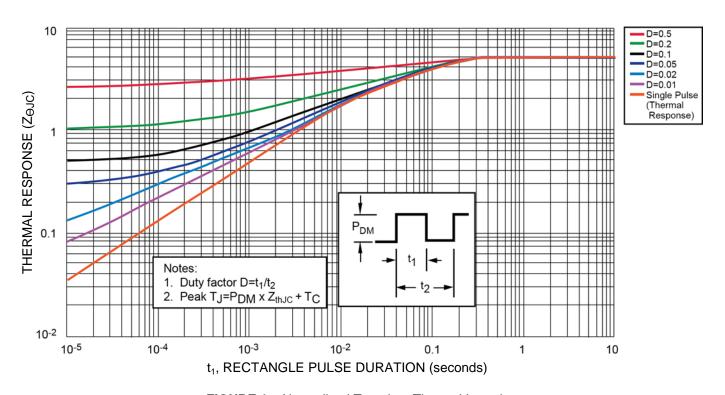
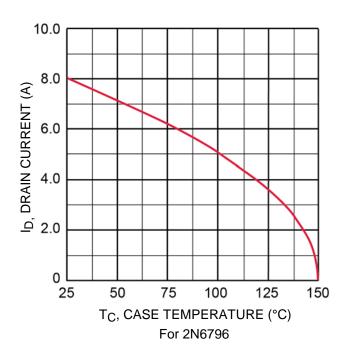
DYNAMIC CHARACTERISTICS

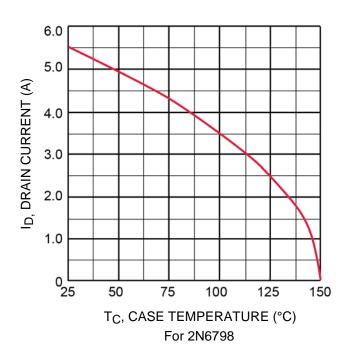
Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Gate Charge:					
On-State Gate Charge $V_{GS} = 10 \text{ V}, I_D = 8.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 3.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A}, V_{DS} = 50 \text{ V}$	2N6796 2N6798 2N6800 2N6802	$Q_{g(on)}$		28.51 42.07 34.75 33.00	nC
Gate to Source Charge $V_{GS} = 10 \text{ V}, I_D = 8.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 3.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A}, V_{DS} = 50 \text{ V}$	2N6796 2N6798 2N6800 2N6802	Q_gs		6.34 5.29 5.75 4.46	nC
Gate to Drain Charge $V_{GS} = 10 \text{ V}, I_D = 8.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 3.0 \text{ A}, V_{DS} = 50 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 2.5 \text{ A}, V_{DS} = 50 \text{ V}$	2N6796 2N6798 2N6800 2N6802	Q_gd		16.59 28.11 16.59 28.11	nC

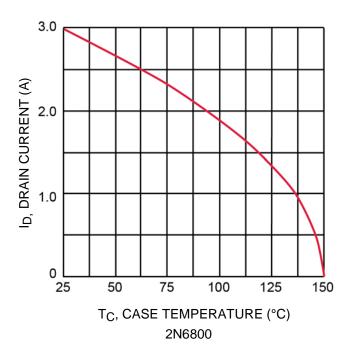
SWITCHING CHARACTERISTICS

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
Turn-on delay time $\begin{split} I_D &= 8.0 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \Omega, V_{DD} = 30 \text{ V} \\ I_D &= 5.5 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \Omega, V_{DD} = 77 \text{ V} \\ I_D &= 3.0 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \Omega, V_{DD} = 176 \text{ V} \\ I_D &= 2.5 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \Omega, V_{DD} = 225 \text{ V} \end{split}$	2N6796 2N6798 2N6800 2N6802	t _{d(on)}		30	ns
Rinse time $\begin{split} I_D &= 8.0 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \ \Omega, V_{DD} = 30 \text{ V} \\ I_D &= 5.5 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \ \Omega, V_{DD} = 77 \text{ V} \\ I_D &= 3.0 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \ \Omega, V_{DD} = 176 \text{ V} \\ I_D &= 2.5 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \ \Omega, V_{DD} = 225 \text{ V} \end{split}$	2N6796 2N6798 2N6800 2N6802	t _r		75 50 35 30	ns
Turn-off delay time $\begin{split} I_D &= 8.0 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \Omega, V_{DD} = 30 \text{ V} \\ I_D &= 5.5 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \Omega, V_{DD} = 77 \text{ V} \\ I_D &= 3.0 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \Omega, V_{DD} = 176 \text{ V} \\ I_D &= 2.5 \text{ A, V}_{GS} = +10 \text{ V, R}_G = 7.5 \Omega, V_{DD} = 225 \text{ V} \end{split}$	2N6796 2N6798 2N6800 2N6802	t _{d(off)}		40 50 55 55	ns
$ \begin{array}{c} \text{Fall time} \\ \text{I}_{D} = 8.0 \text{ A, V}_{GS} = +10 \text{ V, R}_{G} = 7.5 \ \Omega, \text{ V}_{DD} = 30 \text{ V} \\ \text{I}_{D} = 5.5 \text{ A, V}_{GS} = +10 \text{ V, R}_{G} = 7.5 \ \Omega, \text{ V}_{DD} = 77 \text{ V} \\ \text{I}_{D} = 3.0 \text{ A, V}_{GS} = +10 \text{ V, R}_{G} = 7.5 \ \Omega, \text{ V}_{DD} = 176 \text{ V} \\ \text{I}_{D} = 2.5 \text{ A, V}_{GS} = +10 \text{ V, R}_{G} = 7.5 \ \Omega, \text{ V}_{DD} = 225 \text{ V} \\ \end{array} $	2N6796 2N6798 2N6800 2N6802	t _f		45 40 35 30	ns
Diode Reverse Recovery Time di/dt \leq 100 A/µs, V _{DD} \leq 50 V, I _F = 8.0 A di/dt \leq 100 A/µs, V _{DD} \leq 50 V, I _F = 5.5 A di/dt \leq 100 A/µs, V _{DD} \leq 50 V, I _F = 3.0 A di/dt \leq 100 A/µs, V _{DD} \leq 50 V, I _F = 2.5 A	2N6796 2N6798 2N6800 2N6802	t _{rr}		300 500 700 900	ns

GRAPHS


FIGURE 1 - Normalized Transient Thermal Impedance



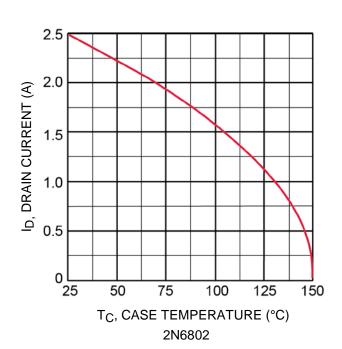
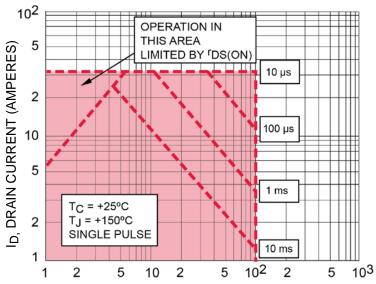

GRAPHS (continued)

FIGURE 2 – Maximum Drain Current versus Case Temperature Graphs

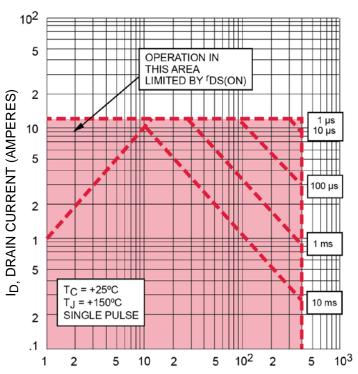




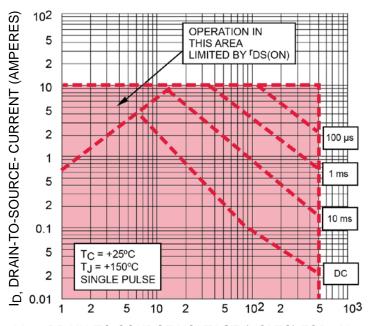
GRAPHS (continued)

FIGURE 3 - Maximum Safe Operating Area

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FOR 2N6796

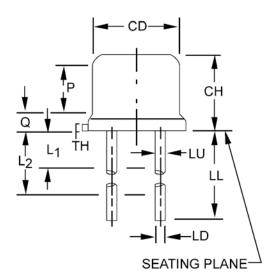


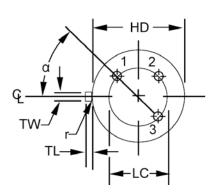
V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FOR 2N6798



GRAPHS (continued)

FIGURE 3 – Maximum Safe Operating Area (continued)


V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FOR 2N6880



V_{DS}, DRAIN-TO-SOURCE VOLTAGE (VOLTS) FOR 2N6802

PACKAGE DIMENSIONS

Symbol	Inch		Millim	Note	
	Min	Max	Min	Max	
CD	0.305	0.355	7.75	9.02	
СН	0.160	.180	4.07	4.57	
HD	0.335	0.370	8.51	9.39	
LC	0.200 TP		5.08 TP		6
LD	0.016	0.021	0.41	0.53	7, 8
LL	0.500	0.750	12.70	19.05	7, 8
LU	0.016	0.019	0.41	0.48	7, 8
L1		0.050		1.27	7, 8
L2	0.250		6.35		7, 8
Р	.070		1.78		5
Q		0.050		1.27	4
TL	0.029	0.045	0.74	1.14	3
TW	0.028	0.034	0.72	0.86	2
TH	.009	.041	0.23	1.04	
r		0.010		0.25	9
α	45	° TP	45°	6	

NOTES:

- 1. Dimensions are in inches. Millimeters are given for general information only.
- 2. Beyond radius (r) maximum, j shall be held for a minimum length of .011 (0.028 mm).
- 3. Dimension TL measured from maximum HD.
- 4. Outline in this zone is not controlled.
- 5. Dimension CD shall not vary more than .010 (0.25 mm) in zone P. This zone is controlled for automatic handling.
- 6. Leads at gauge plane .054 +.001, -.000 (1.37 +0.03, -0.00 mm) below seating plane shall be within .007 (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- LU applies between L1 and L2. LD applies between L2 and L minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 8. All three leads.
- 9. Radius (r) applies to both inside corners of tab.
- 10. Drain is electrically connected to the case.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.