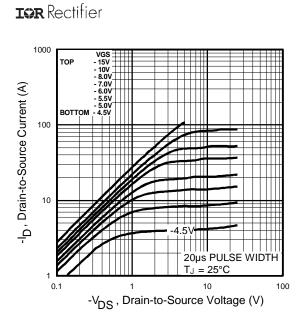
International **TOR** Rectifier

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-55			V	$V_{GS} = 0V, I_D = -250 \mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.034		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.065	Ω	V _{GS} = -10V, I _D = -16A ④
V _{GS(th)}	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}, I_D = -250 \mu A$
9 _{fs}	ForwardTransconductance	8.0			S	$V_{DS} = -25V, I_{D} = -16A$
I _{DSS}	Drain-to-Source Leakage Current			-25	μA	$V_{DS} = -55V, V_{GS} = 0V$
				-250		$V_{DS} = -44V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
Qg	Total Gate Charge			63		I _D = -16A
Q _{gs}	Gate-to-Source Charge			13	nC	$V_{DS} = -44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			29		V_{GS} = -10V, See Fig. 6 and 13 \oplus 6
t _{d(on)}	Turn-On Delay Time		14			V _{DD} = -28V
tr	Rise Time		66			I _D = -16A
t _{d(off)}	Turn-Off Delay Time		39		ns	$R_G = 6.8\Omega$
t _f	Fall Time		63			R _D = 1.6Ω, See Fig. 10 ⊕€
L _D	Internal Drain Inductance		4.5		nH	Between lead,
						6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact S
C _{iss}	Input Capacitance		1200			$V_{GS} = 0V$
C _{oss}	OutputCapacitance		520		pF	V _{DS} = -25V
C _{rss}	Reverse Transfer Capacitance		250			f = 1.0MHz, See Fig. 5 ©

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			-31	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current		110		integral reverse	
	(Body Diode) ①			-110		p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.3	V	$T_J = 25^{\circ}C, I_S = -16A, V_{GS} = 0V$ (4)
t _{rr}	Reverse Recovery Time		71	110	ns	$T_J = 25^{\circ}C, I_F = -16A$
Q _{rr}	ReverseRecoveryCharge		170	250	nC	di/dt = -100A/µs ⊕ ©


Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11)
- ④ Pulse width \leq 300µs; duty cycle \leq 2%.
- O V_{DD} = -25V, starting T_J = 25°C, L = 2.1mH $R_G = 25\Omega$, $I_{AS} = -16A$. (See Figure 12)
- ⑤ This is applied for I-PAK, L_S of D-PAK is measured between lead and center of die contact.
- © Uses IRF5305 data and test conditions.
- $\label{eq:ISD} \textcircled{3} I_{SD} \leq \textbf{-16A}, \, di/dt \leq \textbf{-280A}/\mu s, \, V_{DD} \leq V_{(BR)DSS}, \\$ $T_J\!\le\!175^\circ C$

* When mounted on 1" square PCB (FR-4 or G-10 Material).

For recommended footprint and soldering techniques refer to application note #AN-994.

** Uses typical socket mount.

International

Fig 1. Typical Output Characteristics

IRFR/U5305PbF

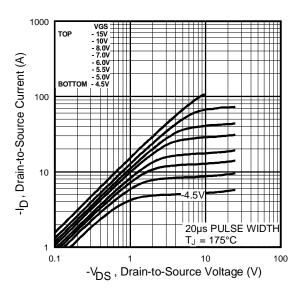


Fig 2. Typical Output Characteristics

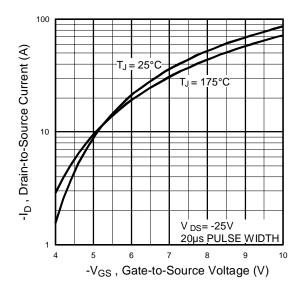


Fig 3. Typical Transfer Characteristics

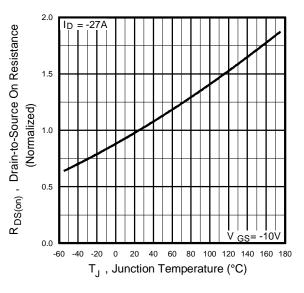
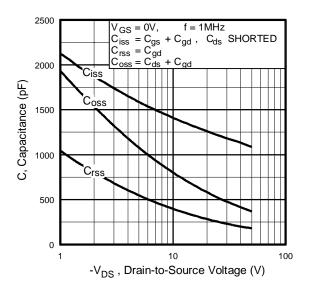



Fig 4. Normalized On-Resistance Vs. Temperature

International

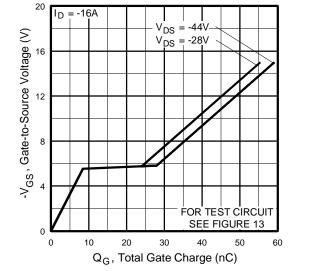
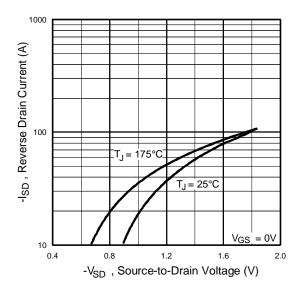
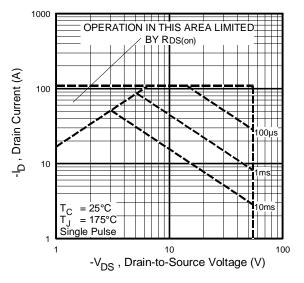
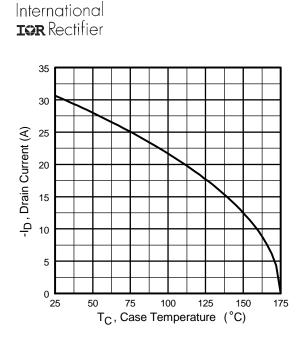
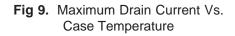



Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

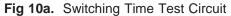


Fig 8. Maximum Safe Operating Area

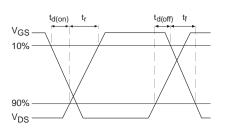


Fig 10b. Switching Time Waveforms

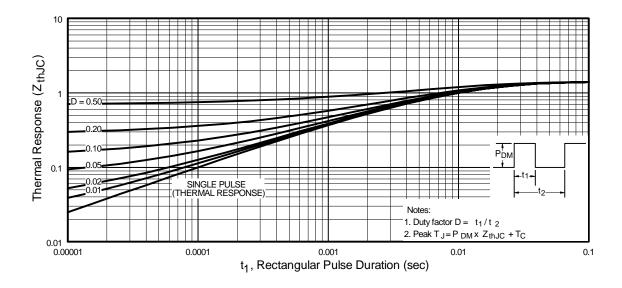


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International **ISR** Rectifier

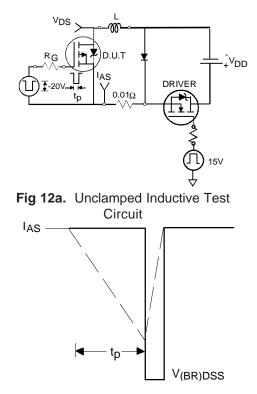


Fig 12b. Unclamped Inductive Waveforms

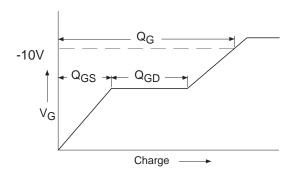
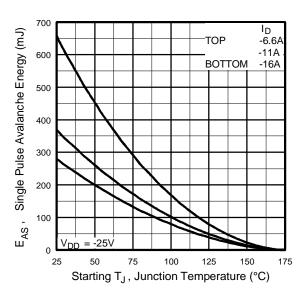
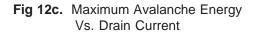




Fig 13a. Basic Gate Charge Waveform

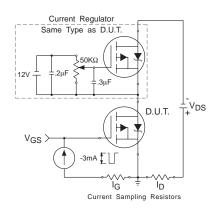
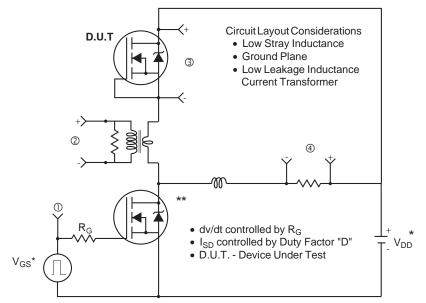
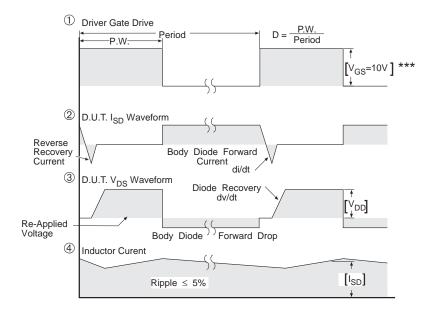



Fig 13b. Gate Charge Test Circuit

International


IRFR/U5305PbF

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity for P-Channel

** Use P-Channel Driver for P-Channel Measurements

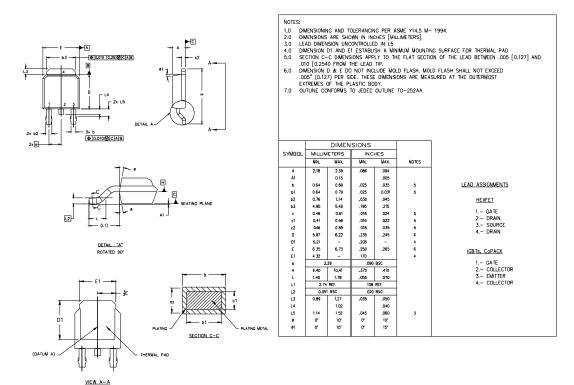
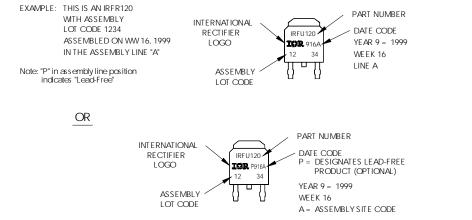

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

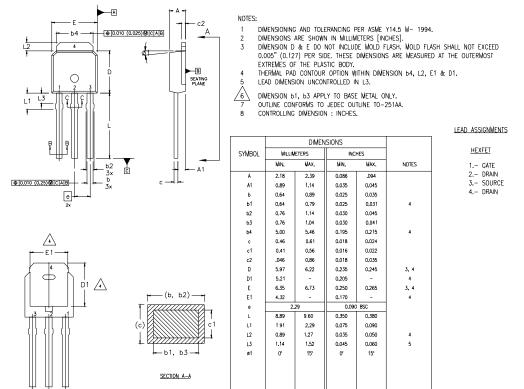
Fig 14. For P-Channel HEXFETS


International **ISR** Rectifier

D-Pak (TO-252AA) Package Outline

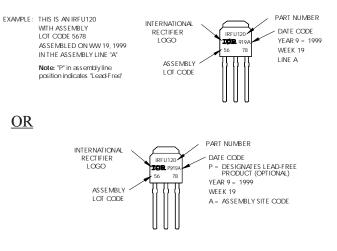
Dimensions are shown in millimeters (inches)

D-Pak (TO-252AA) Part Marking Information



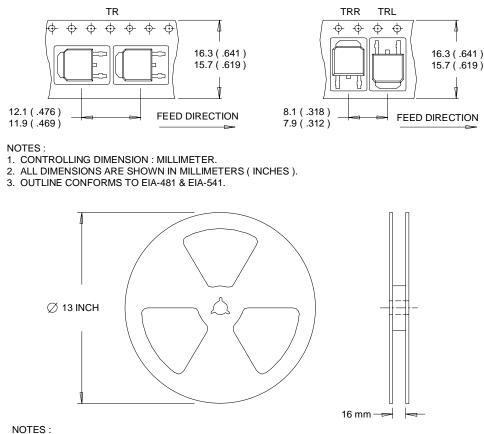
International **TOR** Rectifier

IRFR/U5305PbF


I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

VIEW A-A


I-Pak (TO-251AA) Part Marking Information

International **ISPR** Rectifier

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

1. OUTLINE CONFORMS TO EIA-481.

Data and specifications subject to change without notice.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/04 10 www.irf.com Note: For the most current drawings please refer to the IR website at: <u>http://www.irf.com/package/</u>

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.